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With a view of examining the effects of configuration interaction in a simple case, the three term and six
term expressions given by Hylleraas for the ground-state wave function of He I have been expanded in
series of Legendre functions of the cosine of the angle between the two radius vectors. The coefficients in
these expansions are functions of 7; and 73, the distances of the two electrons from the nucleus. The various
component functions are presented, together with the coefficients with which these functions enter the
expansions, and their contributions to the total energy. A discussion is given of the method of estimating
the magnitude of the correlation, or configuration interaction, energy. Evidence is presented that the total
correlation energy is at least —0.129Rge/c and may be even more negative. Of this amount it is estimated
that —0.056Rg.kc is associated with the radial part of the correlation energy, —0.075Rxu.kc with the angular

part, and +0.002Rg./c with the mixed part.

HE importance of configuration interaction in
atomic spectra has long been recognized,! and a
number of calculations dealing with such interactions
have been made.?~® In general, some improvement in
term separations has been obtained when superposition
was included but in the two most thorough treatments
of such effects by self-consistent field methods, the work
of Hartree? on O, O*, and O** and the work of Jucys?
on C, the results were disappointing. It therefore seemed
valuable to investigate the effects of configuration in-
teraction by considering a relatively simple case in
some detail. As a consequence in an earlier paper® two
of the present authors together with others undertook
the expansion of two of the Hylleraas wave functions
for the 1S, ground state of He I in series of central field
wave functions representing the various configurations.”
In total five configurations were considered: 1s?, 1s2s,
153s, 2s® and 2p% The wave functions in each case were
taken as symmetrized products of self-consistent field
wave functions for the individual electrons. For the
1s® and 1s2s configurations a second set of expansion
coefficients was also calculated using analytic varia-
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tionally determined wave functions. One of the results
of this work was to show that for the self-consistent field
wave functions the nonspherically symmetric 2p? was
the second largest contributor to the ground-state
wave function among the configurations considered.

However, in this earlier work the coefficient of the
1s2s configuration was markedly different for the self-
consistent field wave functions and for the analytic
ones. It seemed entirely possible that the same might
also be true for the 2p? as well as the other excited
configurations. This would mean in the case of the 2p?
that the angular dependence which would be found for
the Hylleraas functions would depend on the particular
kind of radial functions used in the expansion. This of
course would not be true if a sufficiently large number of
orthogonal functions were used so that they could be
considered as forming a fair approximation to a com-
plete set for the purpose in hand. However, to obtain
such a set and to expand in terms of it might well be a
heavy task.

To avoid this difficulty it was decided to use an ex-
pansion of the form?

YpV=3 PPN (1)

where ¥5? is the normalized Hylleraas wave function,
the ®;¥’s are normalized functions [whose functional
form is to be determined from Eq. (1)] of the dis-
tances 7; and 7, of the two electrons from the nucleus,
and the P;M’s are the normalized Legendre functions
of the various orders 7 of the cosine of the angle be-
tween the two radius vectors. More precisely, ¥5?¥ is
normalized with respect to integration over 7y, 61, and
@1, the coordinates of the first electron, 7, for the second
electron, and @ and ¢, the Euler angles specifying the
direction of 7, with respect to r;. ®;7 is normalized
with respect to integration over 7y, 01, ¢i, 73, and .
From Eq. (1) it then follows that ®;¥ is given by the
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expression
1
(I),‘N’= -f‘I’HNP,‘N sin()do,' (2)
¢y

and ¢; by the expression

ci= { f[ f YyVPN sinodo]zdr’}i 3)

where d7’ indicates the volume element with respect
to 71, 01, @1, 72, and .

It is clear that the ¢;’s depend on the particular form
which is used for ¥x¥. Therefore to obtain an indica-
tion of their stability for small variations in ¥g?, ex-
pansions of the type given in Eq. (1) were carried out
for both the three and the six constant expressions given
by Hylleraas. The three term wave function has the
form

YV =Ne2s(14au+ta.?),
and the six term wave function the form
V¥ =Ne 2(1+au+ o+ ass+ a2+ asu?),

where s=71+7,, t=r1—7, and =7y, and the #’s are
expressed in atomic units. The values which were used
for the constants in the three term expression were
N=1.321350, Z=1.816, ¢,=0.30, ¢,=0.13, and in the
six term expression N =1.381890, Z=1.818, ¢,=0.353,
a,=0.128, a;=—0.101, ,=0.033, a;=—0.032. The
three term wave function gives —5.80488 Rgc for
the energy and the six term one gives —5.80648 Ru.hc.
An empirical value for this quantity can be found by
adding the ionization energies for He I and He II
(—1.8073440.00014) Rpuchc and —4.00018 Rychc, re-
spectively, to give (—5.8075240.00014) Ryekc.® The
two expressions are therefore quite similar and both
give excellent values of the energy. Table I gives the
values of the ¢,’s found in the two expansions. Column
two gives the values of the ¢;’s in the expansion of the
three term Hylleraas expression and column three the
values in the expansion of the six term expression. The
final line of the table gives the value of > ;2 If the
expansions were complete and the normalization con-
stants were exact, this sum should be one. The stability

TaBLE 1. Values of ¢; in the expansion ¥V =3;c;®;V PV,

Three term ¥V g Six term ¥ g

Co 0.997535 0.997945
a 0.069227 0.062583
[2) 0.010398 0.012739
c3 0.003528 0.004322
Zici? 0.999989 0.999991

9 The values of the ionization energies and Rg. in cm™ were
taken from Charlotte E. Moore, Afomic Energy Levels, National
Bureau of Standards Circular 467 (U. S. Government Printing
Office, Washington, D. C., 1949), pp. 4, 6.

of the ¢/s is indicated by the similarity of their values
in the two expansions.

The most interesting result which appears in Table I
is the large contribution to the ground-state wave
function of components which are not spherically sym-
metric. Thus the coefficients of the P, P,¥, and P;V
terms are approximately 7 percent, 1 percent and 0.4
percent of the coefficient of the Po¥ term.

From Eq. (2) one may find the form of the ®/’s.
For those associated with the three term expression
one obtains

<I)oN—\/fN— Z(""H’){ 1+ 3d1’>(—+3)+02(7’>—”<)2}
Co
and for 1=n>0,

1
@"N=\/2N_e—z(rl+r2)
Cn

l a1 re”

(2n+3) 2n+1)t rs1
r? 2n+3
(55|
7>2 2n—1
where 7< is the lesser, and 7> the greater, of 7, and 7,.

For the & ¥’s associated with the six-term expression
one finds for =0 and 1,

1 rc
q)oN=\[§N“6_Z(”+r2>{ 1+%alr>(—<—2+3)+a2(r>~r<)2
r>

Co

Fas(ritre)Fas(ritre)+as(ri+rd) },

1 a (1S 2as
(I>1N=\[2_N_3—Z(r1+rz){__(—-~— 5) ————1'11’2}. :
C1 5\6 1’>2 \/3

The ®;¥’s for > 1 for the three and six term expressions
are identical except for the values of the ¢;’s, a;’s and
N and Z.

It is interesting now to see how much the various
angular components of the ground-state wave function
contribute to the total energy of the state. Therefore
we have listed in Table IT for the three and six constant
functions the contributions to the total energy of the
various terms in the integral

E: fzi(c@iNPiN)*H 24(61¢5A’P¢N)dT,

where dr indicates the volume element with respect to
all six variables.

The first column of Table II gives the various terms
in the integrand, where (i) is written for ¢ &N P.¥. The
second and fourth columns give the contributions to the
energy in units of Rpeckic of these terms for the cases
of the three- and six-constant Hylleraas wave func-
tions, respectively. The third and fifth columns give
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Tasie II. Contributions to the total energy of the terms in E= f'Z;(c;®;VP:¥)*HZ;(c:®:¥ P;¥)dr in units of Ryehc.

3-constant Hylleraas wave function

Contributions of the
angular components

Contributions

6-constant Hylleraas wave function
Contributions of the

Contributions angular components

of the of the wave of the of the wave
Terms terms function terms function
(0)*H (0) —5.72823 —5.72823 —5.73371 —5.73371
(1)*H(1) +0.01700} _ +0.01921} _
W*H )+ ©O)*H (1) —0.08692 0.06992 0.08448 0.06527
(2)*H(2) ° +0.00179 -+0.00269
2)*H(O)+ (0)*H (2) —0.00790 —0.00478 —0.00969 —0.00545
@*H()+1)*H(2) +0.00133 +0.00155
A2 oo o
(3)*H (0)+(0)*H (3) —0.00192 _ —0. 3
@*HM)+(1)*H(3) +0.00030 0.00110 1000035 0.00121
Q)*H(2)+(2)*H(3) -+0.00008 +0.00013
Sum —5.80403 —5.80403 —5.80564 —5.80564
—5.80488 —5.80648

SN *HY pNdr

the contributions of the various angular components of
these wave functions to the energy if all of the angular
components of lower order are also present. The next
to last line of Table II gives the sum of the contribu-
tions to the energy of the first four angular components,
and the final line gives the energy found by Hylleraas
for the complete wave function.

An examination of Table II shows that the spheri-
cally symmetric term accounts for 98.7 percent of the
total energy given by the three-constant wave function
and for 98.8 percent of that given by the six-constant
wave function. The addition of a cosine term allows one
to pick up 91.2 percent and 89.7 percent of the remain-
ing energy, respectively. The terms containing the
second-order Legendre polynomial account for 71.0
percent and 72.6 percent of what then remains, and the
terms containing the third-order Legendre polynomial
account for 55.9 percent and 59.1 percent, respectively,
of what is still left after the spherically symmetric
component and the first two angular components have
been included. The first four components together
account for 99.9851 percent and 99.9855 percent, re-
spectively, of the total energies given by the three-
constant and six-constant wave functions.

A comparison of the results given in Tables I and II
shows that the ratios of the contributions of the non-
spherically symmetric components to those of the
spherically symmetric ones are much larger for the
. wave function than for the energy. Thus the contribu-
tions of the PV, Py¥, and P;¥ components to the
energy are only 1.22 percent, 0.083 percent, and 0.019
percent of the contribution of the Py¥ component in
the case of the three constant wave function and only
1.14 percent, 0.095 percent, and 0.021 percent in the
case of the six-constant function. The ratios of the
contributions to the wave function of the PV, P,¥,
and Ps" components to that of the Po¥ component are
therefore roughly 6, 13, and 19 times as large as the
corresponding ratios of the contributions to the energy.

- This result emphasizes the difficulty of obtaining a high
accuracy wave function by minimizing the energy.
One may use the data in Table II, together with the
results of earlier work, to estimate the magnitude of the
correlation energy, that is, the configuration inter-
action energy, and its component parts for the ground
state of He I. The correlation energy is sometimes
taken to be the difference between the experimental
value of the energy and the energy as found by the
Hartree-Fock procedure, without any consideration of
configuration interaction. However, the correlation en-
ergy as computed in this way does not have the simple
physical significance which one would like to associate
with this term. We can see that this is the case by con-
sidering the physical situation which leads to the intro-
duction of the concept of correlation energy. If a wave
function is to take into account the repulsion between
electrons and the consequent low probability that two
of them will be found in the same small volume, it
must be small whenever two electrons are close to-
gether. The Hartree and the Hartree-Fock wave func-
tions are in general the only high accuracy wave func-
tions available for complex atoms. Of these two types
the Hartree-Fock wave functions are the superior since
exchange effects are included in their derivation, and
we shall limit our further discussion to functions of this
type. However, Hartree-Fock functions are not neces-
sarily small when two electrons are close together. They
take the electron repulsion into account only in the
average. As a result the energies obtained from such
functions are higher than the observed energies because
they include the positive repulsive potential energies
from the increased electron interactions. It would
therefore seem to be more meaningful physically to
define the correlation energy (the configuration interac-
tion energy) as the difference between the energy given
by an exact solution of the Schrédinger equation for the
particular problem and the energy given by the Hartree-
Fock component in an expansion of the exact solution.
This expansion of the exact solution is to be made in
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terms of some orthonormal set of functions of which
the Hartree-Fock function is the first member. The
reasons for suggesting this definition will be presented
in the following paragraph.

If we are to use this definition for the correlation
energy, the method of computing this quantity which
was mentioned first can yield only a lower limit and
this limit, at least for the case of the ground state of
He 1, is considerably smaller than the true value. The
reason for this is the following: To build an exact solu-
tion from a Hartree-Fock wave function it is necessary
to superpose the Hartree-Fock solutions for other con-
figurations or to include multiplicative functions of the
7:;7s. The energy found for such a solution would be
lower than that found for the Hartree-Fock solution
alone. However, the new wave function must be nor-
malized, and the contribution of the Hartree-Fock com-
ponent to the total energy will be less than if this com-
ponent were the only one. Therefore the difference
between the observed energy and the Hartree-Fock
energy is a smaller quantity than the correlation energy
as defined above. The proper procedure to determine
this energy would be to find the difference between the
energy given by the exact solution and the energy given
by the Hartree-Fock component, of the exact solution
where the Hartree-Fock wave function is that of the
configuration making the largest contribution to the
energy of the state. To obtain the latter quantity one
would multiply the ordinary Hartree-Fock energy by
the square of the coefficient of the Hartree-Fock wave
function in an expansion of the exact solution in terms
of some orthonormal set of functions of which the
Hartree-Fock function was the first member. Unfor-
tunately, it will usually be the case that neither the
exact solution nor any close approximation to it will be
known, One may then take the experimental energy as

the energy which would be given by an exact solution .

if one were known, but there would seem to be no way
of determining the needed expansion coefficient. Under
these circumstances one can only turn to the first
method of estimating the correlation energy mentioned
above, which assumes it to be the difference between
the experimental and the Hartree-Fock energy, recog-
nizing that this method yields only a lower limit,
.Fortunately in the case of the ground state of He I
the data are more complete. The three- and six-constant
Hylleraas ground-state wave functions are both ex-
cellent approximations to the exact solution of the
Schrodinger equation of the problem. The three-
constant function gives the observed energy to better
than 0.05 percent and the six-constant function to
better than 0.02 percent. For this state the self-con-
sistent field wave functions with and without exchange
are identical and the energy has been found to be
—5.723 Ryhc.® In addition, in earlier work® the three-
and six-constant Hylleraas wave functions were ex-

10 W, S. Wilson, Phys. Rev. 48, 536 (1935).

panded in terms of symmetrized products of self-
consistent field wave functions, and the coefficients of
the 1s? configuration were found to be 0.99550 and
0.99606, respectively. The largest contribution which
these wave functions can yield to the energy given by
the Hylleraas expressions can therefore be found by
multiplying the energy obtained using only these wave
functions by the square of their expansion coefficients.
This procedure gives —5.672Ruokc and —S5.678 Ryehc
for the three- and six-term wave functions, respectively.
However, the three-term Hylleraas expression yields an
energy 0.003 Rychc above the experimental value and
the six-term expression an energy 0.001 Rgckc higher
than the experimental. It is not clear what part of these
differences between the Hylleraas and the experi-
mental energies should be assigned to the correlation
energy. If we assume that none of it should be so as-
signed, we obtain the smallest estimates of the size of

- the correlation energy, —0.133 Rgec and —0.129

Ryuehe, respectively. These values are considerably
larger than the value —0.073 Rgekc found by Taylor
and Parr.® The discrepancy is accounted for by their
use of an older value of the Hartree-Fock energy'! and
by the fact that they did not employ an expansion co-
efficient to determine a correction factor, so that they
took no cognizance, in the manner suggested above, of
the reduction of this energy which would result if terms
were included in the wave function to take account of
the correlation in the position of the electrons.

In general, it is clear that the choice of the correction
factor will depend on the particular approximation to
the exact wave function which has been employed.
Thus the coefficients of the 1s? configuration in the ex-
pansions of the two Hylleraas functions were different.
However, if one employs approximate wave functions
which give good values of the energy and which are of
sufficiently general form, the expansion coefficient of the
1s% configuration should be relatively stable. It might
seem that if the correlation energy is introduced by the
addition of terms in the interelectron distances it would
only be necessary to set the coefficients of such terms
equal to zero to find the noncorrelation part of the
energy. This is not the case, however, since when 7;;
terms are introduced they will take up part of the
average interelectron distance effect. Thus, in the case
of the three-constant He I ground-state wave function,
the contribution of the terms not involving the inter-
electron distance is only —3.11084 Rg./c.

It is interesting now to estimate what part of the
total correlation energy is radial, what part angular,
and what part may be classified as mixed. One may take
the radial correlation energy for the ground state of
He I as the difference between the contribution to the
total energy from the purely radial terms of a wave
function which gives a good value of the energy and
contains both radial and angular terms and the Hartree-

L H, Bethe, Handbuck der Physik (Julius Springer, Berlin,
1933), second edition, Vol. 24/1, p. 370.
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Fock energy corrected as in the preceding paragraphs.
Similarly the angular part of the correlation energy
may be taken as the difference between the contribu-
tion from the Hartree-Fock component plus the non-
spherically symmetric components and the corrected
Hartree-Fock energy. Finally, the mixed part of the
correlation energy may be taken as the contribution
from the cross-product terms between those parts of
the purely radial terms which do not belong to the
Hartree-Fock wave function and the nonspherically
symmetric terms. We should therefore take the differ-
ence between the energy given in Table II for the
spherically symmetric component and the corrected
Hartree-Fock energy as the radial correlation energy.
‘This quantity is —0.056 Ry.kc for both the three- and
six-term wave functions. It is not possible from the
data at hand to compute a value strictly according to
the tentative definition given above for the angular
correlation energy. This results from the fact that, in
calculating the contribution of the nonspherically sym-
metric components, the cross-product terms have been
found using ®" instead of the Hartree-Fock part of
&,¥. However, the correct calculation has been made
for the cross product involving the first angular com-
ponent ®;¥ of the Hylleraas three-term expression, with
the result that the value found was —0.08896 Ryckc
instead of —0.08692 Ry.kc as given in line 3 of Table
II. This indicates, as was to be expected, that the
mixed part of the correlation energy amounts to only a
few percent of the radial and angular parts. If one
accepts this result as applicable to the other angular
components, which have not been specifically investi-
gated, one would estimate the angular correlation energy
as a few percent more than the difference between the
energy given by one of the Hylleraas expressions and
that given by its ® component. The angular correla-

tion energy is therefore probably a few percent more
than —0.077 Ruchc and —0.073 Ry.hc, perhaps —0.079
Ruchc and —0.075 Rgohc, for the three- and six-term
wave functions, respectively. In accordance with this
argument we estimate the mixed correlation energy
very roughly as +0.002 Rgchc. These values for the
parts of the correlation energy assume that the entire
difference between the experimental ground-state en-
ergy and the values given by the Hylleraas functions
should be attributed to that part of the energy which
does not depend on the correlation of the positions of
the electrons. Without this assumption the above values
of the correlation energies would be slightly increased,
but just how these small differences should be divided
between the noncorrelation energy and the various
parts of the correlation energy is not clear.

In summary the present work gives the results of the
expansion of the three-term and the six-term expres-
sions given by Hylleraas for the ground-state wave
function of He I in series of normalized Legendre func-
tions times normalized functions of 7, and 7,. The co-
efficients in these expansions decrease with increasing
order of the Legendre functions but not so rapidly as
might have been expected. Thus the coefficient of the
term involving the Legendre function of order one is
7 percent of the coefficient of the spherically symmetric
term. The contribution of the various terms to the total
energy falls off more rapidly. A definition of total corre-
lation energy is suggested, and on the basis of this
definition, the value of the total correlation energy is
found to be at least —0.129 Rgckc for the He I ground
state. The total correlation energy is further divided
into radial, angular, and mixed parts of estimated
size —0.056 Ruehc, —0.075 Ruohc, and +0.002 Ryehc,
respectively.



