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Discontinuities in the Nuclear Mass Surface
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Proton and neutron binding energies are analyzed in such a way as to permit an approximate assessment of
the eGects associated with pairing and shell structure. We draw several interesting conclusions with respect
to the accuracy of various theoretical expressions which have been proposed for the pairing eAect. Our analy-
sis of the data and considerations of an atomic model lead us to a simple approximate representation of a shell
stabilizing correction to nuclear energies. This shell structure term accounts rather we/1 for the observed
departures from the general trends of beta-stability, nuclear masses, and nuclear Q values. Our shell correc-
tion suggests that much larger systematic variations in nuclear masses may be identi6ed with shell structure
eGects than might previously have been suspected.

1. THE DATA AND THEIR INTERPRETATION

A„r(A) = (A —100)'/100 —64, (mMU). (1)

To facilitate the analysis of the discontinuities in the
experimental mass surface, we have converted the ex-
perimental data into a set of mass residuals and reaction
energy or Q-value residuals. The mass residual, in

mMU, for a particular nuclide is here defined as

(2)

where 6 is the experimental mass decrement (6=35
—A). The Q-value residual is defined LGE Eq. (20)g as:

R =A 6„"(A), —

' 'T has been pointed out in the preceding paper' that
~ ~ nuclear mass decrements can be represented fairly
accurately by the smooth function:

where E and 0 denote the evenness or oddness of E or Z,
respectively. We thus are adhering to the convention of
referring masses to a surface which lies halfway between
the even-even and odd-odd nuclear surfaces. We now
allow, however, for the possible departures of the two
odd mass surfaces from this intermediate surface. The
parabolic term contains the optimum smooth functions
for the line of stability and the parabolic width.

When both the target and product nuclides belong to
the same zone, the Q-value residual is

R (Q) =S;,(N, Z) S,;(N', Z')+—P (1V, Z)
P'(N' Z')+ J'—O' —J"0", (6)

ft=D —D„(A) and ft'=O' —D„(A').
R(Q)=Q —Q "(A). (3) Since the change in N, Z, and A are usually small

compared to E, Z, and A we may express this equation
approximately as

By referring the mass decrements and Q values to
6 "(A) and Q "(A) instead of the complete reference
functions, we greatly simplify the task of computing
residuals. At the same time we still have the advantages
of reference functions which are good approximations to
the actual functions.

For studying shell and pairing discontinuities in the
nuclear mass surface, we shall assume that the mass
residuals may be represented by

R(Q) = (n' n)BS;;/ctN—+(s' s)BS;—,/BZ
+P P'+ J'(0' 8"),—(7)—

where e, e', s, and s' are the neutron and proton
numbers of the incident and ejected particles. Thus
apart from the spin and parabolic effect residual Q
values are related to the partial derivatives of the shell

function. The problem of opportioning the residual Q
values to the four terms on the right side of Eq. (7) is
complicated by the fact that these terms are frequently
of the same order of magnitude. Fortunately by the
judicious choice of data for study the problem becomes
tractable.

R(N, Z) =S;;(N, Z)+P(N Z)+J'$D D'(A)j'. (4)—
The subscript i is used to denote a region of the mass
surface lying between the planes de6ned by the magic
neutron number E„and S& and the subscript j is used to
denote a region lying between planes defined by the
magic proton numbers Z„and Zt. (See Table II or Fig. 6.)
S;;(N, Z)-'.;.

,
'is assumed to embody the shell structure

effect and P(N, Z) is now used to represent the pair'
efFect. We shall assume that

2. NEUTRON AND PROTON BINDING ENERGIES

P(0, 0)=H, P(E, E)= H, —
P (E, 0)=p, P (0, E)=n,

lng
Neutron and proton binding energies furnish a good

source of data for studying shell eRects since in these
cases either the first or second term in Eq. (7) vanishes.
Neutron and proton binding energies may be obtained
from*Now at the Department of Physics, Florida State University,

Tallahassee, Florida.
' A. E. S. Green and N. A. Engler, preceding paper LPhys. Rev.

91, 40 (1953)g; hereafter referred to as GE

&.(N, z)=a(N —1, z)+s„—s(N, z)
=-QL~b, )~'3 (g)
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and TABLE I. The pairing correction to binding energies.

B v(N, Z) =6 (N, Z —1)+AH A—(N, Z)
= —QL&(v, P)X'] (9)

To obtain the residual neutron binding energy we
subtract Q

' from both sides of Eq. (8). We And

X, Z

o, o
B, O
0, B

T Q'Jl +V
V—T+7r

T m'

T =7r +V
V

Neutron binding

H—H
+H—H

Proton binding

T +7f +V

T+V
1r

T V

=V=H
H—H—H
H

R„(N, Z) =B„(N,Z) B„—'(A), (10)

where B„"(A)is the negative of the Q "(A) for the y, e
reaction. Using GE Eq. (17), it is simple to show that

R (N, Z) =R(N —1, Z) —R(N, Z). (11)

Similiarly, for the residual proton binding energy,

R„(N, Z) =B„(N, Z) —Bv"(A) (12)

=R(N, Z—1)—R(N, Z). (13)

B„"(A) and Bv'(A) are reference functions found in
Table III GE.

An extensive collection of neutron binding energies
from (y, n) thresholds, from the Q values of (n, y)
reactions, and (d, p) reactions, and from mass data is
available. ' However, few proton binding energies have
been measured directly. The residual proton binding
energies may be computed from (p, y) reactions, (d, n)
reactions and mass residual data using Eqs. (12) and
(13) or else by the use of

Rv(N, Z) =R„(N, Z)
+tR(N, Z —1)—R(N —1, Z)j (14)

which follows from Eqs. (11) and (13).Since the differ-
ence between the mass residuals indicated in brackets is
the same as the djtfference between masses this term may
frequently be obtained from beta decay energies.

In view of Eqs. (8) and (9) we have, as special cases
of Eq. (7),

R„(N, Z) = —BS;;/BN+P' —P+J0(e"—8'), (15)
and

Rv(N, Z) = BS,;/BZ+P. ' —P+J'(0" 0')—. (16)—
The parabolic term presents considerable diKculties.

Not only is it a tedious term to compute but it is par-
ticularly sensitive to small Ructuations in the location of
the valley. Since the shell effect is probably the main
cause of fluctuations in the line of stability, we find
ourselves in the situation of having to know the shell
correction in order to evaluate the shell correction.
Fortunately a successive approximation approach helps
to resolve the difhculty. The approach which we
adopted is based upon an attempt to minimize the
parabolic term by selecting pairs of nuclides which have
at least one P-stable member. Since the change in 8
associated with the removal of a neutron or proton is of
the order of +1 or —1, respectively, the difference of the
squares may be expected to be a positive or negative

~Nuclear Data, National Bureau of Standards, Circular 499
(U. S. Government Printing OfFice, Washington, D. C., 1950) and
Supplements appearing in Nuclear Science Abstracts.

number of the order of unity. Consequently the para-
bolic correction term is of the order of 25/A, which is
relatively small for medium and heavy nuclides although
appreciable for light nuclides. Accordingly we must
expect, particularly for small A, scattering of the points
from any smooth curve which represents the shell and
spin corrections.

It has been pointed out that the pairing correction
represents the additional energy due to unpaired
nucleons. If the reference surface is taken as the EE
surface, we may denote the additional energies of an
EO, OE, or OO nuclide as ~, v, and ~, respectively.
These are the same x and v as used by Coryell and
Suess. ' To allow for the possible interaction of the odd
proton and odd neutron, we have not restricted our v- to
vr+v. In Table I we show an analysis of the pairing
correction for the binding energies of protons and
neutrons as they depend upon the nuclear type given in
column one. In columns 2 and 5 we indicate the pairing
energy differences involved in these cases under the
general assumption that the pairing energies take on the
values 0, x, v and v.. In, columns 3 and 6 we indicate
what these differences would be if r=x+v In colum.ns
4 and 7 we indicate what these differences would be if
s.= v= r/2=H.

Ignoring momentarily the parabolic and pairing cor-
rections, the neutron and proton binding energy residuals
LEqs. (15) and. (16)j are just the negatives of the partial
derivatives of the shell structure term. On plots of
E„es X and R„es Z the points corresponding to the
nuclides should collect about the curves BS;;/BN and—
—BS;,/BZ, respectively. Taking into account the pairing
term of Eq. (15) and (16) we would expect, if r=m+v,
that the experimental points will be above or below

BS;,/B—N and BS;,/B—z by the distances given in
columns 3 and 6 of Table I. Accordingly, the points on
the R„vs X plot should group in such a way that the
curve —BS;;/BN would be half-way between the aver-

age distributions of the EE, EO group and the OO, OE
group. Similiarly for the E„es Z plot, the average
distribution curves for the EE, OE group and the
OO, EO group should be equally spaced about, the
—BS;,/Bz curve. We must expect random scattering
about these distribution curves because of the parabolic
factor. The distance between these average distribution
curves on the E„and E.„plots is expected to be 2v and
2x, respectively. On the other hand, if ~ differs from
~+v we would in both cases find four curves spaced

& C, D, Qoryell and H. E. Suess, Phys. Rev. 86, 609 (1952).
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FIG. 1.The residual neutron binding energy vs neutron number. The points are designated as to the type, i.e., the
evenness or oddness of the number of neutrons or protons. The grouping of the EE and EO types and the grouping of
the OO and OE types can be seen. The dashed curves indicate the average distributions of these groups. The solid
line represents our visual estimate of the best straight line representation of —(BS;;/81'}.The —(BS;;/SE) which
we use in Sec. 4 consists of a series of straight line segments running from —1 at the lower magic number to 1 at the
upper magic number.

with respect to —85;;/BN and rIS;,/B—Z in accord
with the columns 2 and 5 of Table I.

The neutron and proton binding energy residuals
computed from recent experimental data' are shown in
Figs. 1 and 2, respectively. Yo accommodate the
computed residuals diferent vertical scales were used in
Figs. 1 and 2.

3. THE PAIRING EFFECT

If we examine Figs. 1 and 2 we observe that to a large
extent the grouping of types expected on the basis of the
assumption that r=n.+v, is fulfille. In several in-
stances signihcant departures seem to occur. The most
noteworthy is in the region of A values between 230 and
240 where r (~+v) = 1 mMU. —

In Fig. 3 we have plotted pairing energies, experi-
mental and empirical, as functions of the mass number.
The corresponding E and Z numbers computed from the
reference line of beta-stability {N "(A)= —,

' [A+D„"(A)$,
Z "(A)=—sILA —D r(A)$} are also shown. The squares

and the circles represent estimated values of ~ and v,

respectively, for five-unit intervals of E and Z. These
values have been obtained from an analysis of the
separation of the types in Fig. 1 and Fig. 2.

In Eq. (5) we take as a reference the surface which
lies halfway between the EE and 00 surfaces. For the
case rrW v we may let H =-', (w+ v). Uarious functions of
A have been proposed for this pairing correction. In
Fig. 3 we show three of these functions, Hr(A) = 140/A, '
Hs(A)=36/A&, s and Hs 10/A&. s Of these three——the
last appears to best follow the variation with A. The
function 12/A& is probably still better although it is
somewhat smaller in the middle range than the experi-
mental data indicate.

' S. Glasstone, Source Book on Atomic Energy (D. Van Nostrand
Company, Inc., New York, 1950).The pairing function suggested
by J.W. Blatt and V. F. Weisskopf in Theoretica/ %@clear Physics
(John Wiley and Sons, Inc. , New York, 1952) is quite close to this
one.

5 E. Fermi (unpublished).' A. E. S, Green, Phys. Rev. 86, 654 (19Ml.
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Mayer, ~ on the assumption of a delta-function at-
tractive potential for -the spin orbit coupling model,
obtains formulas for the pairing energy which may be
expressed as

~ 1

) e 140,'a

H(al, = 36,'a&

and
~(i -+s)IA (17)

~= —C(i.+s)IA, («)
where j or j„is the total angular momentum of each
proton or neutron in a given subshell and. C~25 Mev.
These values of x and v are also plotted in Fig. 3. m is
represented by the dashed lines and v by the dash-dot
lines. We have based our j values on the spin orbit
model as represented by the speci6c level scheme of
Klinkenberg. ' We have used only the average A for a
particular subshell since according to Eqs. (17) and (18)
the variation in w or v within a subshell is small. For the
moment we cannot say that Eqs. (17) and (18) are
consistent with our experimental estimates of m and w.

The fact that Eqs. (17) and (18) are not inconsistent
with the experimental values suggests that we must
ultimately abandon efforts to represent the pairing
eRect by the simple functions of mass number which are
in common. use.

The values of x—v as found from the circles shown in
Fig. 3 are in agreement, on the whole, with the values
given by Coryell. '

4. A REFERENCE SHELL CORRECTION

From the scattering of the points in Figs. 1 and 2 it is
obvious that a variety of BS;,/BiV—and —BS;;/BZ
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FI(.. 3, The pairing energies of the last nucleon are plotted as a
function of the mass number. The g and Z scales correspond to
values which lie along our reference line of beta-stability. The
experimental pairing energies (v and ~) as estimated from Figs. 1
and 2 are indicated by the solid circle and square, respectively.
The pairing functions of mass number given by. Glasstone, Fermi,
and Green are represented by the solid curves.

—BS,;/BX =2cr, (/I/ X;)—
—tlS,';/rlZ = 2u, (Z—Z;), (20)

curves may be chosen. To proceed further in our at-
tempt to find a suitable representation of shell effects,
we have elected to represent these curves by the series of
straight line segments. This representation is not only
suggested by the proton and neutron binding energy
data but it is also suggested by the irregularities in the
corresponding ionization energy data in the atomic
case.' Accordingly, we shall assume that between any
two major magic numbers we have

E 6.0
E

E E 4

E 0 4

0 E r
0 0

where 0.; and 0., are proportional to the slopes of these
straight line segments and S; and Z, are constants
which must be adjusted for each region. In eRect we

have chosen to represent the shell correction by the
series of functions

~, , - ~
8.0 .4 t
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FIG. 2. The residual proton binding energy es proton number.
The points are designated as to the type, i.e., the evenness or
oddness of the number of neutrons and protons. The grouping of
the EE and OE types and the grouping of the OO and EO types can
be seen. The dashed curves indicate the average distributions of
these groups. The solid line represents our visual estimate of the
best straight line representation of —(OS;;/SZl. The —(BS„;/BZ}
which we use in Sec. 4 consists of a series of straight line segments
running from —1 at the lower magic number to 1 at the upper
magic number.

'M. G. Mayer, Phys. Rev. 78, 22 (1950).' P. F. A. Klinkenberg, Revs. Modern Phys. 24, 63 (1952).' C. D. Coryell Aeeuul Reviews of E'ucleur 5cieece (Annual
Reviews, Inc. , Stanford, 1953), Vol. II.

S,; (N, Z) = —rr;(E —E;)'—rr, (Z—Z;)'+h, ;. (21)

A(A, D) =/s. (A)+J[D D(A)]'. —(22)

Since the semi empirical equation m-ay be placed in this

form our discussion is applicable to these equations as

"See Fig. 6.3, H. E. White, Introduction to Atomic Spectra
(McGraw-Hill Book Company, Inc. , New York, 1934).

"A. H. Wapstra, Physica 18, 83 (1952) has proposed a shell
stabilizing term which is quite different from that proposed here.
Our shell stabilizing term has the advantage of introducing sharp
breaks in the line of betas-tability which is considered to be
essential by Coryell (reference 9).

Our shell function thus has the shape of an inverted
cup with the peak value at S; and Z;, points which

usually lie intermediate between the boundaries of the
zone."In Table II we list the values of a;, E;, a, , and Z;
obtained from a visual adjustment of the straight line

segments in Figs. 1 and 2.
I.et us now consider the manner in which the addition

of a shell term given by Eq. (21) alters a mass decrement

surface which has the basic form
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FIG. 4. Location of beta-stability point es mass numbers. The
circles and squares indicate the points computed on the basis of
experimental data. The solid line represents the line of stability
computed on the basis of our reference shell correction and our
smooth reference line of beta-stability. The dashed line indicates
the change in the smooth baseline apparently needed in the very
heavy region.

—n, [Z„(A)—Z;)'+h. —
4J"(A)

,[N (A) —N~]—,[Z„(A)—Z.j)' (25)

D„'&(A) =D„(A)+['n;(N N,)—
—n (Z —Z )j/2J*'(A) (26)

and

Voetl as to our reference equation. Letting

N= ,'(A+D„+-D D„)=N —(A)+ ,'(D D), -(23—)
and

Z= —'(A D D+D )—=Z —(A) g(D D), —(24)—
and inserting these into the sum of Eq. (21) and Eq.
(22), we find it is possible to express the result in each
zone in the form of Eq. (22) if we let

~.' (A) =Z„(A)—n, [N„(A)—N, ]&

1 ( Z„+Zi) -'

I+h„. (29)
Z.—Zi ( 2 j

This expression, which of course must be treated only as
a 6rst approximation, has the distinct advantage of
requiring only one empirical constant for each zone
other than the magic numbers themselves. Using our
smooth reference functions, we shall now investigate the
extent to which this reference shell function may ac-
count for effects attributed to shell structure. Since egr
reference functions are "averages" of the semi empi-rical
functions much of this discussion pertains to these tatter
functions also

5. THE SHELL CORRECTION AND THE LINE OF
BETA-STABILITY

In the preceding paper' (see Fig. 3), marked irregu-
larities were noted in the function T which characterizes
the deviations of the true line of stability from the
reference function D '(A). To arrive at a more precise
curve for T, we shall present the results of an analysis
based upon beta decay energies and mass data rather
than stability limits. Let D "(A) denote the true mini-
mum of an isobaric section at mass number A. If we
ignore the x, v difference the mass deference between
adjacent odd mass isobaric nuclides is

M*—3E,=J"(A)([D*—D "(A)$'
—[D,—D "(A)g') (30)

where the asterisk denotes a radionuclide and the
subscript s the stable nuclide. Since D~=D,~2, this
becomes

M*—M =4J'i(A) (1m [D—D„'~'(A)j)
=q'~[1+(e—v) jfoo/A, (31)

TABLE II. Shell correction parameters.

J"(A)=J(A) —(n;+n, )/4. (2&) Nt ai

Rather than go further with the extensive set of
empirical constants listed in Table II, we may without
introducing considerable error replace these constants
by the slightly diRerent set:

n;= (N„—Ni) ' mMU, n, = (Z„—Zi) ' mMU

N;= (N +Ni)//2, Z;= (Z +ZI)/2, (28)

where the subscripts u and l refer to the upper and lower
magic numbers of the particular zone. In using these
simple expressions for the parameters in our . shell
correction, we have exploited the latitude now available
to us in view of the scattered data. Essentially we are
representing the shell structure function by the ex-

0
2
8

20
28
50
82

126

Z1

0
2
8

20
28
50
82

2
8

20
28
50
82

126
148

2
8

20
28
50
82

100

0.22
0.18
0.22
0.023
0.022
0.023
0.048

0.05
0.088
0.023
0.030
0.075

7
18
25
33
70

104
140

19
21
40
53
88

0.300
0.1667
0.0834
0.125
0.0455
0.0312
0.02275
0.0455

0.500
0.1667
0.0834
0.125
0.0455
0.0312
0.0555

5
14
24
39
66

104
137

g

1
5

14
24
39
66
91



where here
(32)8= D D—"(A)

T=D "(A)—D '(A). (33)

If two mass differences are know yn we ma set up two
. ~~31~ for r'& and Y for a givenequations and solve Eq. ~

isobaric section. Unfortunate y p hel a art from the region o
1'd there are only a few instances in w ic

two mass di6'erences are known for odd isouars.
k some use of the extensive data corresponding to

n we have for these cases as a reasonab e rst
approximroximation let r'r =1 ('see, ig.
this one equation for T.

4 we show the location of the minimum mass
oints of odd mass nuclides which have be p

ll t' of beta decay energies (circles)using a recent co ec ion o
'

s
an our sed t of mass values (squares . iso s own in
Fi . 4 is the difference T=D " D( )— p

26) and E . (28). It is clear from the plot
thatin em '

th main the experimental points o
our referenced with the predictions based upon ouraccor wi e

a be im roved evenh ll function. The agreement may ps e u
D "~A~ were taken asfurther if in the very heavy region D

the dotted curve indicated in Fig. 4.
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SHELL CORRECTION AND THE NUCLEAR MASSES

E . ~21~ are still to be de-The constants, k;;, in q. ,
termined. Substituting S;;from Eq. (21) into Eq. &4, we
have mainder of the shell correction we plotted in Fig. 5:

t1 'r(A) —A„(A)R(N, Z) = u, (N N;)'—n, (Z—Z;)'— —
+0 +708"+P. (34)

~ ~

For odd-mass beta-stable nuclides the pairing term and
ll be small so that the constants, k;;,par

can be evaua e1 t d approximately by substitu ing
es ofta a ro riate for these nuclides. Using the values

(E Zg values computed from recent mass ata we
havecacua e e1 1 t d the various k;;values. In t is p
tion we nave no eh t d that for a particular zone,

'

s ecific i andy, t e cornd, h puted value of k;, varied some-'"at shell edges derivated the greatest from
f E(1V, Z) fo 'ththe average; accordingly, values o

Z both were not included in themagic E or magic or o
f k". The values of k;; so calculated6nal computation o;;. e

b a ra hicalhecked rather closely with a set obtained by a grap icachec e ra ere
h d. Our estimated values o.f " are listed in

alues and the re-Table III. To test this set of k;; value

1V +Nt '1
N (A)—

2 Z~ Zi

Zu+Z 1
+k,;—4J"(A)

X 2„(A)—

N+1Vt ''
X .V —Ti

1 Z„+Zt
Z„(A)——

Zu Zl — ' 2
(35)

The function represented by Kq. 35 is discontinuous at
ic A numbers. These discontinuities are proba-

bl not entirely signi6cant, since our s ey no
d to be inaccurate at these shell e gd es. If inexpecte o e

d a nuclidefo owing ell
'

the atomic model we had koine a
din to a closed shell with a straigin

11 Ito the nuclide with a closed she p
neutron or proton in our curves or—
—85;;/BZ, we would have avoided these discontinuities.

should fall fairly close to this curve except at s e e ges.

TABLE III. Estimated k;; values in mMU.

5, 4
2.5

4, 4
3.5

4, 3
7.0

3$ 3
3.0

32
2.5

~ ~

Zy

k;;
22—2.5

8, 7
1.5

7, 6
3.5

6, 6
8.0

6, 5
6.5

5, 5
5.5
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Fro. 6. The line of beta-stability in relationship to zones defined
by magic numbers. The numbers in parentheses are the indices of
the zone (i, j).

On the other hand, the beta-stable even-mass nuclides,
which we included because there are not enough odd-
mass nuclides to test our curve, should fall somewhat
below ( 1 mMU) the curve representing Eq. (35). An
examination of Fig. 5 shows that on the whole these
features are borne out by the evidence. The magnitude
of the scattering of the points is probably greater than
can be attributed to experimental error, to the pairing
effect or to the parabolic effect. Thus unquestioned, bly
there is room for improvement in the shell stabilizing
term.

8. CONCLUSION

Our study of the discontinuities of the experimental
mass surface has led us to certain conclusions regarding
pairing discontinuities and shell discontinuities.

We have examined the frequently accepted assump-
tion that pairing effects may be represented by +H(A),

'2 Sher, Halpern, and Mann, Phys. Rev. 84, 387 (1951).
'~ Perlman, Ghiorso, and Seaborg, Phys. Rev. 77, 26 (1950).

'7. THE SHELL CORRECTION AND Q VALUES

Accepting Eq. (21) as the shell correction, we readily
find that for reactions with the target and product
nuclides in the same zone

Q, =2a, (n —n') (1V—E;)+n, (n —n')'

+2&x, (s—z') (Z—Z,)+n, (z—s')'. (36)

Using the simplified set of constants $Eq. (28)7 this
becomes

Q.= 2(n n') y E—,)/PV„—&V,)—
+2 (n —n')'/(E„—Ei)
+2( -")(Z-&;)/(Z. -Z)

+2 (s—z')'/(Z„—Zi), (37)

an equation which is quite simple to handle. To test the
accuracy of our complete reference surface we have
computed Q values of numerous (y, n) and alpha-decay
reactions. Upon comparing these predicted values with
the (y, n) threshold values given by Sher, " and the
O.-decay energies given by Perlman and Seaborg, "we
found that 67 percent of our predictions were within 1
mMU of the experimental value. This represents a
substantial improvement in accuracy with respect to
predictions based upon our smooth reference function
alone, or the semi-empirical mass functions.

—H(A), and zero for OO, EE, and (OE and EO)
nuclides, respectively, where H(A) is 36/Al or 140/A.
We Gnd this assumption to be untenable for the follow-
ing reasons: (1) These functions exaggerate the average
magnitude of the pairing effect for light nuclides. The
function 12/A& probably furnishes a closer representa-
tion of the average magnitude of the pairing effect. (2)
The additional energy of unpaired neutrons or unpaired
protons with respect to even E even Z nuclides differ in
many regions, i.e, frequently m 4 i. (3) In some regions
the energies associated with unpaired particles are non-
additive. This suggests that an appreciable pairing
interaction is present in OO type nuclides. " (4) The
expressions for the pairing effect involving shell quantum.
numbers which were derived by Mayer using the shell
model are not inconsistent with the available evidence.
In view of the many successes. of the shell model, it
would seem that the final pairing correction will of
necessity embody shell quantum numbers and hence
will not be representable as a simple function of A, )7,
Ol Z.

In our study of the shell discontinuities we have
found evidence that the shell effect upon neutron and
proton binding energies may be approximately repre-
sented. by a series of straight line segments between
major magic numbers. This representation is also sug-
gested by the general nature of the discontinuities in
atomic ionization energies. Because the available data
and our method of analysis did not permit a precise
assignment of the parameters which characterize these
straight line segments, we chose to study the conse-
quences of a uniquely dined set of straight line
segments which we found to be a not unreasonable
representation of the available evidence. Pursuing this
representation we deduced a shell stabilizing correction
to nuclear energies which we found gives a rather good
account of the departures from the general trends of
beta-stability, nuclear masses, and nuclear Q values.

Perhaps the most startling conclusion to which we are
led from this approximate representation is the large
variation of masses which may be identified with a shell
stabilizing term. The fact that in most regions where
accurate mass values are available the line of beta-
stability cuts the corners of shell zones, has tended to
obscure this feature of the experimental mass surface.
Only in the heavy region do we meet a situatiom where
we can gauge the true range of the shell correction from
the doubly magic corner of the zone to the peak. In
Fig. 6 we indicate how our reference line of beta-
stability (which is a fairly good one) crosses with respect
to zones defined by magic X and magic Z numbers. We
may conclude therefore that shell effects do greatly
distort the masses of beta-stable nuclides from what
they would be in the absence of shell effects. Accordingly
theoretical expressions based upon the statistical
theories of the nucleus must be adjusted to mass values
"K. Way and M. Wood, Phys. 'Rev. 86, 608 (1952) have noted

an n-p interaction above Pb'08 which is probably related to this.
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which are substantially difFerent from the actual masses
of nuclides.

Unquestionably a better representation can be found
for the shell stabilizing term than our present one. The
local adjustment of the parameters incorporated in
Eq. (21) probably would lead to a substantial im-
provement. It is also probable that the true shell
correction may embody semimagic numbers and curved
segments. At this time the experimental data is too
sparse and too inaccurate in many regions of the mass
surface to offer great encouragement to an efFort to
refine the shell correction on the basis of purely empirical
considerations. Of necessity such a study will be a

tedious one, since it will have to be made in conjunction
with a more precise representation of the smooth trends
of the nuclear mass surface and a more precise repre-
sentation of the pairing efFect than the simple expres-
sions which we have used thus far. It appears therefore
that we have reached a point at which we might best
look to current nuclear theories to find a better repre-
sentation of the shell stabilizing term.

We would like to express our' appreciation to R. B.
Minogue, N. J.Marucci, R. Oppenheim, J.S.Nader, N.
Engler, R. Oswald, and Mrs. W. Steiger for their
assistance in this study, and to Dr. C. D, Coryell for
sending us a manuscript prior to publication.
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The Parameters for the Slow Neutron Resonance in Rhodium*
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Measurements of the 1.26-ev resonance in rhodium have been made with a crystal spectrometer and the
following values were obtained for the parameters: E 01.260&0.004 ev, ao=(5000&200)X10~4 cm',
P=0.156+0005 ev, gI' (3.8+02)X10 ' ev, and or, =(5.5+1.0)X10~' cm'. The shape of the resonance
agrees to very high accuracy with the one-level Breit-Wigner formula. The procedure is discussed for
analyzing experimental data in cases where small corrections are required for instrument resolution and
Doppler broadening.

I. INTRODUCTION-

HE slow neutron resonance in rhodium at 1.26 ev
overs a particularly favorable opportunity for

studying the details of an absorption resonance. Several
factors contribute to simplify greatly the analysis of
this case: Rhodium is monoisotopic; the 1.26-ev reso-
nance is well isolated from other resonances and pre-
sumably is not complicated by interference efFects; the
contribution to the cross section form resonant scat-
tering is very small and may be neglected in the analy-
sis; and the resonant energy lies within the range of
very high resolution of modern neutron spectrometers.

Several previous measurements of the rhodium cross
section have been made ' however, in these cases the
instrument resolution was inadequate for a detailed
analysis. The relatively high resolution which can be
obtained with newer spectrometers has justihed a re-
measurement of the rhodium cross section. The purpose
of these new measurements is to obtain accurate values
of the Breit-Wigner parameters and to study the details
of the shape of the resonance. The measurements re-
ported below were made with the SNL crystal spec-
trometer, which has been described elsewhere. 4

*Research supported by the U. S. Atomic Energy Commission.
'Horst, Ulrich, Osborne, and Hasbrouck, Phys. Rev. 70, 557

(1946).
s W. J. Sturm, Phys. Rev. 71, 757 (1947).
3 R. R. Meijer, Phys. Rev. 75, 773 (1949}.' L. B.Borst and V. L. Sailor, Rev. Sci. Instr. 24, 141 (1953).

II. PROBLEMS IN ANALYZING DATA

The experimentally observed shape of a resonance
difFers from the "true" shape because of the distortion
introduced by finite instrument resolution and by the
Doppler broadening resulting from the thermal motion
of the atoms in the specimen. The corrections required
to account for these efFects are appreciable even for
cases of very high resolution and small Doppler broad-
ening. The problem of fitting experimental data to a
theoretical dispersion curve is greatly complicated by
the need for the above corrections. As experimental
technique advances and the data becomes more refined,
the problem of finding an adequate and practical
method of analysis becomes more pressing.

There are several possible approaches to the analysis
problem. The "area" method of Havens and Rainwater, ~

which corrects for resolution, has recently been made
more quantitative by Melkonian' and is now being
extended to include the Doppler correction. ~ Another
less elegant approach which could best be described
as the "trial and error" method has been frequently
used."' This consists of choosing trial values of the
Breit-Wigner parameters and then computing the efFect

~ W. W. Havens, Jr., and J. Rainwater, Phys. Rev. 70, 154
(1946).

s E. Melkonian, Phys. Rev. 90, 362 (1953).
r G. v. Dardel and R. Persson, Nature 170, 1117 (1952).
s E. Melkonian, Bull. Am. Phys. Soc. 28, No. 3, 26 (1953).
s B.D. McDaniel, Phys. Rev. 70, 832 (1946).


