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The Classical Scattering of Neutral Mesons
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In a recent paper a theory of point particles interacting through neutral meson Gelds was developed from
the point of view of action at a distance. Equations of motion differing from those of field theory were ob-
tained. These equations are now used to calculate the scattering of scalar and vector mesons by nucleons.
The resulting cross sections are somewhat larger than those previously obtained from 6eld theory, but the
difference is so small that an experimental distinction hardly appears possible.

Feynman' is applied to the equations. Its application
to the field-theoretical equations using symmetric fields
results in the same equations as originally obtained in
field theory using retarded fields. Its application to
the time-symmetric equations of action-at-a-distance
theory, however, results in equations diGering from
those of the retarded case of both field theory and
action at a distance.

Unlike electrodynamics, meson theory therefore
appears to oBer a possibility of decision between the
two points of view by a comparison of their predictions
with experiment. A clear-cut decision is not to be
expected until these considerations have been applied
to quantum theory; however, the classical results
obtained should be a limiting case of the quantum-theo-
retical results and thus provide a preliminary orien-
tation. With this in view, we have calculated the scat-
tering of neutral mesons by nucleons according to the
theory of action at a distance and compared the results
with those of field theory. ' ' The scattering of charged
mesons, which is, of course, easier to investigate experi-
mentally, is being calculated at present on the basis
of an extension of the results of H to charged mesons. '

In a theory of action at a distance, only particles and
the forces they exert on each other are considered as
physically meaningful. Fields are introduced as auxiliary
quantities only, and thus there are no "real" electro-
magnetic or meson fields to be scattered. When we are
talking of the scattering of a plane wave by a particle,
we mean that the total e8ect on the particle of all other
particles takes the same form as if there were a plane
wave present. This, in turn, will inQuence the motion
of this particle in such a manner that its effect on other
particles is the same as that of a scattered wave ema-
nating from it. Once the equations of motion of the
particles are established, we can, therefore, proceed
using the more familiar language of field theory.

It was pointed out in H that, just as in electro-
dynamics, ' the equations of motion obtained by an
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' 'T is well established experimentally that the effect of
- - an electromagnetic field on a slowly moving charge
is given by the Lorentz force. The modifications of this
force required to describe the radiation damping ex-
perienced by a particle undergoing a rapid acceleration
are also well known. On the other hand, not enough is
known experimentally about the behavior of a particle
in a meson field to be certain of the correct fundamental
equations describing the interaction of a nucleon and
any of the different meson fields known from experi-
ment.

While there is no doubt that such a description has
ultimately to be quantum theoretical, the present
quantum theory is largely based on classical concepts;
thus, it may be that some of the difhculties of this
theory can be resolved by a reinvestigation of the
underlying classical theory.

Classical equations of motion of point particles inter-

acting with a neutral vector meson field were first found

by Bhabha' on the basis of field theory, following a
method originally developed by Dirac' for the case of
the electromagnetic field. Using the same method, the
equations of motion for the case of a neutral scalar
meson field were found by Harish-Chandra. '

Recently a theory of point particles interacting

through neutral meson fields was developed from the

point of view of action at a distance. 4' It was found

that, in contrast to the case of electrodynamics, the

equations of motion obtained from the field-theoretical

and the action-at-a-distance point of view are slightly

different.
If fields symmetric in time are used, the equations of

motion developed from either point of view do not
contain any terms describing radiation damping. Such
terms do appear, however, if the method of Wheeler and
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application of the Wheeler-Feynman method to the
time-symmetrical equations have to be solved subject
to the condition that the total retarded field of all the
particles in the universe equals their total advanced
6eld. In practice, however, we have to solve problems
like the motion of a single particle in the only approxi-
mately known field of the other particles. The applica-
tion of the above condition to such problems in electro-
dynamics leads to difficulties; as discussed elsewhere, "
at present the most feasible method of proceeding
appears to be to ignore the condition altogether.
Similarly, we shall ignore it in the following.

sr= (p/coo) sin»t+8, ss=s2=0, (4)

for the coordinates of the nucleon. The amplitudes P
and p are assumed to be small so that quantities quad-
ratic in them may be neglected. The calculation of P
and 6 is straightforward and quite analogous to that
of HC. We shall therefore not give all the details. The
values of the integrals appearing in Eq. (2) are given in
the Appendix. Using them and equating the coe%cients
of sin(a&of+6) and cos(&oot+8) to zero in Eq. (2) we get

the particle is small compared to the incident wave-
length), and.

II. THE SCATTERING OF SCALAR MESONS

Throughout this paper we shall use the same notation
as in H except for dropping the subscript u, as we shall
always deal with a single particle. Then we can write
Harish-Chandra's' field-theoretical equation of motion
of a particle in a scalar meson field in the form (H 21b)

cos5=

(5)
g[(2X'—2»' —X'&r/»)'+ (M/g')'~o'j'

2X —s4oo —X +r/4oo
(6)

[(2X'—s~o' —X'&r/~o)'+ (M/g')'~o'3'

MVv ', g'(V"+—V"V—')—-,'gsx2Vv
where the positive square root has to be taken. P& is
given by

T sit!

+g'X' J2(xs)d—r'+g'X vv
~l

—Jt(X$)dr'-
~ $

P]
v v

s [(v'—1)
*—v'+-,' vj,

0(v&1
(&)

v&1

=gJ""+g—(Uv"), (1)
d7

where U and Ii are the external potential and field. The
equation of motion obtained by application of the
wheeler-Feynman method to the time-symmetric
equation of motion of the theory of action at a distance
is (H 50b)

Mvv sg'(viv—+vvv2) ', gsxsv—v-

where v=»/x. We note that for v(1 the square roots
reduce to Moos/g 2Therefore the effective mass of the
particle equals M, which was not the case for the field-
theoretical equations. There the field contributed to
the eGective mass an amount which for v((1 equalled

ggX
The calculation of the retarded 6eld of the particle

is the same as in HC, and we obtain therefore for the
differential cross section of scattering of the incoming
wavei~

0,pt sf' " sv

+-,'g'x —Z, (xs)d '— —J,(xs)d '

&.s ~. s P2 (~ 2 X2)2 (g)
g~—cos28 dQ, vP 1

- 7' Ggpd r'1 t" 1
+ 2g'X—DN —j,(xs)dr' —Jr(xs)dr'—

dr ~ s S

COS2g (ross X2)2dQ

(~)
/»)'+ (M/g')'~o'j

do-
where U and Ii are the retarded potential and field of
all other particles. To facilitate comparison of the
results, we shall use the same assumptions and approxi- and for the total cross
mations as HC and B. Thus we take"

where 8 is the angle between the directions of propaga-
tion of the incident and the scattered wave. Inserting
our value for P from Eq. (5), we obtain, for the case v) 1,=gFv g

—(Uv") 2
dr

Fy= —p cosMpf) F2=F3=0, (3)

for the field of the incoming wave at the position of the
nucleon (assuming that the amplitude of oscillation of

I P. Havas, Phys. Rev. 86, 974 (1952).
"The corresponding Eq. (3) and HC contains sin~0t instead.

However, in the actual calculation HC used cosco0t, as can be seen
from his Eqs. (11) and (19).

4~ (g2 p
2 (~ 2 X2)2

3 tM) Gdp

1 (g' ~
' (~o' —x')'

1+-1 —
i

9 (M) 4oo4

(10)

'2 Owing to a misprint the factor (~02—y2)2 in the corresponding
Eq. (23) of HC appears without the square.
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TABLE I. Total cross sections for the scattering of neutral mesons by a nucleon.

Incoming meson Scattered meson
Total cross section according to theory of

action at a distance Total cross section according to field theory

Scalar Scalar

Transverse

4m g' ' (cop' —g')'
3 M cop4

g2 2 (~ 2 ~2)3

4~ g2 2 (~02 ~2)2

3 M o)p'

g2 1 g2 y3 2 1 g2 2 (~p2 y2)31+ x +3f 3Mcop2 9 M ~04

Vector~

Transverse Longitudinal
C

Transverse and
longitudinal

Transverse

~ Longitudinal
I.ongitudinal

x /~o

2+x /ooo'

x'/~o'

ox'/~o'

2yxo/~oo

xo/~o'

ox'/~o'

Transverse and x2 1 y'
longitudinal ~p2 2 ~p2

This is compared with the field-theoretical value in mesons; the necessary integrals are again given in the
Table I. Appendix. We obtain"

III. THE SCATTERING OF VECTOR MESONS

Bhabha's field-theoretical equation of motion of a
particle in a vector meson field is (H 21a)

Nv" og'(v—"+v"v')
with

2goo, L (3M/2g')'+ooo'(1 —P )'j'*

(op(1 J p)
cos6=-

L (3M/2g')'+a&o'(1 —&p)']*
(16)

gX&p

r' s"v'(r ) s'v" (r')—
Jp(xs)dr'= gG&ov&, (11)

$2

Mv"—-'g'(v +v"v')

t" svvo(r') sovv(r')—
gg X &p' Jp(xs)dr'

s

where G&p is the external field. The equation of motion
obtained by application of the Wheeler-Feynman
method to the time-symmetric equation of motion of
the theory of action at a distance' ' is (H 50a)

I'& 1
/

1 y——
1——

i
v+—i(v' —1)'*,

v' ( 2v)

0&v&1

v& 1.

We note that for v&1 the square roots reduce to
op M/g'. Thus the effective mass is again M, while for the
field-theoretical equations the field contributes an
amount —~g2X, if v((1.

The calculation of the retarded field is the same as
in B. We again get no sca, ttering if v&1. If v)1, the
Qow of energy into the solid angle dQ is given by

oopg'P'(ooo' —x') *' sin'8dQ/8or

4).

svvo(r ) sovo(r )
Jp(xs)dr' =gG&ov&, (12)

$2

for transverse scattered waves, and

g&Pox (oop& —x&) ' cos&edQ/8oroo (19)

where G&p is the retarded field of all other particles.
Again assuming that the amplitude of oscillation of the
particle is small compared to the incident wavelength,
we take for the field of the incoming wave at the position
of the nucleon

for longitudinal scattered waves. '4 Here 0 is the angle
between the direction of oscillation of the particle and
the direction of propagation of the scattered wave.
The energy Qow associated with the incoming plane
wave is

Gyp =p cosMpf) G2p =G3p =0) (13) (Gap
—x ) 'r /8oRdp, (20)

and for the coordinates of the particle

»= (p/ooo) sin(coot+8), s,= s,=0. (14)

The calculation of p and 8 proceeds as for scalar

"Equations (15) and (16) have also been obtained by Kanazawa
(reference 5), who, however, did not give the value of P2 and did
not calculate the scattering.

'4 In the equations corresponding to Eqs. (18)—(21) given in B
the factor orp(cop2 —y2)&) which follows from (B17),has been omitted
erroneously. The cross sections, however, which only involve the
ratios of these expressions, are given correctly.
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if the wave is transverse, and

(~o' —x') '~ox'/8~x', (21)

if it is longitudinal. The differential cross sections for
the different cases can be obtained by dividing the
appropriate energy Rows by each other and using Eq.
(15). Integrating those, we obtain the total cross
sections listed in Table I together with their field-
theoretical counterparts. "

IV. DISCUSSION

In this paper we have calculated the scattering of
mesons according to the theory of action at a distance
as developed in H. The resulting total cross sections are
summarized in Table I, which also lists the corre-
sponding field-theoretical results.

It can be seen that corresponding results are very
similar. Furthermore, they approach the same limit
as x—&0, as required, since in this limit (ordinary or
scalar electrodynamics) there is no difference between
the equations of motion of the two theories, as can be
seen directly from Eqs. (1), (2), (11), and (12).

The only diGerence in the cross sections for scalar
mesons is the appearance of an added term in the
denominator of the field-theoretical cross section. As
these formulas hold only for Mo) x this added quantity
is always positive, and therefore the cross section is
always smaller than that predicted by the theory of
action at a distance. In the vector meson case, there is
a term 2x'g'/3o&p'M in the denominator of the field-
theoretical expression, which has no counterpart in the
action-at-a-distance result, which, on the other hand,
contains a term —(xog'/3oip'M)' in its denominator,
which does not appear in fieM theory. Both of these
terms have the e8ect of increasing the cross section
predicted by the theory of action at a distance as com-
pared with that of field theory.

At very high frequencies the corresponding expres-
sions of the two theories become equal. At the other
limit of coo=x, both theories predict zero cross section
for scalar mesons. For vector mesons, the ratio of any
two corresponding cross sections of the theory of
action at a distance and of field theory becomes
11(g'x/M)( —', +pixg'/M). The value of g'x/M is dif-
ferent for the various kinds of mesons known experi-
mentally and has not been determined with great
accuracy. Even in the most favorable case it is only of
the order of 1/20. Vsing this value we obtain about
1.03 for the above ratio. At intermediate values of
pip/x, the ratio of the cross sections is even closer to 1
for vector mesons; for scalar mesons it is approxi-
mately equal to 1.1 over a fairly wide range.

' Equation (843) for the scattering of longitudinal mesons
contains several misprints, which have been corrected in the
table. The misprints were repeated in a paper by Vachaspati,
Phys. Rev. 80, 973 (1950), who also erroneously quoted the cross
sections for the total scattering of transverse and of longitudinal
mesons obtained in 3 as being those for the transverse-transverse
and for the longitudinal-longitudinal scattering, respectively.

Furthermore, the general dependence on frequency
is very similar in both theories, and the angular de-
pendence of the differential cross sections t Eqs. (9),
(18) and (19)]is exactly the same. Thus, considering the
experimental difficulties involved, an investigation of
the scattering of neutral mesons cannot be expected
to furnish an experimental decision between the two
theories.

However, in contrast to electrodynamics, meson
theory does at least in principle provide the oppor-
tunity for an experimental decision between the points
of view of field theory and the theory of action at a
distance. It is hoped that an investigation of other
phenomena involving neutral or charged mesons may
lead to results sufficiently different in the two theories
to allow such a decision.

APPENDIX

occurring in Eq. (2). In our approximation r=t and
s=~—v'. Thus

But

~co ~1 S1

Ii= -Jo(XS)ds+
~

Jp(XS)dS.
(s') (')

s' = —si ————Lsin(oipt+ 5)—sin (popt'+ i1)],
COO

and therefore

2P cos(oipt+8) t' Jo(xs)
I1 sino&os ds.

+0 ~0 (s')

Now let u= xs and v= pip/x. Then we get

2Px cos(Not+8)
I =—1

2zMO

Jo(u) t
" Jo(u)

g'CV tt dl tV
'tVtt

u' ~p u'

Using the values of these integrals as given by HC,
Eq. (9), we obtain finally

2PxPi
Ii= cos(oipt+8)~

where P, is given by Eq. (7).

Because of the form chosen for the incoming fields

LEqs. (3) and (13)]we only have to consider the ti= 1
component of the equations of motion (2) and (12) in
the approximation used. We shall first evaluate the
expression

S f S
Ii

~

—J,(xs)dr' — — J,(xs)dr'
~ „ (s') &, (s')
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The other term needed is Substituting for the components of s and v, we obtain

J,(xs)—
Ip=.

J
ds 2Ps cos(pppE+8) cos(&pps)

0

1
Jg(—ys)dr' ——Jg(ys)dr',

~ s s 2P——cos(capt+8) sin(cops) .
GOp

which equals
By making the substitutions u=ys and v= ppp/X, and
by changing the trigonometric functions to exponential
form, we get

~00 pp
—Jg (gs)ds — —Jy (ys)ds,

~p s ~ „s Jp(N)
dQ— 8"

Q
Ip=P cos((opt+8)

4p
which is zero.

The expression to be calculated in Eq. (12) is Jp (u)
+ dl 8

u

Jp(u)
dg g'cv'g

IZCOp 4p

f S Vp(r )—S~V (r )
Ip ——vp Jp(+s)dr'

(s')
x f" Jp(~)

+—— dl
ZCOp & p

f S V~(r ) S~V (r' )
Jp(ys)dr' .

(s')
Using the values of the integrals as given on p. 395 of 8,
we obtain

Ip
—spv' c——os(ppp/+5)Pp)

The only nonvanishing term is that for which p=O. where Pp is given by Kq. (17).


