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state is due not to the gross laminations but to the fine structure
which Meshkovski and Shalnikov?® found to be interspersed
within the normal laminations in their measurements on large
spheres. It is possible that the mean spacing of this fine structure
is determined more by the local variations of impurities and
strains than by the external geometry of the specimen.
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N theories of ferroelectric crystals, the evaluation of the elec-
tric field produced by dipole lattices in every lattice point is
needed. A very simple method, which generalizes Ewald’s! ideas
for dipoles, is presented here.
Consider a dipole p and a spherically symmetrical function f(r)
defined in such a manner that

Jrmam=1, )
and
f(r)=0 for r>R.

Then it can be shown that
o(r)=—p-gradf(r) 3

is the “equivalent electric density of the dipole p;”” in other words,
the potential V at a point R is given by the classical Coulombian
expression,

2

V(R)= f["() do(r)=p- R/R®. @

The author has previously developed a method for the calcula-
tion of fields, potentials, and energies? in ionic lattices when the
charge density around every point of the lattice is given. When
this method is applied to the case of periodical lattices of dipoles
p; in points r; of the unit cell with charge densities of the form,?
then the following relations are found to hold for the interaction
energy W and the field E; in a lattice point r; with moment p;:

W= (2r V“)Zh[_h' S(h) o(h)/h 2 — (2w/3)Z;ps? f Frr)dv(@), (8)
Eij=—0W/apj=— (4xV)ZiL () /hP[h-S(k) Th
Xexp(—2rih- 1) — (4x/3)p; [ ) G).  (6)

The notation is as follows: the first summation 25 in Eq. (5) is
over all the points h of the reciprocal space. The second summa-
tion Z; is over the unit cell of volume V. ¢(%) is the Fourier trans-
form of f(r).

The method allows one readily to take into account the sym-
metry of the particular space-group by the use of the “dipole
structure factor”:

S (k) =Z;p; exp (2wih-1;). @]

f(r) and its Fourier transform ¢(%) can be chosen in such a way
as to yield rapidly convergent series.

The field E; is a linear function of the moments p;, the coeffi-
cients of which are the Lorentz factors. The field in points r;
exterior to atoms has the same form as Eq. (6) but without the
last term. It can be shown that in the modification of the Ewald
method, as used for instance by Schweinler? in the case of dipoles,
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f(r) is a Gaussian function; but then two series are needed. The
physical interpretation is the same as in the ionic case of charges
only and has been given first by Ewald* and by the author? in a
slightly different form. The second series is merely a correction
due to the overlapping of Gaussian charges. The idea of the
‘“equivalent electric density” can be generalized for multipoles.
A more detailed paper on the entire subject will appear later.

* Development supported by contract with the Air Research and
Development Command.
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S discussed in previous papers,! the nonlocal field was intro-
duced in order to describe relativistically a system which

was elementary in the sense that it could no longer be decomposed
into more elementary constituents, but was so substantial, never-
theless, as to be able to contain implicitly a great variety of par-
ticles with different masses, spins, and other intrinsic properties.
However, the conclusions reached so far were very unsatisfactory
in many respects.2 Among other things, the masses of the particles
associated with the irreducible nonlocal fields remained com-
pletely arbitrary and simple and plausible assumptions concerning
the interaction between fields did not result in the expected con-
vergence of self-energies. It seems to the author that these dis-
appointing consequences are not inherent in nonlocal field theory,
in general, but are rather related to the particular type of field
to which the author restricted himself. Instead, if we start anew
from less restricted nonlocal fields, a more promising aspect of
possible nonlocal theories is revealed, as shown in the following.

Let us take a scalar (or pseudoscalar) nonlocal field,

([ o] 2") = (X, 1),

where x,/, %, (u=1, 2, 3, 4) stand for two sets of space-time pa-
rameters and

= () +x,)/2,
The free field equation is supposed to have a general form
F(B/BX“, Yus B/Gry)qo(X,,,, 7'#)7 1)

where the operator F is a certain invariant function of 9/0X,, 7,,

and 9/97, and is independent of X, so that it is invariant under

any inhomogeneous Lorentz transformation. In particular, if we

assume that F is linear in 82/0X,9X, and separable, i.e.,
F=——r

7, 9 7, -(l) 2)
aX,,aX " Srory P ora)’

we have eigensolutions of the form ¢=u(X)x(r), where » and x
satisfy

P S 14
re=x —x,".

2 pofs

(9*/0 XXy —p)u(X) =0, ®
(FO—p)x(r) =0, @

u being the separation constant. Thus, the masses of the free
particles associated with the nonlocal field ¢ are given as the eigen-
values of ut in Eq. (4) for the internal eigenfunction x If one
chooses. the operator F such that the eigenvalues u,=m.? are
all positive and discrete, one can expand an arbitrary nonlocal
field ¢ into a series of internal eigenfunctions, xx(r):

(X, 7) =Zntn(X)xa (7). )

Now, the field equations for a scalar nonlocal field (x'| ¢|x’")
interacting with a local spinor field ¥ (x'), for instance, can be



