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A NONRELATIVISTIC derivation of the two-particle poten-
tial between two fermions, due to interaction with a boson

field, was outlined by Tamm' and DancoP and generalized by
Levy, ' including higher-order terms in the interaction potential.
Following Levy's treatment, the interaction terms of higher order
can be represented by nonrelativistic graphs, distinguishing in
addition the sequence of transitions and intermediate states. In
this treatment, it does not seem to be understandable why the
strongly diverging vacuum graphs are not considered, although
according to the derivation they should appear, because the in-
fluence of them on the energy denominators is such that they are
not separable. Further it is impossible to recognize the other di-
vergent parts of the graphs as terms of mass and charge renormal-
ization. This is impossible because the relativistic invariance has
been destroyed in the very beginning of the derivation of the one-
time formalism. In these cases Levy goes back to the Bethe-
Salpeter formalism, showing an approximate correspondence of
the two formalisms in two special examples and presuming it for
the whole.

FIG. 1. Example of a Levy graph with n =2 and m =0. The energy de-
nominators are

HEI =E«) (p+kI) +E(»(p+kI+k2) +cu(k2),
~E2 =E")(p) +E(»(p+») +E(»(p+»+») +E"'(—p -») —~.
gEg =E(» (p+k1+k2) +E(» ( —p —k2) +or (kg) —W'.

run into the wave function a(p') of (1).The different graphs should
be distinguished by the number of meson lines (e), the number of
closed loops (m), and the different topologies v which are possible
with given e and m. Further, we have to distinguish the order of
the 2n points where the meson lines end. In this way, every Feyn-
man graph (nmr) consists of (2n)! ordered graphs, built up by all
permutations (x) of the points without alteration of the topology.
Our interaction operator consists of the sum over all these graphs,

V=Z V. .., (2)

where for every term V, there is an analytic representation
of the general form
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The meaning of the terms of this formula is

X=g'(2') ', co„= (p'+k„')&, hE=E, W, (—4)

where g is the coupling constant of the meson 6eld, and p, is the
mesonic mass. Every point of the graph means a transition to
another virtual state; E, is the energy of the virtual state and
depends on the lines lying between the two points. If two fermion
lines of such a virtual state are both in the initial state or in the
final state, the energy of both is 8' (see Fig. 1).All other fermion
lines give E(p) = (m~, P+ p )&, and the meson lines s& (k) = (ys+ks) &.

Graphs that contain a virtual state with only two fermion lines
are to be cut out. The connection between the variables p„and
k„ is given by the graph in the usual way. The F's have the same
meaning as in Levy's paper. ' The lines running backwards are
related to negative energy states, the lines with normal direction
are related to positive energy states. i in (3) is the number of lines
running backwards.

If a graph contains no closed loop (m =0), the integrations go
over all meson variables dk„. If it contains one closed loop (m= 1),
one variable k„of the adjacent meson lines can be eliminated,
because ZR„=O holds for those lines. But here the integration goes
over the momenta dq of the particle in the closed loop. All other
prescriptions remain unchanged. If the interaction takes place
between different particles, every closed loop appears twice, once
for mi and once for m2.

By these results an exact description of the interaction operator
V is given, being valid for all graphs and orders in the coupling
constant. It gives the Tamm-Dancoff equation with the follow-
ing exceptions: first, it does not contain the vacuum graphs, and
second, the excitation energies E, differ in the case in which the

, two fermion lines are in the initial or final state. Further, this
derivation gives us a direct possibility to carry through the re-
normalization of the remaining divergent parts; a paper on this
matter is in preparation.
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To clear up this situation, a rigorous treatment of the two-
particle potential was carried through, starting with the rela-
tivistic Bethe-Salpeter equation and passing on from this to the
one-time formalism. We give the results briefly here, whereas
explicit calculations and results will be outlined in detail in an-
another place. 5 The results correspond to those of Levy in those
special cases he took into consideration. For the difference co-
ordinates in momentum space the wave equation

E@'—(~1'+p')' —(~2'+p')'lo(p) = —«(p') (1)

holds, where IV is the total energy of the system, —V is the opera-
tor of the interaction potential, and u(p) is a four-component wave
function, con'taining the spins of both particles. V is represented
by the totality of all Feynman graphs with two fermion lines
running from the left to the right (see Fig. 1), but without vacuum
graphs. The right ends should not contain self-energy parts but
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N experimental determination has been made of the hyper-
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one structure of the 'SI metastable state of helium-3. The
atomic beam magnetic resonance method was used in a manner
similar to that used in experiments on the magnetic moment of
the same state in helium-4. '


