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Quantum Theory of the Polarizability of an Idealized Crystal*
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The quantum-mechanical polarizability of an idealized insulating crystal is calculated by the semiclassical
method, in which the electromagnetic radiation of frequency small compared with electronic resonance
absorption frequencies is treated classically. A generalization of the Lorentz "internal field" effect emerges
naturally from the treatment. Correction terms to the Lorentz value for the polarization of a crystal,
+oLn~/(1 —orlon~/3))S, where n is the polarizability of an isolated atom, ap the density of atoms, and S
the applied Geld, arise from three main sources: (1) exchange and overlap effects, (2) higher order terms in
the atomic interactions than dipole-dipole terms, and (3) second and higher powers of the small parameter
4wlpn, /3 Thes.e correction terms, which are shown to be important in real crystals, are brieffy discussed,
although more must be known about speci6c wave functions in order to make quantitative calculations. The
connection is pointed out between the propagation of excitons and the Lorentz e6'ect.

I. INTRODUCTION

"'N actual insulating crystals the forces operating
& - between the crystal constituents range, from those
involving effectively perfect overlap of valence electron
wave functions (as in metals) through those charac-
teristic of valence crystals to the types encountered in
ionic and molecular crystals. In the latter the repulsive
forces are determined by electronic overlap, but the
dominant attractive forces are "long-range" and
essentially electrostatic in character. In such crystals,
it may happen that even the optical properties are
characteristic of "bound" electrons, that is, electrons
whose wave functions are quite well characterized by
starting from a localized, Heitler-London treatment of
the solid (although not necessarily of the constituent
atoms of an individual molecule, of course). '

In those crystals w'here this situation obtains, one
would infer that the classical conceptions involving
bound charged oscillators, found to correspond to the
quantum theory of atomic optical properties, should
have some significance for the discussion of their optical
spectra. As opposed to conditions in a dilute gas, where
the classical oscillators have already been found to give
results equivalent to quantum theory, the major dif-
ference will now be that the electromagnetic oscillators
involved are in each other's "near, "or quasi-static zone,
i.e., their separation is much less than a wavelength.

A treatment familiar to most physicists is the calcu-
lation of the "local field" acting on an ion, first given by
Lorentz. ' In this now conventional treatment, a sphere
large relative to atomic dimensions, centered on the ion

*A preliminary report of this work was given at-the Chicago
meeting of the American Physical Society, October, 1951 LPhys.
Rev. 85, 723 (1952)j.

'In this connection we may cite the recent work of D. L.
Dexter /Phys. Rev. 83, 435, 1044 (1951)g on the wave functions
of excitons in NaCl, which shows that an atomic picture of the
optical excitation is a good approximation in obtaining oscillator
strengths, a procedure more sensitive to the goodness of wave
functions than is the calculation of energies alone.

'See, for example, M. Abraham and R. Becker, Theori der
EL'ektrisitut (Teubner, Leipzig, 1933), Vol. 2, pp. 120—123.
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in question, is considered as one boundary of a con-
tinuously polarized medium, and if the material inside
of this sphere is isotropically or cubically distributed,
one can show that no force is exerted by this material
on the ion. Thus the remaining forces can be ascribed to
the external field, to the charges on the surface of the
surrounding sphere, and to any external surfaces. The
contribution of the surface charge on the sphere to the
field at the ion can easily be shown to be 47rP/3, where
P is the polarization of the medium. This in turn leads
to the formula (applying to a crystal of identical atomic
oscillators) for the polarization of the crystal,

(
P=rtp( i s,

l 1—4~pno/3~

or to the polarizability per atom vithi+ the crystal,

(1b)
1—4s tt pn./3

Either of these relations is equivalent to the Lorentz-
Lorenz equation,

(x—1)/(x+ 2) =4rrrt pn./3 (1c)

Here rtp ——density of atoms. P, 8=polarization, field
strength (including "depolarization" ), n„=polariza-
bility of an isolated atom, and ~=optical dielectric
constant.

It is perhaps worth while to emphasize that the clas-
sical electron theory of dielectrics does not rest solely
on the electrostatic treatment of Lorentz. Ewald' dis-
cussed the problem of the propagation of electromag-
netic waves in an infinite idealized crystal consisting of
bound oscillators, near each of which the field takes on
the character of the quasi-static dipole field. The re-
quirement that the form of the solutions be consistent

P.- Ewald, dissertation, Munich, 1912; Ann. Physik 49, 1
(1916). An exposition is also to be found in M. Born, OPtik
(Verlag Julius Springer, Berlin, 1933},p. 327.

73



2'14

with the macroscopic interpretation of Maxwell's
equations for refracting media is just sufhcient to give
the same result for the polarizability per crystal atom
as written in Eq. (1b).

Proceeding along similar lines, Van Vleck' and
Huang' have discussed the quantum-mechanical prob-
lem of a crystalline array of coupled harmonic oscil-
lators. These authors also came to the conclusion that
the polarization is exactly that given by the I.orentz
theory.

In treating real crystals, Herzfeld and Wolf' have
shown that the dispersion of the alkali halides can be
understood on the basis of a formula which represents a
generalization of Eq. (1) to the case where the oscillator
strengths need not be unity, and where all of the prin-
cipal resonant frequencies of these crystals are em-

pirically taken into account. Further, Shockley' has
shown that one can fit the values of the optical refrac-
tive index of the alkali halides by assuming each ion
to have a definite polarizability and using a generaliza-
tion of Eq. (1) to the case where two types of oscil-
lators are present.

The most painstaking survey of experimental data on
optical refraction is that of Kykman, who, including
liquids as well as solids, found that the best fit of data
for a given substance as a function of temperature and
pressure was represented by

K j. 1—= constant.
a'+0.4 ice

In addition to the fact that no general quantum
theory of crystalline refraCtion which connects with the
classical treatment seems to have been given, this sub-
ject has somewhat more than academic interest. The
interpretation of absorption data requires some as-
sumption about the internal field acting on a polarizable
entity in a crystal. Thus, especially to those who study
the optical properties of ionic and molecular crystals, it
is of great interest to be able to compare the oscillator
strengths derived from theoretical estimates or measure-
ments in the gaseous state with those for condensed
systems. A discussion referring to this point has been
given by Mulliken. ' In such comparisons, one would
like to separate, where possible, the eGects of essential
changes in the electronic wave functions (e.g. , those
demanded by change of symmetry or strong overlapping
in the condensed system) from those effects which are
the quantum-mechanical analog of the "local field. "

4 J. H. Van Vleck, J. Chem. Phys. 5, 320, 556 (1937).
~ K. Huang, Proc. Cambridge Phil. Soc. 45, 452 (1949).' K. Herzfeld and K. L. Wolf, Ann. Physik?6, 71, 567 (1925).' W. Shockley, Phys. Rev. 70, 105 (1946).
J. F. Eykman, Recherches Refractometriqles (Natuurkundige

Verhandelingen Hollandsche Maatschappij Wetenschappen;
edited by A. F.Holleman, printed in French by De Erven Loosjes,
Haarlem, 1919).

9 R. S. Mulliken and C. A. Rieke, Repts. Progr. in Phys. 8, 231
(1941).

It is also a point of some current interest to relate the
variation of refractive index with density and tem-
perature to existing theories of dispersion, since these
theories" proceed on specific (classical) assumptions
about the nature of the forces between ions. A quantum
mechanical theory of the local 6eld may cast light on
the type of wave functions and hence the behavior of
forces which correspond to the actual electron dis-
tribution in crystals.

A consideration of the work mentioned above has led
the authors to attempt a quantum theory of the dis-
persion of an idealized insulating crystal on the basis
of the usual semiclassical account of the electromag-
netic eGects.

Use is made of the work of Belier and Marcus, " who
have worked out the energy spectrum of single excita-
tion waves in a model crystal, pointing out that the
interaction among oscillators is a long-range prin-
cipally dipole-dipole effect ( 1/r'), and thus that
excitons may be propagated in a crystal with negligible
overlap of the significant electronic wave functions.
Using the same model, we shall show in the present
paper that the "local field" effects emerge in a natural
way as a consequence of this same dipole-dipole inter-
action, and also shall indicate the higher order cor-
rection terms required in actual insulating crystals.

A conceptual diGerence exists between the early,
classical work and that reported here, in that the present
authors do not introduce an "eGective, " or "local"
held. In extensions of the early work the polarizability
of each oscillator was considered to remain unchanged
by the presence of neighbors, but the induced dipole
fields of the neighbors, in the presence of an applied
field, was taken to reinforce the applied field in such a
way that the product F00.,8,«had the value given in

Eq. (1a). As we shall see, however, the presence of
neighbors does modify the wave functions (and hence
polarizability) of each oscillator, ever ie the absence of
an app/ied field. Consequently, we prefer to include the
interactions among the oscillators in the calculation of
the wave functions, and, having once included these
interactions, we need not subsequently introduce an
effective field to take them into account. The products
A 8 ff and u8, if computed correctly, should, of course,
agree, and from the standpoint of the calculation of the
dielectric constant both methods are equivalent.
In other calculations, however, it must be borne in
mind that the field is "eGective" only in the above
limited sense, and that if all interactions are included
in the Hamiltonian of the system, the proper value of
the electric field is not 8,gq but E.

The method used here is the calculation of the electric

"H. Mueller, Phys. Rev. 47, 947 (1935). E. Surstein and P.
Smith, Phys. Rev. 74, 229 (1948). D. A. A. S. Narayana Rao,
Phys. Rev. 82, 118 (1951)."%.R. Heller and A. Marcus, Phys. Rev. 84, 809 (1951).This
work was stimulated by the remark of Professor F. Seitz that the
electromagnetic interaction of oscillators might in certain cases
be an important mode of energy propagation in insulating solids.
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moment of the effectively infinite model crystal in the
presence of electromagnetic radiation of wavelength
large relative to the lattice spacing, but not infinitely
large. (This procedure avoids the introduction of
surface effects aside from those implicit in the use of the
"depolarized" field strength. ) The next section deals
with this calculation, and in the final section we discuss
the significance of the results for some actual crystals.

II. CALCULATION OF POLARIZABILITY

The model with which we shall work, because of its
simplicity, is essentially that treated by Frenkel, "
Peierls, " Slater and Shockley, "Seitz,"and Heller and
Marcus. "According to this model, we consider a simple
cubic crystal of effectively infinite size, on the lattice
sites of which are arranged identical one electron atoms.
For convenience in carrying out the calculation and to
demoristrate briefly and without nonessential com-
plications the main e6ect of the virtual dipole-dipole
interaction, we shall impose the following limitations
and approximations in our model: There is no over-

lapping of the ground-state atomic functions" (although
there may be overlapping of excited state atomic func-
tions with neighboring ground or excited functions); it
should be remarked that the nonoverlap condition is
not equivalent to a statement that exchange e6ects
may be ignored, and we shall include exchange terms,
at least formally, throughout the calculation. All spin
effects are ignored. Inasmuch as cubic symmetry does
not remove the degeneracy for p states, "we shall allow
our excited state p functions to be triply degenerate.
Thermal and zero-point vibrations are neglected
throughout; errors resulting from this approxima-
tion should be important only near frequencies of
absorption bands, with which frequencies this calcu-
lation is not concerned. In this connection it should
be stated that the electric field, in whose presence we
shall calculate the dipole moment of the crystal, is
assumed to oscillate with a frequency small compared
with that corresponding to the first electronic absorption
band in the crystal, but large compared with nuclear

"J.Frenkel, Phys. Rev. B7, 17, 1276 (1931);Physik. Z. Sow-
jetunion 9, 158 (1936).

'3 R. Peierls, Ann. Physik 13, 905 (1932)."J.C. Slater and W. Shockley, Phys. Rev. 50, 705 (1936).
'~ F. Seitz, 3fodern Theory of Sokds (McGraw-Hill Book

Company, Inc., New York, 1940), p. 414.
' Since the initial preparation of this manuscript (which was

withdrawn from publication following the discovery of a mathe-
matical error) work has been reported by Krishnan and Roy which
has an important bearing on this topic (K. S. Krishnan and S. K.
Roy, Proc. Roy. Soc. (I,orldon) A207, 447 (1951);Phil. Mag. 44,
19 (19S3)7. These writers conclude from comparison of theory
with observed reststrahlen frequencies that overlapping of the
atomic wave functions greatly reduces the polarization correction
associated with the electronic modes in the alkali halides. If this
conclusion is correct, the present work is not applicable even
qualitatively to the alkali halides.

' H. Bethe, Ann. Physik 3, 143 (1929).

vibration frequencies ( 10" sec '). That is, we are
interested only in the electronic polarizability, and shall
ignore any nuclear motion in the presence of the field.
A related condition is that we consider only electric
fields of wavelength large compared to the lattice con-
stant, but not infinite; by treating only finite wave-
lengths we eliminate the necessity for considering
effects arising from the surface of the crystal. A further
assumption we shall make is that the I orentz correction
4irlsn, /3 is small in comparison with unity, and our
results will only be accurate to the first power of this
parameter.

With these limitations, the Hamiltonian of the system
in the absence of a field may be written

(3)

Cs ——0'+ (grrno/3)Ps(cosp)L j,(p) —j,(p) j

where

(gn&pns+ W~tns)
XP P Z — +"'"'(k, —k), (4)

&a a emt+ ebs —2ee

it i'(r, ) if,'(r )

+'= (E!)-&

frrs(ri) . . 4'(r)r),

where II; is the atomic Hamiltonian; the lower case
indices refer to electrons and the upper case indices
refer to nuclear coordinates. g is the number of atoms
in the crystal. The form of the eigenfunctions of this
Hamiltonian is well known from the band theory of
solids, and from the work of Frenkel, Peierls, and others
on the theory of excitation waves. (See, for example,
reference 15 for a discussion of the energy states of this
system. ) The ground state, for example, is an antisym-
metrized product of ground-state atomic functions
[Eq. (5)j plus a mixture of higher atomic states induced

by the interactions among the atoms. These interactions
may result from an overlapping of the electric (dipole)
fields of the constituent atoms, and from exchange,
which involves the overlapping of the atomic wave
functions. Heller and Marcus" have concluded that in
some crystals where the atomic wave functions are not
greatly extended spatially, the overlapping of the dipole
fields is the predominant interaction, and this situation
is assumed to obtain in the present discussion. Equation
(4) is the normalized ground-state eigenfunction of the
above Hamiltonian, and includes the admixture of
higher excited states in the summation,
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and

4"'"'(ki, k2) is a "double exciton" wave function,

(kit k2) =» '(1V!)—r(1+ctrl, k28nl n2)p
I QM

4l'(»)

where

+n (k) = (»» f)
—

2 Q eon'lt «
tp~n (1)

L

4I"'(1)

g &2'tri(k1 rL+k2. re)

As"'(&) fits"'(»)

4'(1) 6o(»)

are typical (single) exciton wave functions of energy, "
&n (k) =&o+ (o„—oo) —(4trtso/3)tt '+ U„. (10)

!t o'(»)

corresponding to the presence of two excited atoms
simultaneously. Such a term corresponds to the presence
of excited states in two atoms coupled by van der
Waals' and exchange interactions, and is induced by
the second term in the Hamiltonian [Eq. (3)]. The
lower case psi's, QI', refer to the ith excited eigenfunc-
tiOnS Of the atOmiC HamiltOnian Of energy o;. P2(COS2o)

is the second I,egendre polynomial, and p is the angle
between the propagation vector of the exciton, k, and
the transition moment p„of magnitude tt„= J'P"*ex+dr
chosen to lie along the x-axis. Since we shall be inter-
ested only in excitons created by electromagnetic
radiation (rather than by fast particles), the only
values of k and y that enter will be mutually orthogonal,
so that P2(cos(tt) may be replaced by ——', . The Bessel
functions'2 jo and j2 are functions of p —=2ortt', a(3/42r)l,
where a is the lattice spacing, and for all values of k
that will be of interest here, p is of the order 10 ' so that
jo—j& may be replaced by unity. The quantities 8'n&n2

arise from exchange, and will subsequently be assumed
small in comparison with pn~p~&. The indices e~ and e2
refer to p functions since we assume p to be an s
function. The indices I.and 3f refer to the I.th and Mth
atoms in the lattice. The energy associated with the
eigenfunction Co is equal to"

t/ and U are sums of exchange terms similar to those
in Eqs. (4) and (7), respectively. The characteristic
form" of Eq. (9) is a result of the periodicity of the
lattice, and the amount of admixture in Eq. (8) is
again determined by the strength of the interactions
among the atoms.

Note that the wave functions given by Eqs. (4)
and (8) are different from the corresponding wave
functions"" which are given by just the first terms of
Eqs. (4) and (8), i.e., by Eqs. (5) and (9). The first
terms by themselves do not diagonalize the Hamiltonian
to the first power in 4il 1'LoQ!,/3, and have, therefore, been
improved. The energies given in reference 11 are
changed only in the second order of 42rnon, /3 by the
inclusion of other terms in the wave functions. Equation
(8) should likewise contain sums of triple exciton (p)
states and sums of double excition (dd, ds, ss) states,
but these terms only contribute to the polarizability in
the second order of 4trtton /3 and have been omitted.

We shall use time-dependent perturbation theory to
calculate the expectation value of the dipole moment of
one of the electrons of the crystal in the presence of an
electromagnetic Geld. .The change in the Ham. iltonian
due to the 6eld is

(—t,Q )+&—P ~

~, . g (&2ni(u ~ r—t) &
r2rri (u ~ r—rt)) (11)—

'=i &2~tttv)

where the electric 6eld is

&&A'(2)4 I'(1)d»2 ' (7)

plus terms in a ', a ' and so forth. According to our
assumption that 42rnon, /3 is small, these terms are
negligible. The first term in Eq. (7) is the energy of »
isolated atoms in their ground state, and the second is
an exchange energy.

The excited state wave functions of the crystal are
given by

Q»t I+ l'. I)
4 (k) =4"(k)+ (42rto, /3) p -@s(k), (8)

BoLexp{22ri(u r—vt) }+ex.p{—22ri(u. r—vt) }].
We shall take 60 in the direction of the x-axis and u
along the s-axis. The perturbed wave function is then

4=Cot, 'Eo'I"+p p (tl, , „(t)e '~""%„(k), (12)
n&0 k

where

(22, (t)=

1+(k, st) L1—exp{—it(Eo —E,„(k)+hi )/h}]
So

&o—&.(k)+hv

' P. M. Morse, Vibration and 5ognd (McGraw-Hill Book
Company, Inc. , New York, 1948), second edition, p. 416.

—b (k, e)L1—exp{—it(Eo—E„(k)—hv)/It}]

Eo E„(k) hv— —(13)
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and —ek r

C „*(k)(P; /;e'~'" "')Cpdr; (14)b+(k, I)=
2mStv ~

b (k, I) is the same as Eq. (14) except for the sign of u.
Evaluating Eq. (14), we find

bpS'
sp b+(k, n) = bg, ~„(p„—pp)

2%'Av Ijn2

cc.=2 P (18)

is identically equal to 0 because of term by term can-
cellation. (The cancellation can easily be seen from the
the fact that if e and j are interchanged, the quantity
is curly brackets remains the same, whereas the last
factor changes sign. Thus the term with j=1and n=2
is canceled by the term with j=2 and n=1, and so
forth. ) Since for an isolated atom the polarizability is
given by

X J1- p (p —pp)

3 ~' (p+e~ —2pp)(c„—pp)
Eq. (17) becomes

n 6n

4prlp pP (6~—pp)

(15)
3 i~~ (e; p~)—(p~ pp)—

The expectation value of the dipole moment of the ith
electron is

P;= C*er,C dr,

which, upon substitution of Eqs. (12), (13), and (15)
becomes

pn'(pa —pp)

P;=8(r~) 2P
~ (E„—Ep)' —(2mki)'

0!= +J'.
1 47re —pn./3

With the exception of J', therefore, Eq. (19) is the
same as the classical expression Eq. (1b). In Eqs. (17)
and (19) J and J' are quantities included formally to
suggest the inQuence of terms involving exchange,
overlap, dipole-quadrupole, quadrupole-quadrupole and
higher multipole interactions, and second-order terms
in 4prnpn /3 Ther. e is a very large number of such terms,
and in practice it seems hopeless to attempt their
evaluation, both because of their number and com-
plexity, and because of insufhcient knowledge of wave
functions in any specihc case.

4xnp uF(p~—pp)
III. CONCLUSIONS

3 ~ (p,+p„—2pp)(p„—pp)

pj ~~
—~p

&+n Ej 6n 6n= 6p-

4mno p2
X 1+

3 7 p~+ p~ —2pp

47/ @p p,j+
3 J+n Ej

(16)

+gal ( 8rrrlp pj
cc=2+

~
1+ P )+J,

pp E 3 i e~ pp)
(17)

where we have made use of the fact that the sum,

p, 'pP[pP+ p„'—2pp(p + )p+ 2]ppP

(;—o)(.-")(.+;—2") n

In obtaining this expression we have for the usual
reasons dropped all time-dependent terms except those
oscillating with frequency &v. We have likewise
dropped all exchange terms from Eqs. (15) and (16)
for the sake of brevity.

Far from resonance, where (2prhi)(((E„—Ep), we
find upon substituting Eq. (10) in Eq. (16),

Equation (19) now shows in what sense the use of the
Lorentz cvocal field is justified in actual crystals. In the
limit of low atomic densities, the local field correction
is given by the classical formula. It is also possible to
discuss the relevance of the results for actual crystalline
media.

First, we may ask how well the condition is satisfied
in some actual crystals that the local field correction,
while not negligible, is not too large, inasmuch as we
have treated it as a small quantity as compared to
unity. An idea may be given by the example of an
alkali halide, where the refraction may be thought of as
attributable largely to the lattice of halide ions. Then
4prripcc, /3 is of the order of 0.2 in the case of KCl if we
take rrp as the atomic density of halide ions (1.6X10"
cm ') and a, as their polarizability ( 3.3X10 '4 cm').

The exchange terms are likewise small in alkali
halides, being of the order of or less than (A/R)
Xexp —2R/A, where A is the damping length of the
excited state wave function and R is the distance
between nearest halide ions; these terms amount to
perhaps 1/10 of the Lorentz term. "

The dipole-quadrupole terms mentioned above arise
from higher expansions of the interaction terms e'/r
and vary as (q/ap)' times the Lorentz term, where q is
a quadrupole moment. These terms also represent
important corrections to the Lorentz term in actual
crystals, and are perhaps of the order of 1/10 the
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Lorentz term. Of this same magnitude also are the
terms involving the square of the Lorentz term. "

As a caution, it should be pointed out that the present
treatment may be applicable in a quantitative way
only to certain molecular crystals in which the refracting
electrons are relatively well confined to particular
molecules, and thus do not have strong mutual over-
lapping of their wave functions. Just this condition may
be satisfied, however, in crystals of some large organic
dye molecules which are of great practical interest.

Finally, mention should be made of an important
physical restriction not hitherto discussed. This is the
fact that lattice vibrations have been left out of
account. While these have only a very secondary e&ect
on refractive phenomena, it would be necessary to

"In view of the statements in reference 16, it is possible that
the corrections to the Lorentz term are in fact larger than esti-
mated here, for the alkali halides.

discuss such e6ects should a treatment be attempted
in analogy to that of Peierls, "dealing with the absorp-
tion of light. Even in discussing refractive eGects, the
lattice vibrations may need to be brought in when
treating the optical properties of thin films, if the film
thickness is much less th'an a wavelength; under these
circumstances the energy spectrum of the single exciton
levels, of primary importance in the present calculation,
will be changed because of the long range of dipole-
dipole forces, and the incoherence of the wave function,
introduced by the collisions of excitons with the lattice
vibrations, will be an essential factor.

This work was begun while the writers were members
of the Physics Department of the University of Illinois.
We welcome the opportunity to express our appreciation
to members of the department, and particularly to
F. Seitz, for the cooperation and hospitality extended
to us at that time.
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Adiabatic Demagnetization of Chromium Methylamine Alum*

D. DE KLERKf' AND R. P. HUDSON

Nationa/ Bureau of Standards, Washington, D. C.
(Received March 16, 1953)

Adiabatic demagnetization experiments have been performed on a specimen of methylamine chromic
alum, CH3NH3 ~ Cr(SO4)2 ~ 12H20, comprising a spherical mass of small crystals. Using fields up to 23 000
oersteds and starting temperatures of the order of 1.15'K, the "free-spin" entropy of R log.4 could be re-
duced to 0.26R, and the magnetic susceptibility versus entropy relation has been obtained over this range
of entropy. The susceptibility was measure'ed at 210 cps with an ac mutual inductance bridge. For tempera-
tures above 0,1'K very good agreement is obtained between these results and the Hebb-Purcell theoretical
curve with a value of 0.275' (0.19 cm ') for the crystalline field splitting of the ground level of the Cr+++
ion. In the neighborhood of entropy R log.2 the susceptibility begins to increase rapidly and goes through
a.maximum at 5=0.53K As in the case of other paramagnetic alums previously investigated, ac losses
occur in the region of maximum susceptibility (the loss component also showing a maximum), and ballistic
measurements show hysteresis effects occurring on the low entropy side of the susceptibility maximum.
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INCE the beginning of adiabatic demagnetization
experiments many investigations have been made

with chromium potassium alum. ' ' This salt proved to
have several properties especially suitable for measure-
ments in the region of temperature below 1'K. It is
chemically more stable than iron ammonium alum. In
the region between 1 K and 0.1'K its magnetic be-
havior is in rather good agreement with theoretical
predictions. ' ' The temperatures obtained with initial
fields of the order of 20 kilo-oersteds are very low (a
few thousandths of a degree Kelvin) and these tempera-

*Sponsored by the U. S. Ofhce of Naval Research. A brief
account of this work was given at the ONR/NSF Cryogenics
Conference, Schenectady, New York, October 6-7th, 1952.

t On leave from the Kamerlingh Onnes Laboratory, University
of Leiden, Leiden, Holland.' Casimir, de Haas, and de Klerk, Physica 6, 365 (1939).

2 A. H. Cooke, Proc. Phys. Soc. (London) A62, 269 (1949).' de Klerk, Steenland, and Gorter, Physica IS, 649 (1949).' Steenland, de Klerk, and Gorter, Physica IS, 711 (1949)' B. Bleaney, Proc. Roy. Soc. (London) A204, 216 (1950).' D. de Klerk, thesis, Leiden, 1948, page 54 {unpublished).

tures can easily be determined with some precision by
means of caloric measurements with the help of ac
heating. '

Recently, however, some disadvantages of the salt
were noticed. The Stark splitting of the fourfold-
degenerate ground level of the Cr ' ' ' ion caused by the
crystalline electric field varied considerably for dif-
ferent samples [values between 0.24' and 0.27' were
found for the parameter, 8jk, where 8 is the energy
separation of the two spin doublets' ). Small but sys-
tematic deviations from the theoretical formulas occur
in the neighborhood of 0.2'K. The Rat part of the en-
tropy versus temperature curve, which is expected to
occur at S=E log, 2, was found at a much lower entropy
value, namely, S=0.4E. And, finally, the measurements
of the lowest temperatures made at Leiden gave results
widely diferent from those found at Oxford.

An explanation for the deviations from the theoretical
predictions in the neighborhood of 0.2'K was given by
Bleaney. ' From his microwave experiments it followed


