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' "
N theories of ferroelectric crystals, the evaluation of the elec-
tric field produced by dipole lattices in every lattice point is

needed. A very simple method, which generalizes Ewald's' ideas
for dipoles, is presented here.

Consider a dipole p and a spherically symmetrical function f(r)
defined in such a manner that

ff(r)dv(r) = 2,

and
f(r) =0 for r&R.

Then it can be shown that

0-(r) = —p grad f(r) (3)

is the "equivalent electric density of the dipole p;" in other words,
the potential V at a point R is given by the classical Coulombian
expression,

V(R) f =dv(r) = p R/R'.
0-(r)

lR —xf
(4)

The author has previously developed a method for the calcula-
tion of fields, potentials, and energies in ionic lattices when the
charge density around every point of the lattice is given. When
this method is applied to the case of periodical lattices of dipoles
p; in points r; of the unit cell with charge densities of the form,
then the following relations are found to hold for the interaction
energy W and the field E,. in a lattice point r; with moment y;:

W= (2)rV ')Zi[h. S(h) q (h)/h]i —(2)r/3)Z p)sf/s(r)dv(r)) (5)

K, = BlV/flP;= —{4)—rV ')Zi[v (h)/hg'[h S(h)gh

Xexp( —2)rih r;) —(4x/3) p;fP(r)dv(r). (6)

The notation is as follows: the first summation ZI, in Eq. (5) is
over all the points h of the reciprocal space. The second summa-
tion Z; is over the unit cell of volume V. p(h) is the Fourier trans-
form of f(r).

The method allows one readily to take into account the sym-
metry of the particular space-group by the use of the "dipole

- structure factor":
S(h) =Z;p; exp(2mih r;). (7)

f(r) and its Fourier transform v)(h) can be chosen in such a way
as to yield rapidly convergent series.

The field K; is a linear function of the moments p;, the coefB-
cients of which are the Lorentz factors. The field in points r;
exterior to atoms has the same form as Eq. (6) but without the
last term. It can be shown that in the modification of the Ewald
method, as used for instance by Schweinler' in the case of dipoles,

state is due not to the gross laminations but to the fine structure
which Meshkovski and Shalnikov" found to be interspersed
within the normal laminations in their measurements on large
spheres. It is possible that the mean spacing of this fine structure
is determined more by the local variations of impurities and
strains than by the external geometry of the specimen.
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f(r) is a Gaussian function; but then two series are needed. The
physical interpretation is the same as in the ionic case of charges
only and has been given first by Ewald4 and by the author2 in a
slightly diferent form. The second series is merely a correction
due to the overlapping of Gaussian charges. The idea of the
"equivalent electric density" can be generalized for multipoles.
A more detailed paper on the entire subject will appear later.
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A S discussed in previous papers, ' the nonlocal field was intro-
duced in order to describe relativistically a system which

was elementary in the sense that it could no longer be decomposed
into more elementary constituents, but was so substantial, never-
theless, as to be able to contain implicitly a great variety of par-
ticles with different masses, spins, and other intrinsic properties.
However, the conclusions reached so far were very unsatisfactory
in many respects. 2 Among other things, the masses of the particles
associated with -the irreducible nonlocal fields remained com-
pletely arbitrary and simple and plausible assumptions concerning
the interaction between fields did not result in the expected con-
vergence of self-energies. It seems to the author that these dis-
appointing consequences are not inherent in nonlocal field theory, .

in general, but are rather related to the particular type of field
to which the author restricted himself. Instead, if we start anew
from less restricted nonlocal fields, a more promising aspect of
possible nonlocal theories is revealed, as shown in the following.

Let us take a scalar (or pseudoscalar) nonlocal field,

(*„'
I v) I

x„")=—v (X„,"„),
where x„', x„" (p=1, 2, 3, 4) stand for two sets of space-time pa-
rameters and

X„=(x„'+x„")/2, r„=x„'—x„".
The free field equation is supposed to have a general form

F{d/ax„, r„, a/ar„) v (X„,r„), (&)

where the operator Ii is a certain invariant function of 8/BX„, r„,
and 8/Br& and is independent of X& so that it is invariant under
any inhomogeneous I.orentz transformation. In particular, if we
assume that F is linear in as/ar„aX„and separable, i.e.,

(.) 8 8+F&"') r„r„, , r„—, (2)
BXyBXp Bfgory Bfy

we have eigensolutions of the form 9)—=u(x)y(r), where u and g
satisfy

(av/aX„aX„—„)u(X) =0, (3)

(F"—u)x(r) =o, (4)

p, being the separation constant. Thus, the masses of the free
particles associated with the nonlocal field y are given as the eigen-
values of p,& in Eq. (4) for the internal eigenfunction x If one
chooses the operator F&"& such. that the eigenvalues p„—=m ' are
all positive and discrete, one can expand an arbitrary nonlocal
field q into a series of internal eigenfunctions, x„(r):

v (X, r) = Z„u„(x)y„(r). (~)

Now, the field equations for a scalar nonlocal field (x'I v) I
x")

interacting with a local spinor field rP(x')) for instance, can be
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deduced from an appropriate Lagrangian and are
a2—

dX ~X
+F&"& v (X, r) = gZ—P (X+ ,'r)g—(X ',r—), -(6)

gg

, +Nit (x') = —g ik(x") (x"
i ooi x')dx". (7)

8&(x')

We insert (5) in (6), multiply both sides by the complex conjugate
g„*(r), and integrate over the four-dimensional space of ri, ro, ro,
rp= —ir4. The result is

(
I92

mn Nn(x )
Bxp Bxp

=JC' (*', x", x"')Zj (x')tk (*"')d 'd "', (g)

where
C' (x', x", x"') =—gx„*(x'—x"')g(,o(x'+x"') —x").

Similarly, we obtain from (7) the equation

, +HEI'(x') = Z„J—C„(x', x", x"')w(")
xp

Xoo„(x")P(x"')dx"dx"'. (10}
If we compare these equations with the corresponding equations
(19) of Mfffler and Kristensen' in the theory of nonlocal inter-
action between a local scalar (or pseudoscalar) field and a local
spinor field, we notice that the internal eigenfunction x„(r) plays
the role of a convergence factor. There is, however, an essential
difference between their equations and ours. Namely, in our
theory, we are obliged to take into account simultaneously all
the particles with different masses m which were derived from an
eigenvalue problem. Furthermore, the form function for each of
these particles is uniquely determined by the same eigenvalue
problem.

In the following letter, the above general considerations will be
illustrated and further details will be examined.
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gX„BX„A,4 "8X„ (4)

to the expression (1) for Ii, where P is a dimensionless real con-
stant. The free field equation becomes

y2 g2 ] 2

k„k„+—— +—,r„r„

I9 j.+PS' —k„—+—,(k„r„} &(k„,r„}=0, (5)

in the eight-dimensional space of k„and r„, where y(k„, r„} is the
Fourier transform of oo(X„, r„) as defined by

where rp= —ir4 is a real variable and nI, n~, n3, np are quantum
numbers which can take only zero or positive integer values.
IJ„(x) denotes the Hermite polynomial of x of degree n. All these
eigenfunctions (2) decrease rapidly in any direction whatsoever in
the four-dimensional r space. Furthermore, the Fourier transform
of each of these eigenfunctions has exactly the same form as the
original function due to the self-reciprocity. Thus, the form func-
tion (9) in the preceding letter seems to be sufficient to cut off
high energy-momentum intermediate states in such a way that
each term corresponding to each Feynman diagram in the expan-
sion of the nonlocal S-matrix according to the Bloch-Kristensen-
Mgller formulation is convergent. However, since we have to take
into account all of infinitely many of different mass states of the
nonlocal system, the number of terms in the S matrix increases
very rapidly with the increasing power of 'the coupling constant,
so that we can claim nothing for the moment concerning the con-
vergence or divergence of the S matrix as a whole.

The totality of the internal eigenfunctions (2) constitutes a
complete set of orthogonal and quadratically integrable functions
in the four-dimensional r space and can be regarded as the eigen-
vectors for an infinite-dimensional unitary representation of the
Lorentz group. The eigenvalues (3) for the mass are all infinitely
degenerate. For instance, all those values of n's which satisfy
nI+n2+ns —up= 0 give the same mass, mp =v2/)l~, . This is not a
peculiar feature of the oscillator model; it is common to all those
models for which the operator F is separable, because there can
be no unitary representation of finite dimensions for the Lorentz
group. Presumably, such an undesired degeneracy could be re-
moved either by introducing interaction with other fields or by
first introducing the coupling between the external and internal
degrees of freedom. The latter possibility can be illustrated by the
addition of the coupling term,

Structure and Mass Spectrum of Elementary
Particles. II. Oscillator Model

oo(X„, r„)=Jexp (ok„x„)x(k„, r„)(dk„) .' (6)
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S an illustration of the general considerations on nonlocal
fields in the preceding letter, let us assume that the operator

F has a very simple form

82 'A~ B~ 1

ax„aX„2 ar„ar„
where ) is a small constant with the dimension of length. One
may call this the four-dimensional oscillator model for the ele-
mentary particle, which was considered first by Born' in con-
nection with his idea of self-reciprocity. However, our model
divers from his model in that we have introduced internal degrees
of freedom of the particles which are related to the nonlocaliza-
bility of the field itself. The internal eigenfunctions in our case are

Xninonono(r) = Hni(ri/X}Hno(ro/X)Hno(ro/X)

XHnp(&p/&) ezp {—(rI +r2'+r3'+rp')/2y } (2)

and the corresponding eigenvalues for the mass become

mninonono= (v2/li) ~n&+no+no no+1 ~,
— (3)

One can solve Eq. (5) in the coordinate system in which only
one component of the wave vector is diferent from zero. ' Thus,
one obtains the mass spectrum

v2 ~n&+no+no no+1 ~—
Ll 2ff'(n—o+ o)3'

where np is restricted by the condition

np (-,' (1/P' —1). (8)

If we take, for instance, P=|/W2, only ep ——0 is allowed and the
mass spectrum reduces to

mnin2ngnp = (2/&} (n], +S2+n3+1), (9)

and the degree of degeneracy of the mass eigenvalues is now finite.
In particular, the lowest mass, mp=2/X, is free from degeneracy
and the corresponding solution of (5) is given by

( 1 2 (k&r&)
o

2' mp

in an arbitrary coordinate system, where k„k„=—mp~.

The above advantage of introducing the coupling between ex-
ternal and internal degrees of freedom is offset, however, by a


