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Mass Surfaces

ALEX E. S. GREEN* AND NICHOLAS A. ENGLER)
Department of Physics, University of Cincinnati, Cincinnati, Ohio

(Received December 18, 1952)

We examine in the light of recent experimental data smooth mass surfaces which may be placed in the form

M—A=iA (A)+J(A)[D—D (A)]'
where 6 (A), D (A), and J(A) are key functions which characterize the mass surface and D= fi Z is the-
neutron excess. We here attempt to find an optimum set of key functions and to evaluate various semi-
empirical key functions now in use.

In this study we introduce the reference key functions

(A) = (A —100)'/100 —64, (mMU)

J(A) =25/A, (mMU)
and

D (A) =0.4A'/(A+200).

We use these reference functions in such a way as to electively subject the data and various semi-empirical
functions to microscopic examination, so that "fit"becomes immediately apparent. We note that most of the
semi-empirical mass surfaces in current use give rise to large systematic errors in nuclear masses. The large
errors are not inherent properties of the semi-empirical equation since a set of constants can be found which
reduce these errors to within the range of uncertainty caused by shell eGects.

Am" (A) J"(A)
mMU mMU D~"(A)

(A)
mMU

Jr (A)
mMU Drn" (A)

10 17.000 2.500
20 0.000 1.250
30 —15.000 0.833
40 —28.000 0.625
50 —39.000 0.500
60 —48.000 0.417
70 —55.000 0.357
80 —60.000 0.312
90 —63.000 0.278

100 —64.000 0.250
110 —63.000 0.227
120 —60.000 0.208
130 —55.000 0.192

0.190
0.727
1.565
2.667
4.000
5.538
7.259
9.143

11.172
13.333
15.613
18.000
20.485

140 —48.000
150 —39.000
160 —28.000
170 —15.000
180 —0.000
190 17.000
200 36.000
210 57.000
220 80.000
230 105.000
240 132.000
250 161.000

0.179
0.167
0.156
0.147
0.139
0.132
0.125
0.119
0.114
0.109
0.104
0.100

23.059
25.714
28.444
31.243
34.105
37.026
40.000
43.024
46.095
49.209
52.364
55.555
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1. A REFERENCE MASS SURFACE

~ iUCLEAR mass surfaces have been used in pure
and applied nuclear physics for the following

reasons: (1) They serve to systematize existing experi-
mental information concerning nuclear masses and
energies and thereby provide a succinct summary of a
large quantity of information. (2) They provide a
reasonable basis for predicting unknown nuclear masses
and energies. (3) They serve as smooth base surfaces
from which irregularities of the experimental mass
surface may be charted permitting thereby a careful
study of these irregularities. (4) They serve to test
various statistical theories of the nucleus. In. all but the
last application the theoretical justification of the ex-
pression used for the nuclear surface is unimportant as
compared to the accuracy and simplicity of the mathe-
matical representation. Since the mass surfaces which

TAsLE I. Key reference functions.

have some direct theoretical foundations are rathe
cumbersome to use and, as we shall see, quite inaccurate
we have developed a simpler and more accurate refer-
ence surface. This reference surface is a member of the
class of surfaces in which the mass decrement, d =M
—A, may be expressed in the form

&=6 (A)+J(A)$D D(A)7', — (1)

where D=E—Z is the neutron excess and 6 (A),
D (A), and J(A) are functions of the mass number.
Mass data, beta-decay data, and various theoretical
models of the nucleus suggest that, apart from shell and
pairing discontinuities, a surface of this general form
may be used as an approximate representation of nuclear
mass decrements. The function 6 (A) fixes the
depth of the valley of the mass surface. The term
J(A)LD —D (A)7' is based upon the assumption that
apart from the shell and pairing discontinuities isobaric
sections of the mass surface are parabolas. D (A) fixes
the neutron excess of the vertex and J(A) characterizes
the width of the parabola. The parabolic (A, Z) surface
corresponding to Eq. (1) may be obtained by letting
D=A 2Z and D (A)=—A —2Z (A).

For our reference mass surface we use for A&10 the
simple key functions'

and

6 "(A) = (A —100)'/100 —64, mMU

J"(A) =25/A, mMU

(2)

(3)

D '(A) =0.4A'/(A+200). (4)

Apart from accuracy, convenience and simplicity of
computation were major considerations in'our choice of

'A. E. S. Green, Phys. Rev. 86, 654 (1952). The tentative
change of the constant in Eq. (2) from 62 to 64 was in response to a
large change (8 mMU) in the heavy masses.
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Eqs. (2)—(4). To show the order of magnitude of these
functions, we give in Table I the values of these key
functions for various mass numbers. Since PD—D„"(A)j'
are usually numbers. of the order of unity, we note if we
compare J"(A) with r4i "(A) that the latter is the
dominant term in the expression for mass decrements.
The over-all accuracy of 6 "(A) will become apparent
when we discuss Fig. 1 (see Sec. 3).

2. SEMI-EMPIRICAL MASS SURFACES

According to the well-known statistical theory of
Weiszacker' Bethe, ' Bohr and Wheeler, 4 and others,
nuclear energies may be represented b

8"= —aiA+rssA i+as(Z'/Ai)+a4(cV —Z)'/4A. (5)

While thethe constants ai, a2, a3, and a4 may be related to
physically important parameters it is usual to relax the
theoretical constraints and instead to adjust these
constants to fit the experimental data. For this reason

q. ( ) is referred to as a semi-empirical. The equation
or mass decrements corresponding to Eq. (5) expressed

as a function of the mass number and the neutron
excess is

', (A+D)A-„+-', (A D)AH —a,A+a—sA&

+as(A —D)'/4A&+a4D'/4A, (6)

where-- 0 anand dH are the mass decrements of the
neutron and the hydrogen atom. We may place this
expression in the form of Eq. (1) by finding the function

D„(A) which gives the minimum of d,"for a fixed A and

y substituting this expression into Eq. (6). They key
functions so obtained are,

6 ~(A) = —pa, —(36„+AH)/4]A
+(..+~.-~ )D.-(A)/4+"», (7)

D "(A)=A[pA& —(4I~ —Aii)/a4$/(1+ pA&), (8)

1"(A) = (a4/4A) (1+pA *'), (9

where p=44tt/a4. In some treatments the Z in Eq. (5) is
replaced by Z(Z —1). The key functions then are

(A) = —Lui —(3h„+AH)/4)A

+ (a4+d, „DH)D„"(A)/4—
+ (as as/4) A 1+asD —(A)/4A i, (7')

D (A) = QA &(A —1)—(t4i„—EH)/a4$/(1+ pA &) . (8')

empirical constants which have appeared in the litera-
ture. Whenever they are known we have listed the
proton and neutron mass decrements originally used in
the adjustment of the empirical constants. The last set

In
o constants is a tentative set arriv d t '

th
n the last column we indicate the equations to which

2 C. F. von Weiszicker, Z. Physik 96, 431 (1935).
acher, Revs. Modern Phys. 8, 165'H. A. Bethe and R. F. B

4 N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).

these constants refer, and in the next to the last column
we list the fission constant 2as/as.
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FIG. 1. Mass residuals for beta-stable odd-A nuclide
number. R' is our tentative o t', op m, s oo h residua. The

semi-empinca' curve represents the residual
semi-empirical equation arri d t ' h'
represents our reference function g " g . ources of e eri
data are indicated by the symb l fsym o s see references 6-12).

~A preliminary report of this study of the se
equation was mad t th M h,
Physical Society in Columbus, Ohio (N. En ler and
Green, Phys. Rev. 86, 654 (1952)j.

3. THE OPTIMUM MASS SURFACE

We shall now attempt to use the experimental data to
evaluate a set of functions which within the class
represented by Eq. (1) provide the optimum repre-
sentation of this data. We shall denote th f
y t e superscript letter 0. Instead of attempting to

evaluate this function directly we shall introduce a set
o parameters which characterize the deviations of the
optimum functions from our empirical functions. For
this purpose we shall define E' T' and r' by

R'=4ti '(A) —6 '(A),

D .(A) D r(A)
aIld

r'= J'(A)/J" (A). (11)

In a similar way we may define three parameters R",
Y", and r" to characterize the deviations of the
Weiszicker functions from our reference functions.
T ese deviation functions may be computed for any set

use the experimental data to evaluate R', T', and r'. The
extents to which R' deviates from 0, Y' deviates from 0,
an r' deviates from 1 measure the inaccuracy of our
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TABLE II. Sets of empirical constants (in mMU).

Sym

I
II

III
IV
V

VI
VII

VIII

Author Ref

Bethe a
Fermi b
Mattauch c
Feenberg d
Pryce e
Metropolis f
Fowler g
This paper

8.450
8.930
8.945
8.920
8.930
8.982
8.930
8.982

8.070
8.123
8.131
8.130
8.123
8.142
8.132
8.142

a1

14.885
15.04
15.74
15.035
15.089
15.0825
16.432
16.720

a2

14.176
14.0
16.5
14.069
15.035
14.0
17.989
18.500

0.623
0.627
0.647
0.627
0.655
0.627
0.741
0.750

83.770
83
88.24
77.755
84.199
82.970
96.872

100.00

2a2/ae

43.5
44.7
51.0
44.9
45.9
44.7
48.6
49.3

Eqs.

7, 8, 9
7, 8, 9
7, 8, 9
7', 8', 9
7, 8, 9
7, 8, 9
7', 8', 9
7, 8, 9

' See reference 3.
b C. Goodman, The Science and Pngineering of Nuclear Power (Addison Wesley Press, Cambridge, 1947), Chap. 2 by M. Deutsch.
e J. Mattauch and S. Flugge, Introduction to Nuclear Physics (Interscience Publishers, Inc. , New York, 1946).

E. Feenberg, Revs. Modern Phys, 19, 239 (1947). This comprehensive article lists several sets of constants and goes deeply into the question of the
variation of semi-empirical constants. The particular set referred to here is quoted by J. M. Blatt and V. F. Weisskopf, in Theoretical Nuclear Physics (John
Wiley and Sons, Inc. , New York, 1952).

e M. H. L. Pryce, Proc. Phys. Soc. (London) 63, 692 (1950).The neutron and proton masses for 1950 were assumed here since they were not. given in the
paper.

f N. Metropolis and G. Reitweiser, Table of Atomic Masses, U. S. Atomic Energy Commission Report NP 1980, March, 1950 (unpublished).
g W. A. Fowler (unpublished) quoted on p. 11 of W. E. Siri, IsotoPic Tracers and Nuclear Radiations (McGraw-Hill Book Company, Inc. , New York,

1949).

reference functions. The extents to which R' deviates
from R", T' deviates from T", and r' deviates from r"
measure the inaccuracy of the semi-empirical function.
By this procedure we shall in e8ect make microscopic
examination of the data in relation to the analytical
expressions which we are investigating.

THE DEVIATION FUNCTION Ro

If the experimental masses conform to Eq. (1), then
D—D '(A) for the beta-stable odd mass nuclides should
take on random values between ~1 since if the neutron
excess were more than one unit away from the valley for
a particular set of isobars, beta, -decay would produce a
nuclide with less mass. Thus on the average the para-
bolic term contributes approximately

25(/D D'(A) $')/A—=12.5/A, (12)

a quantity which may be ignored for A&10. We may
therefore use the mass decrement values for the beta-
stable odd nuclides to represent rather accurately the
variation with mass number of the valley points of the
mass surface. In Fig. 1 we plot the residuals of the
experimental mass decrements for beta-stable odd
nuclides vs A.

The experimental data used in Fig. 1 has for the most
part been compiled from mass determinations reported
since 1950 by Xier, ' Duckworth, ' Lauritsen, ' Motz, '
and their co-workers, and by Wapstra. "The sources of
the data are indicated on the 6gure. For the very heavy
nuclides we used a new mass table based upon the mass
value for Pb reported by Hays, Richards, and
Goudsmit" and the neutron and proton binding energies

' Collins, Ãier, and Johnson, Phys, Rev. 86, 408 (1952); R. K.
Halsted, Phys. Rev. 85, 726 (1952); 88, 666 (1952).

7 Duckworth, Johnson, Kegley, Olson, Presont, Stanford, and
Woodcock, Phys. Rev. 78, 179, 479 (1950);79, 402 (1950);81, 286
(1951);82, 468 (1951);83, 1114 (1951);Nature 167, 1025 (1951).

Ii, Whaling, Fowler, and Lauritsen, Phys. Rev. 83, 512
(19515.

9 H. T. Motz, Phys. Rev. 81, 1061 (1951).
' A. H. Wapstra (private communications)."Hays, Richards, and Goudsmit, Phys. Rev. 84, 824 (195));S5,

1065 (1952).

compiled by Way. " This set of masses runs about 8
mMU below the masses compiled by Stern. "

Examining Fig. 1, we see that the experimental
residuals tend to fiuctuate about the zero axis rather
erratically, The smooth dotted curve indicated in
Fig. 1 represents our tentative choice of R'. Our
efFective scale (the distance between the two dashed
lines is 5 mMU) is so large that we are here in a realm in
which smooth curves may be chosen with considerable
latitude. However, for our purposes here this latitude is
essentially negligible. We note, first of all, that the
deviations E'=0,—6 '(A) are only of the order of a
few millimass units and are quite small compared to the
magnitude of the variation of decrements. (See column 2
Table I). Accordingly we may conclude that our refer-
ence function 6 "(A) "fits" the experimental data quite
well. In Fig. 2 we represent the residuals R' by a series of
dark circles and the residual E"=6 "(A)—6 "(A)'for
various semi-empirical equations by curved lines. To

0

-IO-

-20
0 100 150

MASS NUMBER

FIG. 2. Semi-empirical residuals es mass number for various sets
of semi-empirical constants. (See references in Table II.) I—
Bethe; II—Fermi; III—Mattauch; IV—Feenberg;- V—Pryce;
VI—Metropolis; VII—Fowler; VIII—This paper. The small solid
circles represent the estimated Eo from Fig. 1.

"K.Way and M. Wood (private communication, 1951l.
"M. O. Stern, Revs. Modern Phys. 21, 316 (1949).
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accommodate the computed deviations a much smaller
scale is used (the distance between the two dashed lines
again is 5 mMU). The large magnitude of some of the
deviations may come as a shock to the reader. Since
nuclear masses have not changed to this extent in recent
years we must either conclude that the methods of
adjustment used in these earlier studies were very

larl
sensitive to these changes in nudear masses ~&t's ~&par icu-
ar y those of the neutron and proton) or else the

adjustments were made to a limited portion of the mass
surface. Of the surfaces which have appeared earlier in
the literature Fowler's surface is the most accurate.

Our curve which is closest to R' was obtained by an
iterative process which started from Fermi's constants.
We essentially retained Fermi's D (A) but varied the
constants by discrete steps so as to reduce to zero the
departures at widely spaced mass numbers. The 6 "(A)
function so obtained was then plotted and the process
repeated until R" was in good agreement with R'. Since
unassessed shell effects make us somewhat uncertain as
to the validity of our tentative R' we did not go as far as
is possible with our attempt to match R" to R'. How-

ever, we have already gone far enough to show that
large systematic errors in absolute masses are not
intrinsic to the semi-empirical equation but instead
these errors can be reduced substantially by an adjust-
ment of the constants. .%e note, however, that the
constants we obtained are quite larger than those

quoted earlier in the literature and represent further

steps in the direction already taken by Fowler. Fowler's

constants, however, are not strictly comparable with

ours since he has used Eq. (7').
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FIG. 3. D—D "(A) for beta-stable odd-A nuclides vs mass
num er. To locates our tentative optimum smooth l' f b t-

i
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y re ative to our reference function. The base line represents
our reference D "(A). Isodiaspheres are nuclides with e ual
neutron excess.
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FIG. 4. Semi-empirical lines of beta-stability for various sets of
semi-empirical constants. The solid circles are taken from the
optimum smooth curve in Fig. 3.

-2
0

of T (A). We could
vary this curve in some places by as much as ~0.2 unit
without fear of contradicting the data. Unfortunately
this uncertainty is a large fraction of the change in D
(2 units) involved in bet-a decay. Accordingly we must
eventually 6x Y' more precisely if we hope to make
reliable estimates of the parabolic energy effect in beta-
decay.

In Fig. 4 we show the Y" corresponding to various
semi-empirical equations. Ke note that beyond the light
nuclides these lines of least mass disagree with each
other by distances which are much greater than 0.2 unit
so that we can draw some conclusions from our tentative' despite its uncertainty. It would appear' that Fermi's,

cthe's, Fowler's, and Metropolis' lines of least mass are
more accurate than the others and are just about as
good as our reference line. It also appears that all of the
semi-empirical lines have the wrong general shape
particularly in the very heavy region. Thus to match Y'
it is necessary to allow p to vary rather than simply to
make an adjustment of p. Using Fig. 4 the necessary
variation of p can readily be determined. However,
shell eGects should 6rst be precisely assessed before
p(A) is evaluated and interpreted.

5. THE FUNCTIONS Y(A) AND r(A)

To determine the optimum D '(A) or T'(A) we
made use of the fact that according to Eq. (1) beta-
stable odd mass nuclides should all have D—D '(A)
values within &1.In Fig. 3 we have plotted D D "(A)—
for all beta-stable odd nuclides. The jagged line joins
the centers of the stable limits for various isodiaspheres.
The larger discontinuities in this line undoubtedly are
due to shell effects. Until these shell effects can be
assessed quantitatively it is impossible to determine a
precise Y' which represents the smooth line of beta-
stability. However we have drawn a smooth curve which
represents our tentative estnnate
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TAnLE III. Q,„"values in mMU. (The symbol y denotes He'. )

v 0
n —10.992+0.02A
p —10.152+0.02A
d —18.775+0.04A
t —23.087+0.06A—23.067+0.06A
a —12.033+0.08A
ep —21.164+0.04A
ne —22.004+0.04A

10.972—0.02A
0

0.840—7.763+0.02A—12.055+0.04A—12.035+0.04A—0.981+0.06A—10.152+0.02A
10.992+0.02A

10.132—0.02A—0.840
0—8.603+0.02A—12.895+0.04A—12.875+0.04A—1.821+0.06A—10.992+0.02A—11.832+0.02A

18.695—0.04A
7.743 —0.02A
8.583—0.02A
0.000—4.272+0.02A—4.252+0.02A

+6.822+0.04A—2.389—3.229

22.907—0.06A
11.975—0.04A
12.815—0.04A
4.252 —0.02A

0
0.020

+11.114+0.02A
+1.863—0.02A
+1.023 —0.02A

22.887—0.06A
11.955—0.04A
12.795—0.04A
4.232 —0.02A—0.020

0
11.094+0.02A

+1.843—0.02A
+1.003—0.02A

11.713—0.08A
0.801-0.06A
1.641—0.06A—6.902—0.04A—11.134—0.02A—11.114—0.02A

0—9.291—0.04A—10.131—0.04A

where by definition

E(X)=6—6„"(A). (22)

Thus we see that the residual Q values are related only
to the masses of the target and product nuclides and not
to the very light particles involved in the reaction. The
residual Q-value data thus have the same significance as
beta-decay energies, since for beta-decay energies

I

Es E(X) E-(——X'), — (23)

Es++2m, c'= E.(X) R(X')— (24)

where Es and Ep-+ are the end point energies in P and
P+ 'decay. When sufficient Q value residuals and beta
decay energies are known in a region we may solve for
the mass residuals in terms of one known mass residual
(say from a mass spectrographic determination). Using
Eq. (22) we may readily convert these mass residuals
into mass decrements. This was the procedure used in
the construction of a new table of heavy masses" and it
worked out quite well.

Applications of the reference functions to the study of
fission, radioactive decay and other nuclear transforma-
tions are quite straightforward and will not be discussed
here.

'7. CONCLUSION

We have here made several:applications of a set of
reference functions t Eqs. (2)—(4)7 for the purpose of
examining semi-empirical mass surfaces in relation to
the experimental data. We see from Fig. 2, Fig. 4, and
Fig. 5 that each of these reference functions represent

' J. S. Nader, Master's thesis, University of Cincinnati, 1952
(unpublishecl).

some sort of average of the semi-empirical functions, an
average which is apparently more accurate than any of
the semi-empirical functions. We have shown that most
of the sets of semi-empirical constants quoted-in the
literature give rise to rather large systematic errors in
nuclear masses. These large errors, however, are not
inherent properties of the semi-empirical equation, since
we have found a set which reduces these errors to within
the range of uncertainty caused by shell eff'ects. Our
constants are substantially larger than those previously
appearing in the literature, with the exception of the
constants obtained by Fowler which are only slightly
smaller than ours. It is interesting-to note that of all the
sets, only Fowler's and ours correspond to a 6ssionability
constant close to the value 47.8 used by Bohr and
Wheeler to predict photofission thresholds.

There is still good evidence which indicates that to 6t
the absolute mass surface and the line of beta-stability
we must allow the semi-empirical constants to vary.
However, until shell and pairing eGects are quanti-
tatively assessed such a study would probably not yield
significant conclusions.

We have illustrated some applications of our reference
functions to the organization and study of nuclear data.
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