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deduced from an appropriate Lagrangian and are
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We insert (5) in (6), multiply both sides by the complex conjugate
x»*(r), and integrate over the four-dimensional space of 71, 74, 73,
ro= —1rs. The result is

* 2 7
A%, " = Jun (x"')
= f Do (', 2, &) Zaba (& )Wa(x")dx'dx"",  (8)

where
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Similarly, we obtain from (7) the equation
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If we compare these equations with the corresponding equations
(19) of Mgller and Kristensen? in the theory of nonlocal inter-
action between a local scalar (or pseudoscalar) field and a local
spinor field, we notice that the internal eigenfunction x.(») plays
the role of a convergence factor. There is, however, an essential
difference between their equations and ours. Namely, in our
theory, we are obliged to take into account simultaneously all
the particles with different masses 7, which were derived from an
eigenvalue problem. Furthermore, the form function for each of
these particles is uniquely determined by the same eigenvalue
problem.

In the following letter, the above general considerations will be
illustrated and further details will be examined.

* Now at Kyoto University, Kyoto, Japan, on leave of absence from
Columbia University (July, 1953).
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S an illustration of the general considerations on nonlocal
fields in the preceding letter, let us assume that the operator

F has a very simple form
62 >\2 62 1 2
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where X\ is a small constant with the dimension of length. One
may call this the four-dimensional oscillator model for the ele-
mentary particle, which was considered first by Born! in con-
nection with his idea of self-reciprocity. However, our model
differs from his model in that we have introduced internal degrees
of freedom of the particles which are related to the nonlocaliza-
bility of the field itself. The internal eigenfunctions in our case are

annzngno(r) = H’nl (Tl/X)an (7’2/)\)Hn3 (7‘3/)\)
X Hno(ro/N) exp{— (ri®+rl+r?4r) /232, (2)
and the corresponding eigenvalues for the mass become
Mningngng= (\/2-/)\) lm+nz+m—'ﬂo+1 | » (3)
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where 7o= —17, is a real variable and #i, ns, #3, 7o are quantum
numbers which can take only zero or positive integer values.
H,(x) denotes the Hermite polynomial of x'of degree n. All these
eigenfunctions (2) decrease rapidly in any direction whatsoever in
the four-dimensional # space. Furthermore, the Fourier transform
of each of these eigenfunctions has exactly the same form as the
original function due to the self-reciprocity. Thus, the form func-
tion (9) in the preceding letter seems to be sufficient to cut off
high energy-momentum intermediate states in such a way that
each term corresponding to each Feynman diagram in the expan-
sion of the nonlocal S-matrix according to the Bloch-Kristensen-
Mgller formulation is convergent. However, since we have to take
into account all of infinitely many of different mass states of the
nonlocal system, the number of terms in the S matrix increases
very rapidly with the increasing power of the coupling constant,
so that we can claim nothing for the moment concerning the con-
vergence or divergence of the S matrix as a whole.

The totality of the internal eigenfunctions (2) constitutes a
complete set of orthogonal and quadratically integrable functions
in the four-dimensional 7 space and can be regarded as the eigen-
vectors for an infinite-dimensional unitary representation of the
Lorentz group. The eigenvalues (3) for the mass are all infinitely
degenerate. For instance, all those values of »’s which satisfy
m~+ne+n;—no=0 give the same mass, mo=V2/\. This is not a
peculiar feature of the oscillator model; it is common to all those
models for which the operator F is separable, because there can
be no unitary representation of finite dimensions for the Lorentz
group. Presumably, such an undesired degeneracy could be re-
moved either by introducing interaction with other fields or by
first introducing the coupling between the external and internal
degrees of freedom. The latter possibility can be illustrated by the
addition of the coupling term,
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to the expression (1) for F, where B is a dimensionless real con-
stant. The free field equation becomes
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in the eight-dimensional space of k, and 7,, where x (ky, 7,) is the
Fourier transform of ¢(X,, 7,) as defined by

(©)

o (Xy, ru) = f exp (thy X ) x (kuy 74) (hy) (6)

One can solve Eq. (5) in the coordinate system in which only
one component of the wave vector is different from zero.? Thus,
one obtains the mass spectrum
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where #, is restricted by the condition
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If we take, for instance, 8=1/V2, only 7,=0 is allowed and the
mass spectrum reduces to

mningngng= (2/)\) (n1+n2+n3+ 1), (9)

and the degree of degeneracy of the mass eigenvalues is now finite.
In particular, the lowest mass, mo=2/X, is free from degeneracy
and the corresponding solution of (5) is given by

1 2 (kury)?
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in an arbitrary coordinate system, where kuk,= —m?.
The above advantage of introducing the coupling between ex-
ternal and internal degrees of freedom is offset, however, by a

(10)



LETTERS TO

complication which is almost prohibitive if we further take into
account the interaction with other fields, because the general
method of reducing the theory of nonlocal fields to that of the
nonlocal interaction between local fields as discussed in the pre-
ceding letter can no longer be applied straightforwardly to our
case. On the other hand, it may well be that one could arrive at
the desired removal of the infinite degenéracy as a consequence
of the interaction between nonlocal fields without assuming the
coupling between external and internal degrees of freedom for
each of the nonlocal fields. This is plausible, because the submatrix
of the S matrix corresponding to one-particle states can always be
represented by an equivalent coupling between the external and
internal variables for the particle in question, so that one can hope
that a reasonable mass spectrum which is free from the infinite
degeneracy may come out even without assuming the coupling
between external and internal degrees of freedom at the outset.

A detailed account of all these points, including the quantiza-
tion of nonlocal fields, will be given in a forthcoming paper.
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N inverse Oppenheimer-Phillips process may be conceived
where the bombarding particle picks up a nucleon from the
target nucleus without actual penetration when the two are in
close proximity of each other. A high binding energy of the nucleus
composed of the projectile and the pickup nucleon would be a
desirable condition.

A situation favorable to this inverse O—P process arises in
connection with (He?, «) reactions. Experimental evidence is now
available to test this phenomenon.

Copper was bombarded with 13-Mev He? in the cyclotron and
the 12.9-hour Cu® was produced according to the reaction
Cu%(He3, ). The excitation curve obtained for this reaction is
shown in Fig. 1 which also shows, for comparison, a corresponding
curve for the 9.4-hour Ga® produced from the reaction
Cub5(He?, 2n).
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A study of the shapes of these curves indicates that the
Cu®(He?, 2n) curve fits smoothly a theoretical curve involving
compound nucleus formation, as expected. The high-energy part
of the experimental curve for the Cu®®(He3, ) reaction can be
similarly fitted to a theoretical curve down to about 9.0 Mev.
For lower energies the shape of the curve changes in a marked
way. The cross section is less energy-sensitive and the reaction
can be traced to as low as 5.4 Mev where essentially no penetra-
tion of the potential barrier would be expected.

The experimental data appear to indicate that the inverse
O—P phenomenon comes into evidence from very low energies
up to an energy where compound nucleus formation mechanism
takes over and, from there on, the latter plays the major role in
the Cu®(He?3, ) reaction.

It may be pointed out that the 5.10-minute Cu%® activity was
not produced in measurable amount by the reaction Cu®®(He3, 2p).
The similar reaction Cu®(He?, 2p) has a Q value of only +0.18
Mev as compared with the Q value of 410.7 Mev for the reaction
Cub5(He?, @)Cu®. Analogous to the latter is the reaction
Cu®(He? o) which gave a substantial yield of the 9.9-minute
Cu®? activity.

Bremsstrahlung at High Energies
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WO of us! have published a formula for the cross section for
bremsstrahlung which was derived without the use of the
Born approximation. The matrix element was taken to be

M=f\//f*a)\¢.-e"ik'rdr, 1)

with a) the Dirac matrix in the direction of polarization of the
emitted quantum, and ¢, and ¥y wave functions of the electron
in the Coulomb field of a nucleus.

Like most authors before us,? we took bo#/ electron wave func-
tions to be plane waves plus outgoing spherical waves. This is of
course correct for the initial state y;, but it is wrong for the final
state yy; the latter must be taken as a plane wave plus ingoing
spherical waves.

To show this, we note that in the process of determining a dif-
ferential cross section, we observe (e.g., by means of a counter) an
electron moving in direction ps; some time after the radiation proc-
ess has taken place. This observation is described by a plane wave
packet concentrated around the point vf; this wave packet is
moving away from the nucleus and is not accompanied by any
other waves at this late time. We now follow the development of
this wave packet backwards in time by use of the Dirac equation.
As long as the packet is outside the field of the nucleus, it remains
a plane wave packet. When the time ¢ approaches zero (from
above), the Coulomb field will scatter the wave packet, and for
t<0 the plane wave packet will be accompanied by scattered
spherical waves. As ¢ becomes more and more negative, both the
plane wave and the spherical waves will move farther away from
the nucleus. But in the usual language in which one describes the
motion with increasing time, both waves will, for ¢<0, move
towards the nucleus. This shows that we have indeed ingoing
spherical waves associated with the plane wave, and this result
can be carried over into the time-independent formalism.

In fact, the use of converging spherical waves in ¥y is the
natural counterpart of the use of outgoing spherical waves in
¥i. Here the observation of an electron going in the direction p;
is made in the beginning; therefore the electron will be described
by a pure plane wave until it hits the nucleus, and by a plane
wave plus outgoing spherical waves thereafter.



