
ENERGY LOSS OF FAST CHARGED PARTICLE

It can be veri6ed that (42) is identical with the ex-
pression given by Rossi."

Equation (43) should be used if one is interested in
the loss due to collisions with a fixed maximum energy
transfer To, as in the case of emulsion or of the droplet
count in gases. Upon writing (41), (42), and (43) in
terms of A and 8, one obtains

1dE A p=—8+0;69+2 ln—+lnTM« —2P' —5
p dx Ps. pc

(heavy) (48)

pi dE
=—8+0.43+2 ln—+lnEM, —p' —g

p dx p' mc

(electrons) (49)

1(dE) A p=—8+0.69+2 ln—+1nTs, M, —P' —8, (50)
1i (dx) Te P pc

where the subscript in 1'M, , EM, , and 1'0, M, indicates
that T, E, and To are to be expressed in Mev.

'6 Reference 32, p. 27, Eq. (11).

Equation (16) of II for the most probable loss en„b
should be corrected. e„„b is given by'7

6prob =
2rrmee4t 2nze'(2rreee4t/me'p) —P'+0.37—8 ) (51)

me'p Is (1—P')

where 1 is the thickness in g cm '. Equation (51) can
also be written

At p At
e„„b———8+1.06+2 ln—+ln—P' —6 . (52)

p' pc p'

I would like to thank Dr. Ernest D. Courant for
several very helpful discussions and comments.

Note added in proof: In rec—ent measurements of the
grain count in emulsion, B. Stiller and M. M. Shapiro
[Bull. Am. Phys. Soc. 28, No. 3, 72 (1953)]found good
agreement with the curve of (1/p)(dE/dx) presented
here (Fig. 2). Besides confirming the theoretical ratio
of plateau to minimum ionization, these data lend
support to the gradual rise of the ionization to the
asymptotic value.

"L.Landau, I. Phys. (U.S.S.R.) 8, 201 (1944); K. R. Symon,
thesis, Harvard University, 1948 (unpublished).
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A new method of approach to the problem of absorption of light by trapped electrons in crystals is
presented. The method is based upon the use of the Slater sum for an oscillator (density matrix). The ab-
sorption cross section is calculated under the assumption of an electron-lattice coupling which is linear in
the normal coordinates of the lattice; this yields the shape of the absorption curve, but the maximum does
not. shift arith temperature as required by experiment, This shift is then accounted for in a somewhat
fundamental manner by considering the small change in the lattice frequencics which accompanies the
photon induced electronic transition. The result is that the absorption maximum shifts with temperature,
but the shape of the absorption curve is not effected by the change in the lattice frequencies.

'' " 'UANG and Rhys' published the first detailed
~ - - ~ quantum-mechanical calculation of the absorp-
tion of light in F centers. Their work was followed by
two articles of Lax" in which a more general viewpoint
is taken in the sense that the F center can be of more
complicated structure (i.e., more than one electron) and
the lattice is represented in a more general form (i.e.,
all modes optical and acoustical and a general fre-
quency distribution). Lax obtains some of their results
as a special case by setting all the frequencies cv;=co

' K. Huang, and A. Rhys, Proc. Roy. Soc. (London) A204& 406
(1950).

~ M. Lax, Naval Research Laboratory Report 39/3, 1952 (un-
published).

'M. Lax, J. Chem. Phys. 20, 1752 (1952).

(optical), where j indicates mode. He thereby avoids
almost all of the analysis in their paper. 4 One finds in
Lax's papers a complete formulation' of the problem
and a complete discussion of the moments' of the ab-
sorption and emission spectral distributions.

The purpose of this paper is to present a third method
of approach to the problem which is, in this author' s
opinion, simpler than either that-of Huang-Rhys or
Lax; the present method accomplishes the following
things: (1) it avoids entirely the rather formal use of
ordered operators in Lax by a straightforward applica-
tion of the density matrix of a simple oscillator; (2) it
yields the results of Huang-Rhys and the more general

4 Reference 3, p. 1760.
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results of Lax without recourse to the condition S~~,
where E is the number of normal coordinates needed to
describe the lattice; (3) finally, the present theory is in
such a general yet simple form that other problems,
such as the change in lattice frequencies (which accom-
panies an electronic transition, see Sec. II) and the
effect of the Condon approximation (made by Huang-
Rhys and by Lax; see below) can be more easily inves-
tigated if and when detailed knowledge of the de-
pendence of the electronic Born-Oppenheimer wave
functions on the lattice coordinates is available.

I. GENERAL RESULTS

To save space the present paper will begin with Eqs.
(2.1) and (2.2) of Laxb for the absorption cross section
a (i) and the total emission probability per unit time W,
respectively. These read

form:
N N

X, '=-'PLp, '+(o,'q j——Q A; 'q;,

where the superscripts a, b refer to the electronic state
of the F center electron [or electrons as in (5)). The
index jstands for the usual (t, e) in Seitz. The "coupling
constants" can actually be calculated in the Huang-
Rhys case, but here they play the role of phenomeno-
logical constants. This case of a linear electron-lattice
coupling is being investigated in order to compare the
present method with that of Huang-Rhys and I,ax
where it is also assumed.

To continue, one can introduce modi6ed normal coor-
dinates into (8) in the following manner:

q =q, —E 'co, '3; =—q; —c,.', ()
q,"=q,—¹co,'3;~=—q, —c,".

e (E,) ' 8m'v
-()= -I —

I

e EEJ 3c

t e' (E,q
' 64m'v4

I,b (v)d (hv),
e (EJ hc'

where

Ib.(v) =Av- ZI(bn" l~b (R) lan'&I'

(2)

When (9) is used in (8), one finds

1 ~ (A,'b)'~abi g, Lp /2+, 2q, 12j g (10)
7=1 2Q j=l M&.

which is again that of a system of simple oscillators
since the last constant term can be absorbed into the
electronic energy of the F center electron (electrons).
One can then write

(bn"
I
M b (R) I

an'
&

Xb(Eb " E„„hv), —(3)—
Eb" E- =—~b,+Pl (ib;"+-')k~,—(gz, '+-.')hgt), (11)

wherein

and

—=
~

dR&,„-*(R)M,.(R) ~.„(R), (4) AG)bn= eb en

1 ~ (~')' —(~')'
2E ~=1

(12)

Mb. (R) = t drtPb*(r, R)P er,P, (r, R).

The wave functions iP and q are the usual Born-Oppen-
heimer functions for the electrons and lattice, respec-
tively; r, R, are abbreviations for the coordinates of all
electrons and lattice atoms (ions), respectively. For the
problem of Ii centers one can drop the sum in (5) since
only one electron is involved. Everything else is the
same as in Lax and from this point on the present
method is quite diGerent from his. The symbol Av
means "thermal average" over the initial lattice states.
Equation (3) will be written in the following form:

Ib (v)= & P" I(bn" le~(R) lan'&I'

and e~, e, are the electronic energies of the trapped
electron(s) when there are no lattice vibrations. One
can consider (Sec. II) the final state frequencies in (11)
as diferent from the initial state frequencies, i.e., co,",
~,', respectively, where +,"—+ =—p,~ defines a new
set of phenomenological constants p, . Now, from (10)
one knows the lattice wave functions are products of
simple oscillator functions in the modified coordinates,
namely,

b .-(R)=II &-;-(q;")—=II(b~'"I

(13). (R) =IIx-; (q, ') -=III,'&,

where

where
Xb (Ebn" Enn' kv), (6) (~tl '

xm;(q;)=I —
I

(2"m, !) lII; q, l

—
I

~~hi
' ' 'Ek)

( Enn'l ' ( Enn')
p = g expl —

I
expl-

n E kT) E kT) (~A' '
Xexp ——,

'
q;I

—'
I

Ek
~ F. Seitz, Modern Theory of Solids (McGraw-Hill Book Com-

pany, Inc. , New York, j.940), pp. 133 and 477.

The Hamiltonian for the perfect lattice plus "linear"
electron-lattice coupling can be written in the following



ABSORPTION OF LIGHT BY TRAPPED ELECTRONS 267

~
—Vg'( g "+-') ~

—&g( ~'+4)

G;= 2 sinh(2p;) Q n,
ng" «ng'~ ~'2n& ~ ' ! ~'2n& ~g'

h (Eb„" E—„hv—)

The next thing is the use of the Fourier integral repre- writing out the square of the matrix element leads to
sentation of the Dirac delta-function in (6),

it
dt exp —(E~„—E —hv) . (14)

From (6), (11), and (14) one then obtains

X) dq, H,"(~,q,")H,'(~,q,')

Xexp — (q,"'+q,") dq;Hn, ' (n, q;")
2

Ii (v)=
2xk ~

dteirv«~t i2x«t —Q p
n«ni

Xexp[it p(n;" N,—')&o,j I
(bn" IM~. (R) fun') I',

Ag'

XH~; (n, q, ') exp ——-(q;"'+q,"), (22)
2

(15)
n,'—=~,/h, and then to

or, more explicitly,

2

Ig, (v) = - dte "&" "«.&'G—g. (t),
—

2~k
(16)

P
G,. = 2u, 2 sinh (-',P,. ) dq, dq,

Xi«(~iqi "«Ol«qi"
I t«i)t&(c«iqi'«&iqi'I l»i)«(23)

where

G~(t) = P exp( —P[(N +—',)P;—it(««i" —n )co;j}n" n =O

XIII&& "l~"(R)I

where Mehler's formula (Slaters' sum) for the density
matrix of an oscillator has been used, namely,

g
—(~k) 5

p(x, x'/$) =P Hi, (x)Hi, (x') exp f ——', (x'+x")}
&=o ~-'2'k!

X(g Q e (nj'+t&Pj} —i (17)—
~'=l n'=O

7

p, = Aced;/kT. —

= (2«r sinh$)
'*exp f —xi[(x+x')'

Xtanh(2$)+ (x—x')' coth(-', g)j}. (24)

Vsing (24), (23), and (9) one finds the following result:

Now, since the electronic wave functions are not
known in any detail for the present problem, i.e., their
dependence on the lattice coordinates R or normal
coordinates q; is not known, one is practically forced to
make the so-called Condon approximation in which

Mq, (R) is treated as a constant. It will be made evident
in what follows how one would proceed if M~, were a
known function of the q;.

%hen the Condon approximation is made, therefore,
one obtains from (17)

G,.(t)= f(Z Iver, fa) f gG, = Iaaf gG, ,

where

G;= 2 sinh(-,'p, ) g e &"i"+'»ie & "«'+*'&"«

i,ni =0~ I/ ~ I

f
G;=-,' sinh( —,'P, )[sinhX; sinht«;] l ~, dq, dq,

Xexp f
—-'[(q,+q;—2a,c;")' tanh( —'t«;)

+ (q,—q;) ' coth(-', t«, )j}
Xexp( —k[(qi+qi —2~ 'i')' tanh(i~i)

+ (q;—q,)' coth(-,'A;)$}. (25)

The integration is easily carried out and yields the
interesting and simple result:

,'(C,"—C, ')'
G, = exp—,(26)

coth(-', P,+-',ice;t) —coth(-', ice;t) I

so that from (19) one finds

and
X f(b«t;"fam, ')I', (20)

G,.(t)= Iaaf

p,+no, t, t«,—= —i~,t. — (21)

Introducing the oscillator functions (13) into (20) and

a,'(C,"—C,')'

«=i coth(-,'p,+-,'ice, t) —coth(-', ia);t) I
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sinttt) =i sinh (2'P),
coth(-,'P)

tant)t =

It is clear that this result would be more involved if the To carry out the integration one can introduce a phase
Condon approximation had not been made since (23) p such that
would have then contained /l/Ib, ((I„) M. b, (g;)

Finally, using the identity (33)

sinh(x —y)
(—).

sinhx sinhy
=cothx —cothy, and a new variable,

and Eq. (16) one is led to the following result:

1
(tv)

~

/M
~

2 d« t2vv(v —vba) t-
2m'h 4

sinh (ll8,+22(d,b)

Xexp g n,'(C;"-C )'
t=l sinh(-,'p, )

Xsinh (-'22'&,/'), (28)

or, after simple manipulation,

ao

(p) =
~

~
~

d«—'2a(v —vba) t

2mb& „
N

Xexp{—P ,'ot,'(—C;" C,—') '[coth(~P, )
j=1

i sin (co/t) ——coth (-',P;) cos (co,t) 7}. (29)

Introducing the C's from (9) allows one to write the last
exponential in the form of an average over the lattice
spectrum (as in Lax)

(g bg .a) 2.—P 2n 2 {coth(2P,) i sin(—co//')

1—coth(2p/) cos(&u,4)}=—&f(t))=——p f(~,, t). (30)

Then one has from (31)

/CV(2
Ib. (b)=-, (Eh exp{ 2p2—/, Sc—oth(21p)

2m'ken ~

+S csch(2'P) cosx}, (35)

where, as in Huang-Rhys and Lax, the quantity p is
defined as follows:

P = (22r/(u) (t —t b.), (36)

and represents the net number of phonons involved in
the transition at frequency v. Of course only integral
values of p are allowed. One can carry the integration
in (35) out as in Lax. One finds

i' )

Ib, (v) = e
—'"& exp{—S coth(-,'p) }

kM

Xl E (p —)7.( - (!~)), (~)

( )=("—) ' (38)

and replacing the various hyperbolic terms in (37) by
functions of &22;). For example,

where I„(s) is the modified Bessel function. One obtains
complete agreement between these results and those
of Huang-Rhys and Lax by using the well-known ex-
pression for the average number of phonons, of mode j,
at temperature T

One can then use the complete formulas in Lax for the —~py Lsinh(lp)+cosh(1p)72, L(&+)+1)/&)7y/2
moments of the distribution (29).

'
(39)

csch(21p) =2L&22)((22)+1)7*, coth( 2p) =2&n)+1.
II. THE HUANG-RHYS PROBLEM

One can now consider the problem of Huang and
Rhys in which all lattice modes have the same fre-
quency (these being the single frequency longitudinal
optical vibrations) i.e., co;=(d for all j. From Eq. (29)
one has

QO

q« i2a(v vba)t—
Equation (37) can then be written.

i/lf'(2 &n)+1 ""
lb. ())= exp{—S(2(N)+1)}

/tt(O &22)

X( Z ~(&—P)7I.{2SL&~)(& )+1)7'} (4O)

Xexp{ SLcoth(—,'P) i sino—rt-

—coth(-2'p) cos(cA)7}, (31)

As in Lax, ' one considers the integrated spectrum in
order to remove the delta-functions; vis. ,

QO p 1+(~)= ~/l/I ~' P exp —S(2(22)+1)+—ln
p~QQ 2 &22)

XI {2SL( )(& )+1)7'} (41)
2S=—Q (2/2 (C;"—C,")' P = h(d/kT; (2/2—=cu/lb. (32)

Ib, (t )t)t(ht )
where S has been defined so that the result will agree J
with the notation of Huang-Rhys, namely,
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where p has been substituted for k and p is now integer.
Each value of p corresponds to a discrete absorption
line at a definite frequency given by (36). The sum in

(41) was shown to be unity by Huang-Rhys by em-

ploying the series expansion for the Bessel function.
This must be true since

1
Ib. (v)d(hv) =1

becomes

+bn" +an' ~+ha

where now
b~ 2 )g.a~ 2

(4g)
2IIt' i=i &pi;") Ebp

is a statement of the normalization of the moments (see
Lax and below) of the absorption curve. For complete-
ness and since these moments will be needed below, a
brief derivation of them will be given.

One performs the Fourier inversion of (16) and finds

—(n~ '+ z)X)

One then simply replaced a; by a," and 0.; by n, ' in
the final and initial states, respectively, of Eq. (22).
Then

(~ .'I l+ 1)p
~

G;= 2 sinh( P2,)— g a,"a,'
= 2ri2""(22J")!m'*2"'(n') '

G (t) — 7 g21ri (v vba) —
bIb (V)d (kV) (42) X I dq, Hn, ' (a,"q,")Hni (a,'q )

tb dbG (t)2-
~=0& t dg~

oo

[2m i (v vb.)—7'Ib. (v)d(hv).
~=0

Comparison yields

Then Gb, (t) and the exponential are expanded as power
series in t; vis. ,

where

X pf —-,'t (;"q,")'+( q )'7)

dq;Hn, "(a;"q,")Hn; (a, 'q )

Xexp(- l[(a "q'")'+ (a 'q ')'7), (49)

(P")—= " P"Ib-(v)d(kv) =

P—=2n./(u (v —vb.).

Equations (16), (31) yield

Gb. (t) (44)d(ipit)", p

Gb, (t)/ ~M '—= gb, (t) = exp( —S coth(2p)
+S sinh(ibpt)+S coth(22p) cosh(ibpt)). (45)

X;—=P,+2pi t, tb, = ice;"t, P—,= Ape /kT, —
(a;")'=pp;"/k; (a )'=bp /k.

Then, by using Slater's sum, Eq. (40) reduces to

G,=2a;"a/ sinh (-,'P;) dq„dq;
J 0

X~(a,"q,", a;"q;"l~;)~(a q, ', a, 'q I&,), (50)
If one divides Ib, (v) by ~M ~2, then all moments are which in turn after a straightforward integration along
normalized and one has from (45) and (44 with the use of (9) and (24) yields

(p') =1, (p) = ~S,
((p—(p))') =S coth(~P), ((p—(p))') = ~S, (46)

((p—(p))') =3P' coth(lP)7+S «th(lP)

These results are given by Lax, with 2(22)+1 instead
of coth(2p). The important thing about these moments
is that (p)=S does not change with temperature,
whereas Pohl's experiments on F centers' show a shift
in the position of the maximum of the absorption band
with temperature. Huang-Rhys made a physical argu-
ment to show how the small change in the lattice fre-
quencies which accompanies and electronic transition
would account for such a shift. They simply shifted the
position of the maximum without changing the shape of
the absorption curve (but they were correct in doing so)
as will be seen below.

It will now be shown how one can calculate this shift
by a slight extension of the above theory. Equation (11)

G; =2a;"a Sinh (';P,)fSinhX; Sinhtb;Ai20227
'

Xexp f —(a;"a ')'(C;"—C )'/0, ') (51)

where
Lip=—(a;")' tanh('2tb;)+ (a )' tanh(2'li, ),

0,'=—(a,")' coth(-', tb;)+ (a )' coth(2li;).

Some further reduction using trigonometric identities
leads to

\

G;= 2' sinh(-'2p;) Lcosh'A; coshtb, 1—
+-', (~;+1/b;) sinhX, sinhp, ;7

—
&

X p{—(
" ')'(C'"—C ')'/~') (52)

wherein
K;—=bp;"/pi —= (a,"/a )'=—(1—p,). (53)

This defines a new constant p; similar to the C; above.
One expects physically that cv;" ~& co,

' or p, &0 for all j
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but this need not concern us since p; will be treated as
a phenomenological constant. From the fact that the
linear electron-lattice coupling entered as O(1V '*), one
expects the frequency change to enter the theory as
O($ '); this will be assumed true for the present and
allows one to write

for all j.One uses ~; above and writes

=B.—
2X i=l

Then one 6nds immediately that

(59)

where e; is a new constant. Then one has

gg. (t) = exp{—i(utB coth(-;P) —5 coth (-,'P)
+5 sinh(ia&t)+5 coth(iP) cosh(iud)). (60)

j.
g,+—= 1—p,+-

.Kg' p'
=2+0(p ') =2+0(1/1V') (55)

The moments now becomes with the use of (44)

(P') = 1, (P) =5 Bcoth —(-,'P) =5—B(2(e)+1),

((P—(P))')=~ oth(-'p),
If one drops terms of order 1/1V', Eq. (52) reduces first
of all to

sinh (-',p, )
6,=

sinh~ ,'P;+ p,—~,'t —
r

2

(~~"~~')'(C~"—C'')'
exp

so that

G&.(t)
B.(t) = =II G

=exp —P ln

(1
sinhr p,+ p—,co,'t —

r

&2 2 )
sinh (-,'p, )

& (n~"at') (C," C,')—
Xexp —P . (57)

j=l Q,~

g~(t) =exp ——p p, ,' coth(-,'p, )
2 i=I

( ')'(C"—C')'
Xexp —P . (58)

oct (h-,'p, ) +coth(-,' })I

This reduces, of course, to (27) when p, =0. One can
easily calculate the moments of the absorption curve
using (58) and (44). It is of more immediate interest,
however, to apply (58) to the Huang-Rhys case I;=u

Finally, one develops the argument of the logarithm
up to and including order 1/i~1' and neglects the dif-
ference between a;" and n, ' in the second exponential
since the Ct' contain 1/1V. The result is simply

The result for (p} is just what Huang-Rhys employed.
Their intuitive arguments are therefore borne out in a
more fundamental derivation. One notes that the
second moment is not affected by 8 so that if the ab-
sorption curve is approximately Gaussian the curves
maximum shifts with temperature but does not change
its half-width. Also, no change in the higher moments
is produced by the lattice frequency shift. The higher
moments would change if one included higher order
terms in p, in the above derivation, but this seems hardly
necessary to carry out.

Finally, one notes that the exact shape is still de-
scribed by the Bessel functions in (41) but shifted
according to the new value of (p); this is clear from
the result of substituting (60) into (16) etc. and, of
course, also from the above moment considerations,
since none of them higher- than the first was modified
by the frequency change.

SVM MARY

This paper has presented a new method of handling
the problem of the absorption of light by trapped elec-
trons. The results of Huang-Rys, except for nonradia-
tive processes, have beeri obtained in a more straight-
forward manner. Also the complete results of Lax are
obtained in a more direct manner avoiding the use of
ordered operators which are not really required for
these problems although their use is formally inter-
esting.

The basic problems still to be investigated are the
investigation of the validity of the Condon approxima-
tion and the study of radiationless transitions (thermal
ionization, thermal excitation, etc.). The latter problem
has been started by Kubo, ' making use of the Einstein
representation of the lattice.

' R. Kubo, Phys. Rev. 86, 929 (1952).


