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solute values of the total L shell conversions obtained in various
ways are given for the four E2 cases in Table II.

These results indicate that the agreement between experi-
mental and theoretical L subshell conversion coe%cients is very

where q takes integral values. For q=o, 1, 2 the numerical co-
efficients in Eq. (3) are 1, 1/8, 1/192 in agreement with Pake. '

The output of the lock-in amplifier is thus proportional to f(h).
The experimental value of the second moment is then obtained'
as

TABLE II. L conversion coe%cients of F2 transitions. s 1'=le"&a)aa/ sJ' vj"a)ua (4)

Converting
nucleus

Ta 181

Os186
H g198

H g199

Theory

0.72
0.81
0.014
0.56

L conversion coeKcient
~K expt

(K/L) exp

0.80
0.60
0.014
0.32

~Kth
(+/L) expt

0.82
0.73
0,015
0.47

good, and until more complete computations are available, those
already published by Gellman et al. may be used with considerable
confidence for the identification of y-transition multipolarities.
A fuller account of these experiments will shortly be published
elsewhere.
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We now substitute for f(h) from Eq. (3) and then integrate each
term by parts. We assume that g(Iz) and all its derivatives are
zero at the limits of integration, and that they go to zero more
rapidly than 1/O'. We are then left with only two terms in the
numerator and one in the denominator, giving

Se'= f t&2g(h)de f g(h)dh +,'h, '-
=S2+4It~' (~)

which is the result stated above.
It has been found by experience in this laboratory that the

range of modulation 2h may be set at about a quarter of the line
width without introducing appreciable error. The line width,
defined as the interval between maximum and minimum of the
first derivative, is usually about twice the rms width (root second
moment). From Eq. (5) it is seen that an error of about 2 percent
is thus incurred in the second moment.

The preceding argument is readily extended to give the relation
between the experimental 2nth moment S2 ' and the true value

h 2@+1 d2g+1g
f(h1)= ~2„,( ~1)~ d~„+, „,, (3)
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' gERLMAN and Bloom' have recently drawn attention to an
important correction for finite modulation amplitude which

must be applied to measured nuclear magnetic resonance second
moments if accurate structural information is to be deduced. By
an approximate method they were able to show that the true
second moment S2 is related to the measured value S2' by the
relation

S2 ——S2+—,'h~e2)

where h is the amplitude of the field modulation. Their approxi-
mation assumed that the modulation spreads the true absorption
curve evenly over the range of modulation. The object of this
note is to show that a direct calculation, without this approxima-
tion, leads to the same form of correction as Eq. (1), but that the
coeKcient of the last term is 4 rather than —,'.

Suppose the true absorption line is described by a shape func-
tion g(h), where h=H —Hp,. H being the magnetic field and Hp

its value at the center of the line. The instantaneous signal voltage
entering the "lock-in" amplifier is proportional to g(h), and h

will be given by
h= hi+a sin(or t),

where hi is the mean value of h and or /2' is the modulation fre-
quency. Expanding g(It) by Taylor's theorem, the instantaneous
voltage is therefore proportional to

~h &sin&(or t) d&g
(2}

P~ dh& hi

The lock-in amplifier gives a reading proportional to the coeffi-
cient of sin(or t) in the Fourier series in which Eq. (2) is expres-
sible. This coe%cient is found to be

(2') th,„2~
'rt

2 t( +1)t(2 2 ) t
2B—2Q ~

Thus for the fourth moment (n=2),
S4'=S4+-,'S2h '+-'h 4
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A QUANTITY used in the problem of the slowing down of
neutrons in a given material is the so-called slowing-down

length, L„which is defined as follows: If a monoenergetic point
source emits neutrons of energy Ep in an infinite medium com-
posed of the material in question, then the slowing-down length
is given by IP (E, Eo) = ', (r'(E))A„, whe-re r(E) is the distance of a
neutron of energy E from the source, the average being taken
over all neutrons of this energy. Fermi' has derived a rigorous ex-
pression for this quantity for the case of hydrogenous media
under the assumptions that the nonhydrogen nuclei have infinite
mass and that capture is absent. The purpose of this communica-
tion is to present a generalization of Fermi's result which takes
account of the presence of capture in the medium but still retains
the assumption of infinite mass for the nonhydrogen nuclei. The
resulting change in the magnitudes of L, due to capture has been
computed for a specific case.

Fermi's expression can be obtained from the appropriate trans-
port equation. ' When capture is taken into account the scattering
term f(IJp, u, n') in the transport equation becomes

f(lie, u, u') = (1/2e)c(e')e &~ 'ggpo e&&" "'&5-
+ (1/4e) L1 c(e&) g(N) 5—6(N, —u'), (1)—

where I=log(Ep/E) and pp=Q' Q, the unit vectors 0' and 0


