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A self-consistent field method is set up, general enough to be used in case we are treating configuration
interaction between any number of states each represented by a single determinantal wave function. Thus
it is more general than the Hartree-Pock method, which is limited to a single determinantal wave function.
We cannot use a variation method, for if a su%ciently extensive configuration interaction is carried out,
an equally good Gnal value of the energy and wave function will be obtained irrespective of the one-electron
functions used. Instead, we return to. the original, postulate of Hartree, that each electron, is assumed to
move in the averaged charge distribution of all other electrons, and all nuclei. It is shown that when this
condition is properly interpreted, it leads to a unique potential for the self-consistent field, all the one-
electron orbitals being solutions of the same Schrodinger equation, and hence orthogonal to each other.
This field is somewhat different from that of Hartree, who did not literally follow this prescription for
finding the potential. For the case where we are using a single determinantal function, the present method
reduces to the simplification of the Hartree-Pock method recently proposed by the writer.

HE Hartree-Fock method, and the simplification
of it recently suggested by the writer, ' rest on

the assumption that we are dealing with an e electron
wave function given by a single determinant, or anti-
symmetrized product, formed from st one-electron
orbital functions of coordinate and spin. Often, however,
we wish to deal with a more general case, in which the
wave function is approximated by a linear combination
of such determinantal wave functions. The process of
combining such determinants to get a better approxi-
mation than can be secured by one alone is generally
called configuration interaction. In this note we shal1
examine the more general self-consistent field method
to be used in such cases of con6guration interaction.

If we start with a complete orthogonal set of one-
electron spin-orbital functions e;, then the products
N, (x&)ttI, (x&) . N„(x„), where the indices jh, , , p
are to take on all combinations of values, obviously
form a complete orthogonal set of e electron functions
coordinates and spin, and the antisymmetrized products
or determinants (st!) ' detltt;(x&)Nt, (x&) ~ N„(x„)l form
a complete orthogonal set of antisymmetric e electron
functions of coordinates and spin. Thus the exact wave
function of an e electron problem can be expanded as a
linear combination of such determinantal functions, so
that a proper treatment of con6gurational interaction
can give an exactly correct solution and can yield a
function which takes full account of the correlation
between the motion of electrons, though of course it is
well known that a single determinantal function by
itself does not correctly describe this correlation. The
expansion of a given wave function in terms of determi-
nantal wave functions may be slowly convergent;
studies of the problem of the ground state of helium
by Taylor and Parr, ' and by Green et al.' show that in
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this case the convergence is rather slow. On the other
hand, the recent success of Meckler4 in studying the
oxygen molecule suggests that in at least some im-

portant cases the method of configuration interaction
may converge well enough to be of practical value. It
is well known that the Heitler-London and valence-bond
methods can be regarded as examples of configuration
interaction between a number of diferent con6gurations
set up in terms of antisymmetrized products of mo-
lecular orbitals. Thus any advantages lying in those
methods can surely be secured by using configuration
interaction, between a relatively limited number of
con6gurations. The case of oxygen studied by Meckler
included enough con6gurations so that his treatment is
more general than a valence-bond method, and the
same thing is true of various other investigations under
way in this laboratory.

Let us then consider the problem of determining the
one-electron orbitals I, by a self-consistent method. It
is at once obvious that no variation method, like the
Hartree-Fock procedure, can be used in this case, for
that depends on choosing those u s which allow us to
make the best single determinantal function. In the
present case, no matter what orbitals we use, provided
they form a complete orthogonal set, we can eventually
get a precisely correct answer, by carrying the con-
6guration interaction far enough. The only criterion
which we can now use to determine the u s is that we
wish the set in terms of which the process of con6gura-
tion interaction will give a series which converges most
rapidly. This is not a criterion which is readily expressed
analytically. Accordingly we turn in quite a diferent
direction for the determination of the I s and go back
to something much more like Hartree's original intuitive
argument for setting up the self-consistent 6eld; We
shall demand very simply that the I s be solutions of
a Schrodinger equation representing the motion of an
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electron in the 6eld of all nuclei, and in the field of all
other electrons, averaged over the motions of these
other electrons.

This very simple requirement leads to a perfectly
unique Schrodinger equation. Let the wave function
of all e electrons be U(x&, ~ ~, x„).This is an antisym-
metric function, which may well be expressed as a linear
combination of determinantal functions of the type we
have just been discussing. The quantity U*(x& x„)
X U(x& x~)dx&. dx„measures the probability that
simultaneously electron 1 be in dx~, electron e in
dx„(where we are including the spins with the coordi-
nates). The electrostatic interaction energy between
electron 1 and all other electrons is P (j)e'/»», where j
goes from 2 to e, and r~, is the distance from electron 1
to the jth electron. Thus

~xl U (xl' ' 'x )Q(j)+/»ljU(xl' ' 'x )dx2' ' 'dx
aJ

can be considered as the probability that the electron 1
be in dr~, times the average value of the electrostatic
interaction energy as averaged over all positions and
spins of the electrons 2. e. Since the probability that
electron 1 be in dr~, irrespective of the positions of other
electrons, is dx~ J'U (x~ x„)U(x& x )dx2 dx, we
see that the average potential energy of interaction
between electron 1 and all other electrons, when
electron 1 has coordinates and spin given by x~, is

V, (xg)

U*(xg x„)g(j)e'/», ,U(x) x„)(gx2 dx„

~ (1)

U*(xg. x„)U(xg -.x„)dx2 .dx„

If we add this to V„(x&), the potential energy of an
electron of coordinate and spin x~ in the field of the
nuclei, to get V(x&), then we see that V(x~) represents
the average potential energy of the electron of coordi-
nates and spin x~, averaged over the motions and spins
of all other electrons. We assume, then, that the correct
generalization of the method of the self-consistent 6eld
is to set up a one-electron Schrodinger equation moving
in this poten. tial V(x).

We have already mentioned (reference 1) the simpli-
fication of the Hartree-Pock method, by which a single
Schrodinger equation was introduced in place of the
Hartree-I'ock equations, in the case where the wave
function of the many-electron problem could be written
as a single determinant. If we replace our function U

by a single determinant, then it is easily shown that
our Schrodinger equation reduces to that given in Eq.
(7) of reference 1, so that the method of reference 1 is
a special case of that which is now proposed. We can
give the same interpretation to the potential V, that

was done in reference 1. That is, it is the potential
energy of interaction of the electron with coordinates
and spin x&, with an electronic distribution of density

(e—1) U*(xg x„)U(xg x„)dx3 dx„

U*(x) x„)U(xg x„)dx2 dx

p(x, ) V, (xg)dx„ (3)

where p(x~) is the electronic charge density at the
position arid with the spin given by x~.

The expression (3) is formally just like the interaction
energy of a charge distribution with itself in classical
electrostatics; only in the classical case, V, would be
related to p by Poisson's equation, whereas here it is
not. The possibility of writing the electrostatic energy
in this form, in the quantum theory, has been discussed
by the writer, ' using arguments closely related to those

' J. C. Slater, Revs. Modern Phys. 6, 209 (1934).

with coordinates and spin given by x2. This electronic
distribution consists of a total charge equal to (n —1)
electrons, and its density goes to zero when x2 equals x&,.
that is, when electrons 1 and 2 have the same spin and
are at the same position of space. That is just as if the
electronic distribution consisted of the whole charge of
e electrons, diminished by an exchange charge whose
properties are like those discussed in reference 1. In
other words, the qualitative discussion given in refer-
ence 1 is more general than the assumption made there
that the wave function could be represented by a
single determinant or a single configuration. In partic-
ular, the simplification introduced in. Sec. 5 of reference
1, replacing the exchange potential by a value calculated
from a free-electron gas, is as plausible a simpli6cation
in the general case of configuration interaction as it is
for the single determinantal function, and is not tied in
any way to the Hartree-Pock case.

One way to appreciate the useful features of the
expression (1) for the potential V, is to ask how to
calculate the electronic repulsive interaction energy of
the whole system. The average values of each term
e'/»;; over the wave function are the same, on account
of the antisymmetry of the wave function, and since
there are e(m —1)/2 pairs, the total interaction energy
will be just m(e —1)/2 times the integral for one term.
Now if we multiply V, (x&), as given in Eq. (1), by the
denominator J'U*(xg x„)U(xg x„)dx2 dx, and
integrate over dxj, the result will be just the value of
(I—1) interaction terms like e'/»;;. Thus the total
interaction energy will be I/2 times as great as this.
But IJ'U*Udx2 Cx„ is just the total charge density,
in units of the electronic charge. Thus we see that the,
total electronic interaction energy can be written as
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of the present note. The reader should realize clearly
that, if the exact wave function of the problem is used
in calculating the potential V, (xi) of Eq. (1), and in
calculating the charge density, then Eq. (3) represents
an exact result, including all exchange terms. The total
electrostatic energy of the system of course includes in
addition to (3) the interactions between electrons and
nuclei, which can be computed from the charge density
p(xi) alone, and the interactions between pairs of nuclei.

We have now seen that there is a straightforward
method in principle for setting up a self-consistent field
calculation for any atomic or molecular system. We
set up the potential V, (x)+V (x), using Eq. (1) for
V.(x). We solve Schrodinger's equation for the one-
electron orbitals in this potential field. Sy general
properties of Schrodinger's equation, these orbitals
form a complete orthogonal set. We form from them a
complete set of antisymmetrized products of e one-
electron functions, and set up and solve the secular
problem involved in finding those linear combinations
of antisymmetrized products which make the energy of
the e electron system stationary. One of the resulting
solutions represents the state of the system in which
we are particularly interested. We then take the anti-
symmetric wave function U representing this state,
formed as a sum of the antisymmetrized products, and
insert it in Eq. (1) to find a new U, . Our condition of
self-consistency implies that this final U, should be
identical with the original value.

The one-electron orbitals which we have obtained in
this way are what are usually called molecular orbitals.
Most writers, for instance Lennard-Jones6 and Root-
haan, ~ have derived molecular orbitals from the
Hartree-Fock method. On account of the involved
nature of this method, their discussions are necessarily
somewhat complicated. In contrast, the present method,
setting up a unique potential and Schrodinger equation
of the usual sort, of which the molecular orbitals are
eigenfunctions, makes a discussion much simpler. For
instance, the potential U, will usually have the same
symmetry as the nuclear system, so that the application
of the group theory to the discussion of the symmetry
properties of the molecular orbitals follows very
straightforwardly. Another advantage of the present
method is that it gives us an infinite set of orbitals, in a
much more direct way than the Hartree-Fock method,
and the configuration interaction gives us (in principle)
an infinite number of solutions, representing excited
configurations. Since the one-electron orbitals are not

6 J. K. Lennard- Jones, Proc. Roy. Soc. (London) A198,
(1949), and later papers.
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chosen to make the problem self-consistent for these
excited configurations, the process will presumably not
converge as rapidly for these other configurations as
for the ground state (if, as usual, it is the ground state
which is made self-consistent), but the calculation of
these excited configurations is on as firm a theoretical
basis as that of the ground state.

The procedure which we have outlined is of course an
idealized one which could never be carried through in
practice, since we can neither solve the one-electron
Schrodinger problem exactly to get the one-electron
orbitals, nor carry out exactly the problem of configur-
ation interaction. In an actual case, then, one must
compromise, and our general discussion has been more
with the aim of suggesting an ideal toward which one
may aim in the calculation, than with the hope that it
can represent a practicable program. We should ordi-
narily set up approximate solutions of the self-consistent
problem in the form of linear combinations of atomic
orbitals, We then note the following situation. If we
are using a finite and very limited set of orbitals, and
are solving the configuration interaction problem be-
tween all configurations which can be set up from these
orbitals, as Meckler did in the work referred to, then
we can equally well set the problem up in terms of any
linear combinations of the orbitals. As Meckler has
pointed out, the final result will be independent of
what linear combinations we use. In such a case, it is
useless extra labor to find those combinations of our
orbitals which best represent solutions of the self-
consistent field problem. This is the special case, for a
limited number of orbitals, of the general statement
that if we are completely solving the problem of
configuration interaction, it makes no difference what
complete orthogonal set of one-electron orbitals we use.

The difficulty with Meckler's procedure, however, is
that as the number of electrons and orbitals goes up,
the number of interacting configurations increases
enormously. In such a case we can obviously handle
interaction only between a limited number of configur-
ations, normally those of lowest diagonal energy, and
with largest nondiagonal matrix components of energy
connecting them with the ground state. We may expect
that in such problems, if we are using all configurations
arising from E orbitals, then our results will be the
more accurate, the more accurately we can write the S
lowest molecular orbitals of the self-consistent field
problem as linear combinations of these 2V orbitals.
Our aim in setting up linear combinations of atomic
orbitals, or other methods of setting up one-electron
orbitals, must then be to have a set of unperturbed
one-electron functions capable of approximating the
lowest iV molecular orbitals as accurately as possible.


