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Taking into account the thermal equilibrium minority carrier concentration and employing the formu-
lation which includes, as one of two fundamental di6'erential equations, the continuity equation for added
carrier concentration Ap, this equation is derived in a form which exhibits the ambipolar nature of the
diffusion, drift, and recombination mechanisms under electrical neutrality. The general concentration-
dependent diffusivity is given. The local drift velocity of hp has the direction of total current density in
an n-type semiconductor and the reverse in a p-type semiconductor, differing in general in both magnitude
and direction from the minority-carrier drift velocity. Specifying a model for recombination 6xes the
dependence of a lifetime function for hp on hp and the electron and hole mean lifetimes. Negative d p, or
carrier depletion with electrical neutrality, may occur. For known total current density, the continuity
equation alone suffices, as for the case of ( hP) small, for which the equation is linear. A condition for this
comparatively important case is derived, and theoretical relationships are given, with the aid of a parameter
specifying the Fermi level, which determine for germanium the minority carrier-Ap drift velocity ratio
as well as the ambipolar diffusivity and group mobility in terms of resistivity and temperature.

1. INTRODUCTION ohmic Qow problem. A simple example for arbitrary
added concentrations is zero total current density, and
cases of linear Row in one dimension and cylindrical or
spherical symmetry may provide others. ' For the
small-signal case, expressions which are given for the
diffusivity and the apparent or group mobility are
evaluated for germanium, in their dependence on
resistivity and temperature. With the decay time, these
quantities provide the coeKcients of the linear con-
tinuity equation. They differ appreciably from their
values for strongly extrinsic material if the concen-
tration excess of majority carriers is less than about 20
times the electron concentration in intrinsic material. 4

The relationships presented extend all formal small-
signal solutions given elsewhere for the purely extrinsic
case to semiconductor material of any resistivity.

The theoretical conclusion that the added carrier
concentration may drift appreciably more slowly than
the minority carriers in near-intrinsic material has
been applied to the design of transistors of large current
amplification. ' It provides an interpretation of various

aspects of the behavior of transistors in which current
multiplication is associated with increases in conduc-

tivity resulting from carrier injection. Recent experi-

CONCENTRATIONS of current carriers of one
M type injected into a homogeneous semiconductor

are neutralized by substantially equal concentrations of
additional carriers of the opposite type, the space
charge associated with carrier injection being in general
quite negligible. It is consistent with this electrical
neutrality that the transport of the concentration of
added carriers cannot be identified with the transport
of injected carriers as such. The drift, diffusion, and
recombination processes to which the added concen-
tration is subject depend on the corresponding micro-
scopic processes for both electrons and holes. The
concentration transport is characterized by a diffu-

sivity, an apparent mobility, and a decay time which
equal the diffusion constant, mobility, and mean life-
time of the minority carriers only in the limiting case
of relatively small added concentrations in suitably
extrinsic semiconductor material. In this paper, the
concentration transport problem is formulated in a
manner which exhibits the general concentration-
dependent diffusivity and local drift velocity; and it is
indicated how a decay-time or lifetime function depends
on the nature of the microscopic recombination process.
These physical interpretations are based on a derivation
of the continuity equation for the concentrati
added carriers.

This continuity equation, at the same time, s
as a formulation of the general transport problem
total current density is known in terms of time a
space variables. Otherwise, two dependent va
are involved, and a second differential equat
required. ' ' In particular, if the added carrier c
tration is small so that the equation is linear, th
total current density is known as the solution

%. van Roosbroeck, Bell System Tech. J. 29, 560—607
Secs. 2.2, 2.3.

~ R. C. Prim, III, Bell System Tech. J. 30, 1174-1213
Sec. C.

Employing an elegant alternative formulation, Prim has
derived classes of formal solutions in three dimensions for arbi-
trary added concentrations. See reference 2, also reference 1,

uiTices Eqs. (14).
jf the

' The practical importance of this range, which corresponds
roughly to germanium resistivities at 300 K greater than 5
ohm-cm, has been enhanced by present purihcation techniques:

rjabies W. G. Pfann and K. M. Olsen, Phys. Rev. 89, 322—323 (1953).
~ ' Reference 1, pp. 564, 577—578, 592—593 and Eq. (9).' W. van Rooshroeck, J.Appl. Phys. 23 (12), 1411—1412 (1952).

' For example, theory and experiment were found consistent in
the explanation of a cut-off frequency for current multiplication,
in a 61amentary germanium transistor, which was about 3 Mc/sec,
rather than the 10 Mc/sec corresponding to the minority carrier
drift velocity: The frequency data were 6tted by use of the

(1950), resistivity, 10 ohm-cm, in conjunction with an operating temper-
ature of 72'C, which agrees fairly well with the operating temper-

(1951), ature of 65'C deter'mined, with Brattain, from the power required
to melt on the filament a tiny Bake of wax of known melting point.
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ments on the transport of a pulse of injected carriers
under an applied field, '' in germanium and silicon
filaments of various resistivities and at diferent
temperatures, have supported the predicted relationship
between the drift velocity of the pulse and that of the
minority carriers. ""

The assumptions of the theory and their j.ustifications
have previously been discussed. ' ""It should be noted
that the assumption that at any point electrons and
holes always recombine at equal rates is consistent with
a mechanism of recombination through trapping at
imperfections" which can account for observed life-
times. Trapping effects are ruled out which result from
the immobilization of carriers in traps for times not
small compared with their mean lifetime before their
recombination or release. "

2. THE GENERAL CONTINUITY EQUATION

The continuity equations for holes and electrons are,
in a familiar notation, "

ap/Bt = —e—' divI„—(p/r„—gp),
(1)

an/r)t = e 'divI„——(n/r „—gs),

where v „and v„are the electron and hole mean lifetimes,
and go is the thermal generation rate per unit volume.
The current densities I„and I are given by

I„=o „E eD„gradp—, I„=o „E+eD„gradn; (2)

the total current density is

I= I,+I„,
and is solenoidal:"

divI= 0.

Here o-„and 0-„, given by

o„=ep,p, o„=egin, (~)

are the respective cont)'ibutions of holes and electrons
to the conductivity:

o „D~+o+
D=—

n+ p

n/D„+ p/D„

In this equation, the second form results because of the
proportionality between the diffusion constants and
the mobilities. " Substituting from (9) in (1), both
continuity equations furnish the same continuity
equation for Ap in a form which does not involve E.
It is instructive, however, to derive this continity
equation also in a form which does involve E and which
is readily obtained by substituting from the original
current equations (2) in (1) to obtain

r)p/Bt=D~ div gradp e' grado—~ E
—e 'o, divE —-(p/r, gs), —

(11)
Bn/Bt =D„div gradn+e ' grado „E

+e 'a„divE —-(n/r„—gs),

then multiplying these equations by cr„and O„and
adding, so that divE is eliminated. The continuity
equation resulting from these derivations is

M p/cit = divD gradhp —v gradhp —hp/r (12).
Here, writing r for p/r~=n/r„, a lifetime function r
for added carrier concentration has been introduced in
accordance with

r —go= t),p/r;

Ap (or An). Equation (7) permits the elimination of
a concentration and the field E from the current equa-
tions (2). It is found that

o E= I—e(D„—D,) gradap,

whence the current equations may be written as

I„=(o „/o-) I eD—gradAp,

I„=(o.„/o.)I+eD gradin,

where D is the general concentration-dependent di6u-
s)vlty:

0'= o'@+0'~. (~) and v is given by

With the condition of electrical neutrality, namely

p p, =Ap= an—=n n„—— (7)
'
~

these fundamental equations furnish equations for the
ambipolar'~ transport of added carrier concentration

Shockley, Pearson, and Haynes, Bell System Tech. J. 28,
344-366 (1949).

9 J.R. Haynes and W. Shockley, Phys. Rev. 81, 835—843 (1951).' M. B. Prince, Bull. Am. Phys. Soc. 28, No. 2, 10 (1953);
Phys. Rev. 91, 271 (1953).

"W. Shockley, Electrons and Holes in Semiconductors (D. Van
Nostrand Company, Inc. , New pork, 1950), Chap. 12.

u Conyers Herring, Bell System Tech. J. 28, 401-427 (1949).
'3 W. Shockley and W. T. Read, Jr. , Phys. Rev. 87, 835-842

(1952).
"The theory can be extended, without essential change in its

formal structure, to take such trapping effects into account.
"The notation employed is consistent with that of reference 1.
"Reference 1, Sec. 2.2. With negligible magnetic fields, it is

also lamellar.
"This term has gained currency through the similarity with

certain ionic transport phenomena in gases.
/

with

and

v—= (p„/M) E+gradD= p*E+gradD
= tI,,I/Mo = etJ, „p„n,I/o'= p*(I/o),

M—=o/o, =1+(1+5 ')p/n„
o.=—ep„n„n,=—np —pp, b= p„/p„, —

PP CP 71,P yÃ6

p
nit;+plt-

The velocity v may be identified as the local drift
velocity for added carrier concentration" Ap. The

'8 The validity of this proportionality, as given by Einstein's
relationship, is coextensive with the applicability of Boltzmann
statistics, and these are consistent with the current equations (2).
Also, see Phys. Rev. 88, 1368-1369 (1952).

"This drift velocity v is, of course, to be distinguished from
the differential transport velocity (reference 1, Sec. 2.2), which
includes diffusive transport of Ap.
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quantity p* is accordingly an ambipolar pseudomobility
or group mobility for the drift of hp under the local
field E. Both M and p* have the sign of e„being
positive for an n;type and negative for a p-type semi-
conductor. Furthermore, as may readily be verified, M
in an rt-type, and b3—f in a p-type semiconductor are
substantially unity for Ap small in strongly extrinsic
material, and exceed unity in general. Thus, the drift
velocity v has the direction of the total current density
I in an e-type semiconductor and the reverse direction
in a p-type semiconductor; it is in general smaller in
magnitude than the drift velocity p„K or —p, „K of the
minority carriers, and diGers also in direction. "

For the intrinsic semiconductor, for which the drift
term is absent,

~
M

~
being infinite and tr* zero, and for

which D equals" D;= 2D„D„/(—D„+D„),the continuity
equation is linear in general, except, perhaps, for the
dependence of r on Ap; and the circumstance that Ap
is not subject to drift follows most simply from the
ambipolar form (9) of the current equations: With
o.„/o a,nd o „/o, respectively, 1/(b+1) and b/(b+1), the
ohmic contributions to the hole and electron current
densities do not depend on Ap." Since, even in a
strongly extrinsic semiconductor,

~

cV~ may be large as
a result of carrier injection, large total current densities
do not in general insure the validity, as a good approxi-
mation, of the neglect of di6'usion in the large-signal
theory.

A current density associated with added carrier
concentration Ap is properly defined by

AI: I (ep pp/op)I= —I + (etr„rtp/0'p)I

=( - o/ o)I.—( .po/ o)I-
(17)

In this equation, the drift term, in which the factor
0/o p is substantially unity for small added concen-
trations, gives a drift component of AI which vanishes
for the intrinsic semiconductor, and which for relatively
large added concentrations in strongly extrinsic ma-
terial equals I/(b+1) for n-type and —bI/(b+1) for
p-type. These are, in magnitude, respectively the

in which 0-0 is the conductivity at thermal equilibrium.
It is I„minus the (drift) current density of holes in the
semiconductor with no added carriers for the same
total current density I. The first two terms of the con-
tinuity equation (12) for hp are given by —e ' divhI,
since divt1I =divI~= —divI„. Substituting in (17) from
(9) and introducing v, AI may be expressed in the form

AI = e(o/ap)Dpv eD gradh—p. (18)

I= —o grad/,

and the second differential equation (4) is

divo. grad/= 0.

(20)

(21)

Making use of this equation, it is readily found that

v gradAp= prt, div grad/, tr= p„p~/(—p„+p„), (22)

so that the continuity equation (12) may be written as

where

flap/fit = —e—' divI' ap/r, —

I'= eprt, grad/ —eD gradh—p
= Lb/(b+1) jI,—L1/(b+1) PI-
=~I—[t p*/(t -+t.)jI,

(23)

(24)

with pa* the value of p* at thermal equilibrium.
Since the recombination rate r must equal the thermal

generation rate gp for dp=0, the introduction of the
lifetime function r in accordance with (13) entails no
loss of generality. '4 For direct electron-hole recombi-
nation of the mass-action type,

r= (rtp/rt, s)gp ——[1+(rtp+pp+tt p) (t1p/rtp)]gp, (25)

where rt,s=rtpPp is the square of the electron (or hole)
concentration in the intrinsic semiconductor. Com-
paring (13) and (25),

r '= (no+Po+AP)go/n, '= (rso '+Po '+DP/rt, ')gp
26=(r='+ru ')

I a.=p+(gp/~'')~P

As this result indicates, r equals 7„or r„ in strongly
extrinsic n or p-type material, if-Ap may be neglected.
An estimate has shown, however, that the direct
electron-hole recombination process would give a life-
time r much larger than those usually observed. A
model which has been presented for recombination at
imperfections and which gives r in terms of hp can
account for observed lifetimes. 25 The 7„and r„which
must obtain with such a model may be found from r in

Eq. (13).

contributions of holes and electrons to the drift current
density in intrinsic material.

To complete the continuity-equation formulation"
for the general case, it is convenient to employ as the
second dependent variable the potential

V——[(b—1)/(b+1)](b2'/e) ln(o/op), (19)

where V is the electrostatic potential. Then, from (8),

' Introducing the minority carrier concentration pp into equa-
tions of Herring's solution by writing them for the case of no
recombination with n, as concentration unit rather than np,
Shockley has shown, in effect, that

~
M

~
is the ratio between

p„~ E
~

and
~

v~ if gradD may be neglected, that is, for negligible
diffusion or for ~Dp~ small: reference 11, Chap. 12, Sec. 7; see
reference 1, footnote 24."Note that D/D; —1=—(b —1)/2bM.

"See reference 11, pp. 330—331; reference 1, pp. 564, 577—578.

~' See reference 1, Eqs. (12), (13).
'" The procedure is tantamount to the introduction of the

combination f'unction. in Sec. 2.3 of reference 1.
2' From Eqs. (5.5) and. (6.1) of reference 13, a constant r equal

to Tpp+s p, for example, results if the ratio of the limiting lifetime
r„p for holes in strongly extrinsic n-type material to the analogous
lifetime ~„p for p-type equals (pp —n1)/(p1 —np), where n~ and p1
are the thermal equilibrium electron and hole concentrations if
the Fermi level were at the energy level of the imperfections.
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It is evident from these considerations that Ap need
not be positive but can in principle be negative as well.
Carrier depletion, with negative dp, may be realized
through a boundary condition which suppresses in part
either the electron or hole component of total current,
imposing a value smaller than that for ohmic transport.
Such a condition, which holds at a reverse-biased
junction with material of more strongly extrinsic con-
ductivity of either the same or the opposite type, may
give depletion without appreciable space charge over a
region much wider than the adjoining space-charge
region of the junction. For an extrinsic semiconductor,
the width increases essentially in proportion to the
n1agnitude of the total reverse bias current density,
and substantially complete depletion of the minority
carriers may be obtained, following which space-charge
limited unipolar liow" of the majority carriers takes

recombination terms. "If 0.; is the thermal equilibrium
conductivity O.p for the intrinsic semiconductor, then for
the condition"

[&p [«(eo/e, )ts, = ( .~o+t .po)/(t .+t.)
= (bop+ po)/(b+1),

(27)

Do—=kTy„tr, (no+ po) = tto+ ps

no/D„+po/D.
(29)

with

and

vo =—(p /~o)E, =po*E„E,—= I/oo,

Mp —=o p/o, = 1+(1+b ')pp/—e,

(30)

(31)

the equation becomes"

Bhp/Bt=Dp div gradAp —vp gradhp Ap/T—p, (28)

in which 7-p is the limiting value of the lifetime function,
and Dp and vp are given by

ep„p„tl
Pp

&p +o/tI, ~+p'o/8
(32)

Equation (18) for the current density of added carriers
becomes I

aI = ehpv p eDp gradh—p. (33)

~~ FERMI LEVEL FOR THE INTRINSIC SEMICONDUCTOR
W M ~~M «M M M ~M M ~M ~ M M M ~M M ~M M ~M M ~ M M M M ~~ M W

FERMI LEVEL
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FIG. 1. Definition of 5 p.

place. For an intrinsic semiconductor there is a satur-
ation magnitude of the current density, and the width
is of the order of a diffusion length, in which distance
hp approaches zero as a result of the thermal generation
process. "

3. THE SMALL-SIGNAL CASE

(1) The Linear Continuity Equation

For sufficiently small added carrier concentrations,
the general continuity equation (12) becomes an equa-
tion with constant coefficients for the di6usion and

Shockley, Proc. Inst. Radio Engrs. 40, 1289—1313;
1365—1376 (1952).

"These conclusions are readily obtainable from the relevant
steady-state solutions. The width of the neutral region is deter-
mined on a self-consistency basis by computing for neutrality
both the charge of the smallest concentration of remaining carriers
which occurs and divE, and comparing with the former the charge
unbalance which the latter gives according to Poisson's equation.

I &p[«tto+ po (33)

for 7. 7.p, are the analogous ones for the diffusion and
recombination terms, the latter, obtained from (26),
applying to the case of mass-action recombination.
Either of these may provide linearity for the case of
zero total current density. The stronger condition (27),
not needed for linearity in the intrinsic case, is a nec-
essary condition for the neglect of Ap in (4) or (21),
which express the solenoidal property of I. For (19)
shows that with it condition it equals U to within a
potential which is small compared with AT/e. If also,
V varies at least by an amount of order kT/e, then
grad f grad V and v, is found simply from the ap-
plied field E, of the solving an ohmic Qow problem; and

2'Note that the neglect of divE in the continuity equations
(11) provides two (inconsistent) small-signal equations which
apply respectively to the purely extrinsic n- and p-type semi-
conductors.

"The value of [Ap[ may, of course, be limited for hp negative
by the condition of complete minority carrier depletion.

"Harvey Brooks has independently derived results given here,
in connection with the one-diInensional transport of a pulse of
added carrier, and has also examined for this case the validity of
the neglect of space charge: Phys. Rev. 90, 336 (1953}.

The condition (27), which implies that the local con-
duc';ivity 0. is substantially gp, so that v vp, insures the
linearity of (28) aside from a possible dependence of
vo on Ap. It shows that nonlinearities may appear at
relative concentrations some b' times smaller if the
semiconductor is p-type than if it is I-type. The con-
ditions,

I ~p I «L(b+1)/(b —1)]L«/~')I:(~o+ po)/I ~.
I 3~' (34)

for D Dp, and
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the transport of added carriers per se is then subject
only to the linear continuity equation (28). The con-
dition shows that linearity obtains for the complete de-
pletion of minority carriers in an e-type semiconductor
provided pp «bnp/(b+1), and in a p-type semicon-
ductor provided np«pp/(b+ 1).

(2) Application to Germanium

Writing (28) in the dimensionless form,

RAP/8 U= div gradhP —(vp/vn) gradhP —AP, (36)

where the new variables" are given by

~P=~p/n. ; U=—t/rp,
X—=x/L, V:y/L, Z—=s/L; L= (Dprp)i, —

and where
no =L/—r p = (Dp/r p) i, (38)

it appears that formal small-signal solutions di8er
essentially only according to the vector field, vp/rtD

=pp*E„/eD, which if the vector field E, is specified,
depends only on the scalar field intensity nn/+ps. For a
particular sempiconductor with 7 p given this quantity
will depend, in turn, through Dp and pp, on resistivity
and temperature.

The presentation of this dependence is facilitated by
the use of a parameter 8'p whose definition is illustrated
in Fig. 1:It is the energy for a hole measured from the
actual Fermi level for the semiconductor to the location
of the Fermi level for intrinsic material, and expressed
in units of k'l. From this definition and Boltzmann

10

i'/l/ )Ill

/, l//l&II

"/' "-'""
//lJ'//rf'

(/

////////

i'Ill Ai "/-' p---
//'al if&'I: --~oo'~

///i' ///f---::;;;
----- 600

— XX~A.

'O'O.
Mo, p-rrpc
---600 K

- -300
200

M. , ~---X& .NgX

600 -----—

X~i~~xL &hX.Yh%.

.. f....„„KRAAL'%i
Po/fnsf P-rYpc

/

IX
po/fnsf, n-rvpe
no/Insf, P-rrps

10-& I I

3 4 5 6 8
10 ' 3 4 5 6 6

I I

3 4 5 6 I
10

Fio. 2. The dependence for germanium of M„op/cr', fn, f/n;, p o/ffn, and np/fn, f
on Wo.

"For the general case, the choice of I. as length unit does not provide quite the formal concision of the choice of reference 1,Sec. 2.3.
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FIG. 3. The dependence of resistivity p0 on W0'for germanium at various temperatures.

statistics,

M, =—oo/o,

P~/~Po ~
=Ijy!Po =~o, e-type,

(41)
H /)&0 I

= u /uo*= —bMo, p-type,

no ——n, exp(WO), po
——n, exp( —Wo);

(39)
W, =-', ln(n,

~
p,)=sinh —'(n, /2n, );

and the dimensionless quantity Mo may be written as

Mo ——L (b+ 1) cothWo+ (b 1))/2b. (40)—

While Mo applies, of course, to either conductivity type,
having the sign of 8'0, it is usually more convenient to
restrict its use to e-type and to de6ne an analogous
positive quantity for p-type. The alternative quantity,
written for both types, is

where 0., is the conductivity associated. with the
majority carrier excess:

ep„(no po) = ep„n, =—o „n-type,
(42)

p-typeep„(po no) = —ep„n»—
Note that M, is substantially unity for a strongly
extrinsic semiconductor, and exceeds unity in general.

In Fig. 2, M, as well as the quantities,

oo/o, = fb exp(Wo)+exp( —Wo)$/(b+1),

[/ n2nslnh/ Wo[,
(43)

po/(n, )
=—' exp( —Wp)/sinh(WO(,

no/[n, [
=-', exp(WO)/slnh [WQ[,

are plotted for germanium against ~WO~. Figure 3
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relates 8'o to resistivity and temperature, resistivity
pp= 0 o being plotted against 8'o for values of absolute
temperature T as parameter from the first of Eqs. (43).
From these figures, M, and other quantities may be
found in terms of po and T.

The mobilities employed for germanium and the
corresponding temperature dependence of n; are given
by82

p = 3800(300/T)'."cm' volt ' sec ',

p„= 1820(300/T)' "cm' volt ' sec—' (44)

RESISTIVITY, Po, IN OHM- CENT IME TERS ( AT 3QQ~ K)
2 3 4 5 6 8 10 20 30 40 60 80100

I I I
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~ ~ I
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~. I
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(I I
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3 2 1.5 15 7 5 4 3 2 1.5 141014

I"sl w cM-s

FIG. 4. The dependence of F0 on the resistivity at 300'K or on
In,

~

for germanium at various temperatures.

"F.J. Morin, private communication.
"The coefficients in {44), for. which the resistivity at 300'K

is to exceed about 1 ohm-cm, are ones given by drift mobility
measurements of Prince, reference 10; see reference 9. These
measurements have essentially confirmed the differing exponents
in {44).The intrinsic resistivity p; at 3000K of 47 ohm-cm remains
unchanged. See reference 11, Chap. 12, Sec. 8; E. M. Conwell,
Proc. Inst. Radio Engrs. N, 1327 {1952).

n,s= nsPs ——3.1&&10"T'exP( —9100/T) cm '. (45)

These empirical relationships have been obtained from
conductivity measurements. "The temperature depend-
ence of resistivity is associated principally with that of
m, , and to a lesser extent with the temperature de-
pendence of the mobilities.
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FIG. 5. The dependence of D0 and JtJ.0* on 8'0 for
germanium at various temperatures.

I ( (b 1)'+4bJ~) J+ (b —1)j/2blt, n —type, -
(47)

L~ ( (b 1)'+4Q.}1——(b 1)$/2X, p-type, —

where
J =1—(po/p')', (48)

obtained by eliminating Ws from (40). The double sign
before the radical in the expression for M, for p-type
arises from the circumstance that, with b)1, po has a
maximum on the p-type side, as Fig. 3 shows. From

'4 The figures show, and it is easily verified analytically, that
3f, is the same for both conductivity types if semiconductor
material of a given initial resistivity for which M,~1 is heated
so that In. I/I;«1.

For some purposes such as the estimation of the
effects of joule heating, it is desirable to determine M,
in terms of T and the po at some fixed temperature.
In Fig. 4& I WsI is plotted against ps at 300'K or the
corresponding

I
n,

I
for values of T as parameter, and a

lVp from this figure may be used to furnish M, from
Fig. 2 (or p, at temperature T from Fig. 3).'4 The
curves of Fig. 4 are those of the third equation of (39),
with e,, fixed in terms of po at 300'K according to

n, = (1/epsM. po) I
r=soo'K, n-type,

(46)ns= (1/epp~eps) I T=s00 K p-type.

The values of M, in these equations may be found from
Fig, 2 and the curve of Fig. 3 for, 300'K. They may
also be calculated from
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(43), this maximum ps equals (b+1)p,/2b&, for which"
the radicand in (47) vanishes; and the positive and
negative signs, corresponding to the sign of P, are to be
taken in (47) for Ws respectively to the extrinsic and
near-intrinsic sides of this maximum in pp.

The ambipolar diRusivity Do and group mobility po

may be written as

Ds 2cosh——Ws/[D„' exp(Ws)+D„' exp( —Wp)], (49)

and

ps*——2 sinhWs/[p~ ' exp(Ws)+p„' exp( —Ws) j. (50)
'5 The corresponding W0 is —lnb&, for which iV, is 2b/(b —1),

or, for germanium, about 3.8, with p0=50 ohm-cm at 300'K.

In Fig. 5, Do and go* are plotted against 8'0 for ger-
manium at varjous temperatures. The quantity Do &go*

multiplied by so& gives the reciprocal of the scalar field

intensity ttD/ps, the unitary field for the dimensionless

equation (36).
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The Energy Loss of Hydrogen, Helium, Nitrogen, and Neon Ions in Gases*
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The rate of loss of energy of protons, deuterons, helium, nitrogen, and neon ions in the energy range of
150 to 450 kev has been measured in the gases hydrogen, helium, air, and argon. The ions were sent through
a diGerentially pumped gas system and the energy loss in the forward direction due to the gas was determined
with an electrostatic analyzer.

The results for protons agree with recent measurements at the California Institute of Technology. At
the same energy, the stopping cross sections are roughly the same for neon and helium ions. The stopping
power for nitrogen ions is greater than that for neon ions of the same energy by a factor ranging from 1.3
to 1.9, illustrating the importance of external electron configurations in determining stopping powers in
our energy region. With the exception of hydrogen gas, the cross sections for the heavier ions follow a
power law. The dependence ranges from E' " to E' ", depending on the gas and ion, with several of the
curves following an E~ power law.

I. INTRODUCTION

OR many experiments in nuclear physics it is
important to know the rate of energy loss of

charged particles in matter. Recently Taylor' has
reviewed the field of energy loss and range energy
relations. Since this review, Kahn of this laboratory
has measured the energy loss of protons from 500—1300
kev in various metals and mica.

The energy loss of protons in gases has recently been
measured in several laboratories. At Los Alamos,
Phillips' has measured the energy loss of protons from
10—80 kev in H2, He, N2, O~, A, Kr, H20, and CC14.
At. the California Institute of Technology, Reynolds,
Dunbar, Wenzel, and Whaling' have investigated the
energy loss of protons from 25—550 kev in the gases H2,

He, N2, O~, air, A, Ne, CH4, C2H~, C2H4, C2H6, H20,
XH3, NO, CO2, and N20.

In the present investigation the energy loss of protons

* Supported in part by the U. S. Atomic Energy Commission.
' A. E. Taylor, Repts. Progr. Phys. 15, 49 (1952).
s D. Kahn, Phys. Rev. 90, 503 (1953).' J. A. Phillips (to be published).
4 Reynolds, Dunbar, Wenzel, and Whaling, Bull. Am. Phys.

Soc. 2i, No. 6, 6 (1952). Details of experiment to be published.

from 40—450 kev in air and argon was measured. The
fact that a differentially pumped gas chamber was used
made it possible to measure the energy loss of heavier
ions. The stopping power of H~, He, air, and A was
investigated in the energy range from 150—450 kev for
helium, nitrogen, and neon ions.

II. APPARATUS

A. The Source of Particles

The source of the particles was the "kevatron"
(500-kev Cockcroft-Walton generator) at the Institute
for Nuclear Studies, University of Chicago. The beam
of particles was focused by allowing it to impinge on a
quartz plate and observing the fluorescence and incan-
descence produced. (See Fig. 1.) Next, the beam under-
went a 15-degree magnetic analysis in order to separate
out the ionic component desired. The arc source was of
the low voltage capillary type described elsewhere. ' By
changing the gas admitted to the arc, singly charged
ions of hydrogen, deuterium, helium, nitrogen, and
neon 'were obtained. The ion stream also contained

' S. K. Allison, Rev. Sci. Instr. 19, 291 (1948).


