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The theory of scattering is developed from first principles with strict attention to the question of the
preparation of the state vector of the system appropriate to a description of scattering, The connection
between the present formulation and the more conventional interaction representation and S matrix
presentations is traced. The wave matrix of Mufller is introduced and the existence of bound states is dis-
cussed in connection with it, A number of applications to rather involved processes are discussed. Finally,
the problem of self-energies in field-theoretic scattering calculations is treated.

I. INTRODUCTION In the case to be considered first, the major problem
is the characterization of the state vector of the system
and its development from some sort of initial configura-
tion. The fact that the interaction, V, is always present,
but nevertheless the physical process is to be described
in terms of the noninteracting state vectors, necessitates
a very careful discussion of this point.

The Schrodinger equation (with It taken as unity) for
the system with interaction is

I 'HE theory of scattering has become very familiar
to physicists during recent years and the subject

is discussed in numerous textbooks. Nevertheless, there
does not appear to be a unified treatment of scattering
theory which proceeds from fundamental quantum-
mechanical principles and which is of sufficient gener-
ality to cover most cases of interest. The present work
represents an attempt to fill this deficit. There are very
few new results, but the point of view of the presentation
is somewhat new.

The material to be presented is the outgrowth of a
series of lectures on special topics in quantum me-
chanics given by the authors during the Spring Quarter
(1952) at the University of Chicago.

The closest parallel to our development is to be found
in the work of I ippmann and Schwinger. '

i()C (t)/()t = (E+U)C (t). (2 ~)

Let us denote by C, (t) =P,e '~" the stationary state
solutions (normalized to unity) of the Schrodinger
equation in the absence of interaction:

i()C (t)/Bt=KC. (t) (2.2)

We shall discuss the calculation of the differential
cross section for scattering from state C,' to state 4;
caused by the interaction V. The "initial state" C;
serves to characterize the actual state +; of the real
system. We may, knowing 0;, find the rate of increase,
during the time of the scattering, of the probability
that the real system is one of the "final states" C,.

Suppose that we examine the transition rates at time
t=0, It is necessary to represent mathematically the
way in which the state 4; has been prepared during
times t&0, for example by directing an approximately
collimated, approximately monoergic beam of particles
at a scattering center. One might try a model in which,
at some time T in the distant past, the system was in
the "free" state C, , so that )I';(t)=t: t~(t r)C), (T).
However, undesirable transients are introduced into the
temporal dependence of 0'; by the somewhat unphysical
assumption that the train of incident waves is released
all at once at time T. Rather, one must represent the
incident train as fed in over a period of time in the
past, using a 0'; that is a sum or average over T of the
ones suggested above. For instance one could take
+;(t) as

II. DERIVATION OF THE TRANSITION PROBABILITY

In a quantum-mechanical description of scattering,
a system of two (or more) colliding parts is governed

by a Hamiltonian H that includes interaction between
them. We imagine, at least in simple cases, that H is
split into two parts, which we shall call E and V, such
that if E were the entire Hamiltonian the colliding
parts would have the same internal structure but would
suffer no scattering. The question we ask then is the
following: What is the rate of transition from one such
noninteracting state to another? From the transition
rate, cross sections may be computed in the well-known

way.
There are many problems, particularly in the non-

relativistic domain, in which the separation of H into
E and V is trivial. E may be the kinetic energy or the
kinetic energy plus the potential energy between a pair
of particles. In any case, so far as the continuous
spectrum is concerned, the eigenvalues of E and H
are the same and there is no question of self-energies or
of renormalization. For the present we shall consider
such simple systems, postponing to Sec. V the discussion
of the more complicated situations that arise in the
case of quantized fields where the concept of non-
interacting systems is rather obscure.

—2T

with r allowed to approach +~ at the end of the
calculation. We shall adopt the form that is most
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' B. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
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convenient mathematically; namely,

~0
@ &~&(g)=p dTe~re ~Ii« »cy—.(T) (2.3) +;(0)=e,+

Ey H+—M
(2.10)

and thus for the state vector at t=o we have the
expression,

Again, e ' will be allowed to approach +~ in the
evaluation of cross sections; but care must be exercised
in passing to the limit since there is another limiting
process to be performed. Our g's are normalized to
unity in a large region of linear dimension L and volume
L'.' We must remember that ~ or its equivalent e ',
corresponding as it does to the length of the incident
wave train divided by the group velocity e, may not
exceed Lv '. When e ' and L both tend to infinity,
quantities proportional to ~ 'L ' will tend to zero.

It may be objected that we have unnecessarily
restricted our choice of an average by taking the
phases of contributions from various times T to be
equal; that is to say, we have not considered such an
expression as

0

J Te!Tp i H ( t—T) &ia—( T )$& .(T)

where

and

~'(&)= lf'(&)I'» ',

f' (z) = (@"(z)
I
+ (&))

(2 4)

(2.5)

1U;=(e, (&) Ie;(t)). (2 6)

(We have suppressed the index e attached to the state
vector. ) The normalization 1U, is independent of time
because the Hamiltonian is Hermitian.

Equation (2.3) tells us that

. (2 7)

or

(2.8)

Since P, is an eigenfunction of E it satisfies

(H —&~)4~= V4~ (2.9)
' Because of the fact that we are considering the system to be

enclosed in a large box, the energy eigenvalues of E do not
precisely coincide with those of II. The energy shift, which is of
the order of magnitude e, would, strictly speaking, require a
slight modification of our formalism, but we shall disregard it
for the time being. (See Sec. V.} None of our conclusions will be
modifmd.

with n(T) neither equal to nor finally tending to a
constant. But it is clear that a variation in phase of the
parts of the incident wave train over the length of
time e ' corresponds physically to incoherence of those
parts and would be incompatible with the condition
that the energies in the beam be within 6 of Ej.

I et us now proceed to the formal computation of
transition rates. The probability that the system is in
state C, at time t is

Instead of the explicit formula (2.10) it will be con-
venient to use the implicit relation,

e, (O) =y;+ Ve (0),
E; K+i e—

(2.11)

obtained from (2.10) by algebraic manipulation. If V
is to be treated as a small perturbation, one uses the
power series expansion of (2.10) or (2.11),

V Vg,+, (2.12)
8;—E+ze E; E+ze—

which also serves to show the connection between
(2.10) and (2.11).

Using (2.11), we see that

where

f' (0)=4+ . -R' (~)
E,—E,+is

R* (~)=Q'I VI+ (0)).

(2.13)

(2.14)

The form (2.13) is useful because it exhibits the nature
of the singularity in f;, when Z,=E, and e tends to 0.
In order to see that R;;(e) behaves smoothly with
respect to energy when we pass to the limit, it is
sufficient to substitute for +;(0) in (2.14) the series
solution (2.12). The Green's function,

(2.15)G&+&(E;)= lim
' O'8; E+ie—

is free of singularities at E;=E;.

appears only between V's and never acts directly on an
eigenfunction of E. In held-theoretic applications, one
must discuss the energy dependence of R;, (e) more
carefully (see Sec. U). However, we must not apply the
limit on e to R,, (e) directly since, on account of the
normalization of the P's, R;;(c) is proportional to I.
and the two limits must be taken together. (For the
sake of simplicity, we shall treat the quantization
volume as it would appear in a reaction in which two
particles collide and two particles emerge. If there
are more than two particles in the 6nal state, appro-
priate factors of volume must be inserted. None of our
conclusions are modified by this complication. )

We will take it for granted from now on that
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In order to compute time derivatives of f;; at t=o,
we will write

which yields at once

For the transition rate we need only

f,, (0)= —iR,;(e).

From (2.13) and (2.18) we have

(2.18) 2
=2 ImR;, (e)+ IR), (e) —I'. (2.26)

It is clear that the single state j considered as a
possible final state will contribute nothing to the
density of final states; nevertheless, the rate of change
of w;; is of importance when considered as the rate of
depletion of the initial state.

From the fact that the normalization is preserved in

(2.17) time it is clear that the rate of decrease of w;, is given
precisely by the rate of transition into all other statesi'. If we set i =j in Eq. (2.19) we obviously obtain

—If' (t) I'
dt —8=0

= 25,, ImR;;(e)

26
+ IR't(~) I'. (2 19)

(E E)'+e'—

Now in the limit of L—&~ (and thus e—&(7 ) the second
term is vanishingly small in comparison to the first
term [see discussion following Eq. (2.15)j. We have
thus deduced the well-known theorem (in the limit
&~0+),

Z'If' I'=». (2.20)

Using (2.19) and (2.20), and the fact that E; is con-
stant in time, we see that

2f
2 ImR;;(e)+P —

I
R,;(e) I

'=0. (2.21)
(E . E.)2+ ~2

If we now compute E, from (2.13) and (2.20), we obtain

%e are now in a position to deal with the normaliza-
tion» of the state vector. Since the p; are a complete
set of states,

1 2'—2 Ime. ;;/L'= —P —
I

N. ,;I S(E;—E,),I.' 'Wr I'
2

p 0.;;=——Im(R;;.
«r

(2.27)

So far we have made use only of f;;(0) and f,;(0). An
examination of higher derivatives is not necessary for
the calculation of cross sections, but sheds some light
on the meaning of our mathematical description of
scattering. A discussion of the second derivative of m;;
sufFices to illustrate the point. One finds easily that

2».=1+—ImR;, (e)+Q IR;, (e) I',
e ~ (E E)+e'—

4e

(2 22)»w, ;(0)= lt);;2 IrnR;, ( )+ IR;;( ) I'
(E—E )'+ e'

and, simplifying with the use of (2.21),

N; =1+(1/e) ImR;t(e). (2.23)

We may remark that R;;(e)~L ' and thus the double
limiting process makes E; tend to 1.

Now the differential cross section for the transition

j—+i is equal to the transition rate divided by the Aux
eI. ', where v is the relative velocity of the colliding
systems. Except for the single state j, to be discussed
afterward, we have for each i the following expression
for the differential cross section, using (2.19):

26
0.;;= lim

I R;;(s) I
'L'e-' (2.2@)

@~0+ (E . E.)2+~2

0„=2~I N. ,;I',v
—'. (2.25)

Now the factor in parentheses tends to 2mb(E; —E,)
which is to be interpreted as 2x times the density in
energy of final states i at energy E;; the conservation
of energy is understood as well. If the volume in
momentum space per unit energy about state i is or;,
then the density of final states is 1.3'; and we have

2e(E, E,) ImV;;R;;*—(e) 2e' ReV;;R,,*(e)
. (2.28)

(E; E;)'+e'—
For any finite value of e, this expression is a perfectly
well behaved function of energy. Consequently, if one
computes w;, (t) approximately as

»w, ;(t)—»[w;;(0)+ttb;, (0)+ j, (2.29)

one sees by comparing (2.19) and (2.28) that the second
term is of order et compared to the first term. Thus for
times less than e ', w;;(t) =w, ;(0).

From the preceding discussion it has become clear
that for practical purposes one may ignore the compli-
cations of the double limiting processes and deal with
the state vector P;(+) obtained by letting e tend to 0,
which evidently satis6es

P.(+)—y+G(+)(E.)Vf.(+) (2 30)

Cross sections can be computed from the quantities

(2.31)

in an obvious way. It is evident from (2.28) that P;~+)
is an eigenstate of the total Hamiltonian with eigenvalue
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III. S MATRIX FORMALISM

In this section we shall outline the connection be-
tween the preceding discussion and the formalism of
the interaction representation; the introduction of
Heisenberg's S matrix' then follows in a natural way,
as pointed out by Schwinger. 4 Our development will be
similar to that of Lippmann and Schwinger, ' though
diferent in point of view.

Starting again with the Schrodinger equation (2.1),
we remove, in the usual way, the time dependence of
the state vector associated with E by a unitary transfor-
mation to the interaction representation. Let

(3.1)

According to our definition, the interaction represen-
tation reduces to the Schrodinger representation at
time I,=O. The new state vector satisfies

where
iae'(t)/at = V(t)e'(t),

V(h) eiK tVe iEct—(3.2)

(3.3)

We introduce the unitary operator U(t, tp) such that

e'{t)= U(t, t,)e'(t, ) (3 4)

for each solution%" (t) of (3.2). U(t, tp) has two obvious
properties that should be noted:

U(t, «) =1,
U{h, t,)= U(t, h') U(t', t,).

(3.5)

(3 6)

Let us exhibit some explicit formulas for U(t, tp).
First, we may use our knowledge of the time dependence
of 4'(t):

{3.7)4'(h) =e 'H(' to&)I (tp).

From (3.1) and (3.4) it is then clear that

U(t h ) —&tKt& t(K+v) (t—to)&—(H—to (3.8)

To express U(t, tp) in terms of quantities in the inter-
action representation, we differentiate (3.8) with respect

' J. A. Wheeler, Phys. Rev. 52, 1107 (1937); W. Heisenberg,
Z. Physik 120, 513, 673 (1943).' J. Schwinger, Phys. Rev. 74, 1439 l1948l. See also reference 1.

E,. It is the conventional stationary solution of the
scattering problem corresponding to an "incoming
wave" ttt;.

Although it is useful to work with ttt;(+), it is necessary
to exercise care on account of its singular character
when expressed in terms of ttt's. For example, the
operator E is not Hermitian when it appears between

and P;(+), since they satisfy different boundary
conditions at infinity. Rather,

{&4;I0 +') {4;I&—0,'+')={4;IvIP +') (232)

For most purposes it is safe to consider the normal-
ization Q;(+) IP;(+)) to be 1.

to t, obtaining

jc&U(h t )/clh etKt Ve t—(H+v) (t to)—e tEc—to (3.9)

which we may rewrite with the aid of (33) and (3.8) as

iBU(t, tp)/Bt = V(h) U(t, tp). (3.10)

Integrating both sides of (3.10) from tp to t, we have

pt
U(t, t,) = 1 i—dt'V(t') U(t', t,).

tp

(3.11)

If we differentiate (3.8) with respect to tp and then
integrate, we obtain

tp

U(t, t,)=1+' I Ch'U{t, t')V(t'). (3.12)

The formal solutions of (3.11) and (3.12) by iteration
can be written, with the aid of Dyson's ordering
operation, ' as

(
U(t, tp) =

I
exp i —dt'V (t') (3.13)

to

U(t, tp)=I exp i Ck'V(t')
)

(3.14)

The limit as tp tends to — of a matrix element of this
operator will exist only if the limit is defined in such a
way that oscillatory terms are made to vanish at —~.
But with respect to such a limiting process, the limit
of Eq. (3.8) will have meaning as well, as we shall see.
Moreover, the work of the preceding section has
already provided us with a suitable limiting process.

Let us transform the state vector 4, ('(t) of Sec. II
to the interaction representation using (3.1).We obtain

@.(t)(h) e(Kte iHte dTetTeiHTe —(K', (3 16)—
~ I. J. Dyson, Phys. Rev. 75, 486 (1949).

respectively, where the symbol ( )+ means that the
terms in the power series development are to be ordered
with the functions of earliest times standing to the
right and ( ) indicates ordering in the opposite sense.

It is customary to introduce operators such as
U(t, —oo) by allowing tp to approach —~ in such
equations as (3.11)—(3.14). That it is not completely
straightforward to do so becomes clear if we try to
substitute tp —oo into ——Eq. (3.8). However, we are
faced with no great mystery. The integrals in (3.11)—
(3.14) may be exemplified by the second term in the
expansion of (3.13):

t pt
—'

t Ch'V(t')= '
i dh' ' 'V ''. (3.15)-



402 M. GELL —MANN AND M. L. GOLDBERGER

which we may write, using (3.8), as

.'(~) (t) = & dTe~~U(t T)y .

The operator U(0, —~), which we shall call Q'+), is
clearly the one that forms the singular wave-function
matrix of Mpller P

Now (~.l&") l~;&=(~'I& +)) (3.27)

L f(T)= lim —p ~ dTe'rj(T)
oo e —+0

is an example of the kind of limiting process we need.
Iff possesses a genuine limit as T—+ ~, the L opera-
tion yields the same one; but if f oscillates as T—+—~,
the I. operation gives 0. So we will take

U(0 + oo )——Q(—) (3.28)

carries g, into the eigenstate of the total Hamiltonian
corresponding to p, as an outgoing wave:

Acting on the state p;, it produces that eigenstate of the
total Hamiltonian, corresponding to p; as an incident
wave. Similarly the operator

U(t, —oo) = lim p dTe' U(t, T).
~ ~0+

(3.19) 0& )y, =P, & '= lim'-' p —i(H —E,)
(3.29)

In an analogous way, we define Instead of (2.28), we have for 1t," ) the equation

U(oo, t) = lim p dTe '~U(T, t),
—

c~0+
0

(3 20) where
1t,(—) =P .+G (—) (g .) V1t, . (—) (3.30)

etc. All the relations are now true that can be obtained
by setting t or 30 equal to & as in the integral equa-
tions of the interaction representation. One may show,
for example, that Eq. (3.11) does have the limiting
form

U(t, —~)= 1 i dt—'V (t') U(t', —~). (3.21)

G& )(E,)= lim
0' g —E—ie

(3.31)

Let us now establish the properties of the U matrices
with infinite arguments that correspond to Eq. (3.6)
for finite times. It can easily be seen from (3.8) and
(3.20) that, for example,

U(~, t)=U(~, 0)U(0, t), (3.32)

It is well known that in the notation of the interaction
representation Heisenberg's S matrix takes the form
U(~, —oo). It is clearly a matter of indifference at
this point whether we define S by applying the two
limiting processes (3.19) and (3.20) to U(t, tp) or by
applying to (3.21) any limit that will give the usual
meaning to the oscillatory integrals, so as to obtain

and thus by (3.19)

U(~, —oo) = U(oo, 0)U(0, —m). (3.33)

Now U(oo, —oo) is 5 and U(0, —oo) is Q~+), but
U(~, 0) remains to be discussed.

Equations (3.5) and (3.6) tell us that

U(t, tp) U(tp, t) = U(tp, t) U(t, tp) = 1. (3.34)
~00

U(~, —~)=—S=1 i dt'—V(t') U(t', —~) (3 22) Since the U's are unitary for finite times, we have
4

U(t, t,) = U(t„ t) &. (3.35)
We may now substantiate the claim that sensible IfU we apply either of the limits 3.19) or 3.20 to theresults follow from allowing tp to tend to —oo in Eq. relation (3.35), it remains unchanged, and thus3.8j according to the rule (3.19'. If we use the com-

pleteness relation, U(& ~, 0) = U(0, ~ oo ) t. (3.36)
(3.23)

So Eq. (3.33) may be rewritten
1=2,~,)(~„

we find that U(t, —oo) can be expressed in the form
5=n&-»n(+&. (3.37)

In view of Eq. (2.8) and the discussion at the end of U(—~, 0)U(0, —~)=Q'+)1&&+)
Sec. II, we have =Z', ~)(c"+)le'+))(~

U(o —-)=E & "))(~; =Z'~.)(~,=1 (3.38)(3.25)

U(t, —oo)
We must still investigate such products as .=e'x'e i&x+)')' lim p pi)(p;. (3 24) U(—oo, 0)U(0, —oo). But Eqs. (3 23) and (3 36) yieldi p+ i(H —&~') at once

or
U(0 —~)4 =4 '+'

6 C. Mgller, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
(3.26) 23, No. 1 (1945).
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with the use of the limiting normalization to unity of
the P;&+'. Similarly,

U(~, 0)U(0, ~)=Q&»Q' —1=1. (3.39)

However, the 0's are not necessarily unitary, since

(3.40)

is not necessarily 1. If there are bound states among
the eigenstates of II, that is, states of energy less than
that of any eigenstate of E with the same symmetry
quantum numbers, then the P, i+' are not a complete
set, and (3.40) may be restated as

Q'+'Q'+» = 1—Q.P.)(P., (3.41)

Eq. (2.21) and the analogous equation involving the
incoming wave state vectors P' ' may be made the
basis of such a proof. ' We shall proceed from the
connection between the S matrix and the 0'+' oper-
ators [Eq. (3.39)].We have

StS=n&+»n~-)n(-»n(+~

=Q"'&[1-E-~-)Q.-jQ"'
=1—Qi+»g. P„)(P.Qi+&. (3.52)

The second term is effectively zero, since 0'+) operating
on a state p; produces one of the states/ +' [according
to Eq. (3.27)] which is orthogonal to the bound states
P . Thus we have completed one-half of the proof:

where the f are the bound states, satisfying

Hf.=E f . (3.42)

S~S= 1.

The remainder of the proof is as follows:

(3.53)

In order to verify directly what is implicit in the
preceding equations, namely,

(3.43)

SSt=n~-)n&+&n(+»O(-)

=1—Qi-~ tg. y.)Q.Qi-~ =1, (3.54)

as well as that

let us use (3.16), (3.19), and (3.20), which yield

(3.44)
since Q& ' produces a state P& ' which is orthogonal to
the it .'

IV. EXAMPLES

(3.45)

where P is any eigenfunction of H with eigenvalue E.
For a bound state, E—E can never vanish, since E
has no eigenvalues as low as E; hence the relation
(3.43). For a state in the continuum, we have

lim it '~'= (1—G'~'(E) V)$'~'=p (3.46)-o' equi(E —E)

and so

Substituting int;o (3.22), we have

5=1—P, , y, )2~iS(E,—E,)E,,(y;,
or

(3.49)

S,, =(y, lSly;)=S, ,—2 ic(E,—E,)E,, (3.50)

Another interesting form is provided by substituting
Eq. (3.39) into the definition of S,,'

5,;=(y, lQ&»Q&+'ly, )
=(Q' '4'IQ"'4 )=(4" 'l4 "') (3 51)

Our final task is to prove that the S matrix is unitary.
This may be done in a variety of ways. For example,

by Eqs. (2.28) and (3.30); hence the relation (3.44).
The matrix elements of the S matrix may be com-

puted as follows: From (3.24) and (3.25) we find that

(3.47)

Our first example is a discussion of a scattering
process in which there are two potentials acting.
Problems which fall into this category are the scattering
of particles under the combined infiuence of Coulomb
and nuclear forces (the actual case of the Coulomb field
requires a detailed discussion of phase factors, etc. ,
which may be carried out explicitly and which, in fact,
yields results identical with those to be discussed
below' ); bremsstrahlung, where one has a Coulomb
field as well as interaction with the radiation field; the
analogous problem of meson production in nucleon-
nucleon collisions; the photoelectric eGect; etc. Prob-
lems involving two potentials to which the impulse
approximation is applied are best discussed in a slightly
diferent way. ' The motivation for our approach is
evidently that it may be advantageous to treat one of
the potentials exactly and the other approximately;
furthermore, as will be mentioned below, the nature of
the physical question being asked introduces a possible
ambiguity into the mathematics.

At first sight the whole discussion might appear to be
trivial: One would merely replace the basic set of states
p, introduced earlier, by a set of states z which are
eigenfunctions of E+U, where U is the part of the
potential that is to be treated exactly. Cross sections
would then be obtained from expressions of the form

'After this manuscript was completed, a paper by S. T. Ma
appeared t S. T. Ma, Phys. Rev. 87, 652 (1952)j, which contains
some of the results discussed in the latter part of this section.
It was, nevertheless, felt desirable to include them in the interest
of completeness.' J. B.French and M. L. Goldberger, Phys. Rev. 87, 899 (1952).

G. I'. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952).
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where V is the additional potential. I.et us see to
what extent. such a procedure is legitimate.

The difhculty arises from the fact that the cross
sections for the processes mentioned above are classified
in terms of truly noninteracting final states. The true
state vector is defined by the integral equation

~ (+) „(+)+. V)P (+)

E K —U+—i~
(4.7)

The very implicit dependence of )P, (+) on U may be
made more explicit by remarking that )P, (+) also
satisfies the equation

y (+) y+= (UyVg, (+)

E—K+ie

Since it is important to realize that the original bound-

(41) ary conditions on )p, (+) introduced in (4.1) are being
maintained effectively in (4.7) we shall derive this
result. We write

where g, is an eigenstate of K belonging to energy E.
(The common energy of initial and final states will be
called E.) The probability of transition to another
plane wave state gab is, as we have seen in Sec. II,
proportional to the absolute square of

E~.=&4~IEI4 )=&AIU+Vlk '+') (42)

1
(+) =y +- . (U+V)4.,

E K U——V+—ie

x.(+) =~.+ U@.,
E—K—U+ie

(4.8)

This is clearly the quantity of physical interest, the
transition rate into a true pl(JNe wg(&e state, (1)(, We .shall
see that in many cases the expression for Eb in Eq.
(4.2) can indeed be written in the form (xl Vl)P+)
alluded to above, but owly with a suitable choice of
boundary conditions on p."

Let us introduce state vectors analogous to the )P, ( &

used previously: These are the solutions y~' ' of the
problem with U=O defined by

xa( )=A+ Ux~( '
E—E—ie

(4 3)

Substituting for (t&(, in (4.2) and using (4.1), we find that

(xb '
I
v

I x.(+')+&x~' '
I
UI @.). (4.4)

It is very easy to show' that

&x
(-)

I Ul~.)=&~
I
Ulx. ('»,

where x (+) is defined by

(4.5)

x.(+)=4.+
E—K+ie

(4 6)

The second term in (4.4) is thus simply the scattering
amplitude which would be found even if V were zero.
In many applications this term is zero; for example,
in the case of bremsstrahlung there is a photon in the
final state and consequently the matrix element will
vanish. It does not vanish in the case of combined
Coulomb and nuclear scattering. The first term shows
that the famous incoming wave solution" y~' ', which
has frequently been a source of confusion, appears
quite naturally.

' K. Watson, Phys. Rev. 88, 1163 (1952). The result expressed
in (4.4) below has also been obtained by Watson {without the
second term). His derivation is quite similar to ours.

"N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Oxford University Press, I.ondon, 1933), Chap. VI;
A. Sommerfeld, S'ellenrnechcnik (Fredrick Unger Publishing
Company, New York, 1947), p. 457.

as in Eq. (2.10). Subtracting, we have, after some
manipulation,

(+)—)( (+)+ (+) (4 9)
E K U—V+—ie—

which is the solution of (4.7). In the case where V is
small, Eq. (4.4) becomes approximately

E,.=(x~(-)
I
V )c.(+))+&y~lUlx. ' '). (4.10)

Equation (4.10) takes the potential U into account
exactly as long as one is content with first-order
accuracy in U. It is to be noticed that to second order
in U there is an additional U dependence, since

(+)~x (+)+ Vx.'+'+ . (4.11)
E K—U+ie—

(~ ) )po+- U@ (e)

E, K U+ic——(4.12)

where )Po represents the product of a plane wave meson
state vector and a bound deuteron state vector. )po

satisfies the integral equation

)po= U)Po,
E,—K+ie

(4.13)

where U is the deuteron potential. The meson coordi-
nates are contained in a completely trivial way in this
equation since there is no interaction. It is convenient,
however, not to make an explicit separation. We now

In the case of the photoelectric effect or the process
m++d —+2p one is confronted with a slightly new
problem. One, is dealing with an initial state which,
although it lies in the continuum, is essentially a bound
state. I.et us proceed from first principles and compute
the transition probability directly. We shall keep in
mind, for the sake of terminology, the process ~++0
—+2p. The physics of the problem leads us to the state
vector 0«' defined by
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ask for the rate of transition into a plane wave state The common energy of »tab and p, &+) is again denoted
in the usual way: r by E. We write

N.iob.———1(yb I

e"eb x r"
I
e.")

I

'. (4.14)
Bt

(We must, of course, keep» finite in order that the
necessary partial integrations can be carried out. ) We
shall evaluate (4.14) at t=0. As in Sec. II, we obtain

N.mb. —i(——pb I
U+ v

I
+ &'))(pb

I
+.")*+c.c. (4.15)

The evaluation of (gb1%', ~'& proceeds as follows: First
write%, (') in the form

=&4» I
UI4"'+')+&xb' '

I
v

I |t.'+')

=(eb
I
U 14.'+')+&xb' '

I
v

I k.'+')

Then

@ (a) =go+. V)ffp.
E, K U—V—+i—»

(4.16) =(eb I
x14."')+&xb' '

I
v IP."')

1
Q»l+. "&=(4blA&+ eb a' ao)E, K U—V—+i»—

1
=(iai~liao}+ as a' ao)E, K+i»—

+ Pb (U+ V)
E, K+i»—

Finally

&b.=&xb' '
I
v 14."')+(eb

I UI A) (4 20)

In the class of examples being considered, where fp is
the product of a plane wave state and a bound state,
the second term vanishes. Hence the transition proba-
bility per unit time becomes

wb 2s'1&xb' '
I vlf. '+'& I'I&(E.—Eb) (4 21)

1
X V go

E, K—U —V+i»—
a

1
=(ai~li) }+ ai, a' ia )E,—K+ i»

1
+ ai (&+a'}l@."—a)E, K+i»—

1
A go—

E—K+i»

1
+ ai (&+v}a"i')

E,—K+i»

Proceeding in the now familiar way, we deduce

(4.17)

It is perhaps worth noting that Eq. (4.21) as well as
the analogous one for an initial continuum, contained
in (4.4), would not be correct with Xb&+) written in

place of x~' '.
As another example of our formalism, we shall

present a rigorous theory of the so-called "pick-up
process. ""The general category covered by this ex-
ample is considerably broader in that it applies to
rearrangement collisions quite generally. For definite-
ness, we consider the following idealized. problem: A
proton is bound to a fixed scattering center by a
potential U and is bombarded by neutrons with energy
E; which interact with the proton through the potential
V. The neutron and proton may be bound together by
V to form a deuteron and we wish to compute the
transition probability per unit time for producing
deuterons.

We introduce the state vectors fp and pf, which
satisfy the equations

(K+ U)A E4'» {K+V)4fEf4 f '(4 22)

Xb' )=lb+ Uqhg.
E—E—V—ie

(4.19)

wb, =2~1&eb
I
U+ VIA. '+')

I
't}(E-—Eb), (4 Ig)

where we now imagine the limit &~0+ and hence
4 &')—aP, &+). Now we shall transcribe this matrix
element in a manner similar to that used in connection
with (4.2). This time, however, we substitute for atab

from the equation 1
@(a)—pp+ V+(a)

E,—KU+i»' —(4.23)

"G. F. Chew and M. L. Goldberger, Phys. Rev. 77, 899 (1950).

where Pp represents the initially bound proton and
incident neutron. and )}tf, the deuteron (with its center
of gravity motion). 4'i', the complete state vector of
the system, can be seen from the physical boundary
conditions to be the solution of the integral equation
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namely,
1+"=go+ — V/0

E, K —U ——V+ie

The transition probability of interest is given by

for P&+', we have

(4 24) («I Ul &'"'&

1
Qil=UlA)+(ki &- &A)E—E—U —V—ie

(4 25)
=&«I UI A&

which we again compute at t=0. We find that

&o~ro= —i&«I UI +"&&«
I

+")*+cc
Now

. U«I VIA (43')
E—E—U —V—ie

We now define a new state vector P& ' which is the
4.26

solution of

&«I+")
1

=&«IA&+ « . v A
E, K U—V—+ie—

=&«IA)+ « V P)E, K V+fe— —

~ ~

1 1
+ «U . VA

E, K U+ie E—K— U V+i—e——

=&0 IA&+ . {4 I vIA&
E, E+ic—f

+&«I Ul + "&—&«I Ul&o&)

From Eqs. (4.22) we find that

&«I v 14o&
—&«I UI 0o&

= (Ey K)&A I A) ((K0'f
1 ') &0'r K tPO)). (4.28)

The second term in (4.26) reduces to a surface integral
which vanishes in the limit of infinite quantization
volume. Thus

64I+ "&= &«I Ul+ "& (4 29)
E; Er+i»—

We find immediately that

~io=2~1&«I U
I
4'+'& I'~(E Ef) (4 30)—

in the limit e—+0+, +'&—+Pi+'. We shall not discuss
various methods of approximation which have been
developed to evaluate (4.30); this will be taken up in
a separate paper by one of us (M.L.G.) in collaboration
with (hew. "

The form of Eq. (4.30) would seem to be somewhat
surprising, in that it is not at all the result one would
intuitively write down. The interaction V between the
projectile and the bound particle is buried in a compli-
cated way. lt is not dificult, however, to deduce from
(4.30) a more natural looking result. Calling the
common energy E, and substituting the explicit form

'3 Equation I'4.30) has also been derived independently by
G. F. Chew and by G. C. Wick (private communication).

namely,

4'' '=«+ UP(—i

E—E—V—ie

4' '=«+ U«.
E—E—U—V—ie

(4.32)

(4.33)

V. SELF-ENERGIES

So far we have restricted ourselves to the considera-
tion of Hamiltonians in which the interaction V induces
a negligibly small shift of the energy levels in the
continuous spectrum. But in order to discuss, for
example, a theory of quantized fields, we must deal
with the question of self-energies that are not in6ni-
tesimal. (The fact that for elementary particles without
extension they often turn out to be infinite is without
significance for our treatment; we may keep in mind,
as an example of a finite theory, that of electrons and
phonons in a lattice. )

I.et us suppose, then, that the eigenvalues of the
total Hamiltonian II are E„while those of the portion
E of the Hamiltonian that we have chosen to call
"free" or "unperturbed" are h; that is,

(K+VV.=E.~. (5.l)

Ey„=S„y„. (5.2)

For simplicity, we will assume that there are no bound
states in either case.

Thus (4.31) may be written, using (4.33) in the second
term, as

&«I Ul@"'&=O' 'I vIA&+&«IUI&o&
(434)

The last two terms lead to the surface integral dis-
cussed after Eq. (4.28) and may be dropped. Hence
we have proved that

&«I UI4&+»=&P&-il vl4o&. (4.35)

This new form for the transition matrix element is the
one which one would guess for the result. The reci-
procity relationship expressed by (4.35) is the analog of
a similar one quoted in Eq. (4.5).
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Now it is essential to note that the energy of the
colliding systems, even at infinite separation, is cot
given by the h„of the "initial" state, but by E„. (For
instance, the energy of two distant electrons at rest is
not the sum of their mechanical masses, but of their
total masses, and this includes a contribution from the
interaction with the electromagnetic field. ) Now in
order to describe the scattering process correctly, one
must assign to the incident train its correct frequency,
and thus E must be modified formally so as to make
its energy spectrum coincide with that of K+ V before
it can be used as in Sec. II.

If 6„is defined by

(5.3)

and the operator 6 by

or, using (5.9),

E,,(,) =&y,
l vip, )

—6,(),;. (5.11)

Now we know that as e ' and I. tend to infinity, R;, (e)
must tend to 0 since otherwise the cross section would
be infinite, or at least dependent on the normalization
volume. Hence for an interaction V that produces level
shifts which are not infinitesimal, the term h,8;; must
be canceled by a portion of the other two terms on the
right-hand side of (5.11).Thus the expression,

then
&=K.~-)&-&~.,

(K+a)y.=E„y„.

(5 4)

(5 5)
p;;=(0;I~le)+(0; (r—~')

We may now write

e= (K+s)+ (v ~), —(5.6)

1
X- (V—&,) Q, , (5.12)

E;+6, K V+ie— —

and apply the methods of Sec. II in full, since the new
interaction (V—6) produces no energy shift.

In place of Eq. (2.11) we have

and in place of (2.10),

must be of the form of an infinitesimal plus a term
proportional to 6;, that does not vanish as e—&0 and I.
tend to infinity. It is the latter term that Pirenne refers

1 to as a "singularity. " If we use the symbol W(F, ,) to
+~"(0)=it)~+ (V ~)+i")(0), (5 &) mean the "singularity" in F,; at r', =j then the self-

+ )+s energy as determined by the relation

+,"(0)=e,+ (U —A)(t);. (5.8)
E,—K—V+se'

In virtue of (5.3) and (5.4), we may write (5.8) in the
form

6;= lim ir (y;~ v~)i;)+(y; (v —6;)

1
(V—~') 4» (5 13)

h,+6;—K—V+se

iII .(~) (0) —y .+ . (V—~)4 (59)
h,+6, K V+ie——

It is clear, then, that the computation of 0, requires a
knowledge only of 6, and not of the energy shifts of
the other states.

The question of the determination of 6, has been
discussed by Pirenne;" later he has shown" that his
approach is fully equivalent, in the case of quantum
electrodynamics, to the covariant mass renormalization
procedure usually adopted in recent years. We will base
our remarks on his ideas.

We note first that the E. matrix element from which
cross sections are computed, is, by analogy with Eq.
(2.14), given by

Equation (5.13) may be solved for 6; by the use of
perturbation theory in V or by other means if they are
available.

In order to exhibit the reality of 6;, which is certainly
not apparent from (5.13), let us rewrite Eq. (5.11) in
the form

&', (e) =&~'I Vl~,)+2 -»" (5.14)
& E, Es+r'e—

Taking the diagonal element and allowing e to ap-
proach 0, we have

Z, ,+i~ P IZ, „lsh(E,—E,)

&,;()=&~.
l
v-~l~ ()(o))

=&~'I v —~.l~, ( )(o)),
' Jean Pirenne, Helv. Phys. Acta 21, 226 (1948).
"Jean Pirenne, Phys. Rev. 86, 395 (1952).

(5.10)

lz, .ls
=&~, lvl~, )+PE —~;, (5.»)

I jv, —jv~

where P means principal value. But by analogy to
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Eq. (2.21), we can show that

2 ImR;, = —2m.pt, l&st I'~(&s &—t) (5 16)

and hence (5.15) becomes

may write

The "singularity" in the right-hand side of (5.17) is

the part that does not vanish for infinite normalizing
volume and is equal to 6,. The. remainder is infini-
tesimal and equal to ReR, ;. Thus in place of (5.13) we

It is now clear how to compute any quantity of physical
interest in the case where there are self-energies. If the
transition to a covariant formalism is made, our
remarks remain pertinent.
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The Energy-Momentum Tensor of the Electromagnetic Field inside Matter
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Two different energy-momentum tensors have been proposed to describe the electromagnetic 6eld inside
matter. Abraham suggested a symmetric tensor while Minkowski s tensor is nonsymmetric. With the aid
of a thought experiment it is shown here that only the symmetric tensor satisfies the momentum conserva-
tion and center-of-mass theorems simultaneously.

~ 'HERE is an interesting point in the electrody-
namics of moving media which is not yet satis-

factorily settled. This problem is the following. The
well-known connections in vacuum between the electric
and magnetic field vectors E and I, the electromagnetic
energy flux S, and the momentum density g are
S=c(E)(H), g= (1/c)(RXH). From these expressions
it follows that the energy-momentum tensor T,I, (t', k

=1, 2, 3, 4) of the field in vacuum is symmetrical,
since the space part is symmetrical and the time parts
are simply the energy Aux and momentum density, re-
spectively, T4, (1/c)S, T,4 c——g(p=1, 2, 3),——which are
equal in view of the above expressions. Two different
expressions have, however, been suggested for S and g
and so for T,I, when the electromagnetic phenomena
take place in matter. In both cases the space part of
the energy-momentum tensor is the conventional
Maxwell stress tensor. For S and g Abraham has re-
tained the expressions valid for fields in vacuum' and
so he obtains a symmetric energy-momentum tensor.
Minkowski, however, proposed S=c(R)&H), g= (1/c)
(D&(B); D = eE, B=ttH, which entails a non-
symmetric energy-momentum tensor. For a long time
Abraham's suggestion (the symmetric tensor) was
commonly accepted, but quite recently von I.aue' has

*Present address: Department of Physics, University of Ala-
bama, University, Alabama.

'M. von Laue, Z. Physik 128, 38tt (1950); A. Sommerfeld,
"Electrodynamik, " Vorlesungen uber theoretische Phy'sik (W.
Klemm, Wiesbaden, 1948), Vol. 3, p. 291.

shown that only Minkowski's assumption leads to a
ray velocity (velocity of energy propagation) trans-
forming like the particle velocity. This was considered
as a weighty argument in favor of the nonsymmetrical
energy-momentum tensor.

The aim of this note is to show by means of a very
simple thought experiment that only the symmetric
energy-momentum tensor satisfies simultaneously the
momentum conservation and center-of-mass theorems.
(We mean by the latter that the center of mass of the
system is at rest or moves with uniform velocity if no
external forces are acting on the system. This holds in
relativistic mechanics as well, with the proviso that in
different Lorentz-frames we must, in general, identify
different points as the center of mass. We, however, will

always stay in the same frame of reference and so this
will not concern us. )

We imagine now two enclosures not subjected to
external forces. In each a wave parcel is traveling. In
one enclosure part of the path passes through a perfect,
nondispersive dielectric (we will simply say glass) where
the velocity of propagation is smaller than in empty
space. In the other enclosure we have an identical glass
rod and an identical wave parcel; its path, however,
does not lead through the glass rod. For this reason in

the latter enclosure, after time t, the parcel and so the
mass associated with its energy would be at a different

point than in the first enclosure. Then if we would

suppose that the glass rod did not move while the parcel


