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A NONRELATIVISTIC derivation of the two-particle poten-
tial between two fermions, due to interaction with a boson

field, was outlined by Tamm' and DancoP and generalized by
Levy, ' including higher-order terms in the interaction potential.
Following Levy's treatment, the interaction terms of higher order
can be represented by nonrelativistic graphs, distinguishing in
addition the sequence of transitions and intermediate states. In
this treatment, it does not seem to be understandable why the
strongly diverging vacuum graphs are not considered, although
according to the derivation they should appear, because the in-
fluence of them on the energy denominators is such that they are
not separable. Further it is impossible to recognize the other di-
vergent parts of the graphs as terms of mass and charge renormal-
ization. This is impossible because the relativistic invariance has
been destroyed in the very beginning of the derivation of the one-
time formalism. In these cases Levy goes back to the Bethe-
Salpeter formalism, showing an approximate correspondence of
the two formalisms in two special examples and presuming it for
the whole.

FIG. 1. Example of a Levy graph with n =2 and m =0. The energy de-
nominators are

HEI =E«) (p+kI) +E(»(p+kI+k2) +cu(k2),
~E2 =E")(p) +E(»(p+») +E(»(p+»+») +E"'(—p -») —~.
gEg =E(» (p+k1+k2) +E(» ( —p —k2) +or (kg) —W'.

run into the wave function a(p') of (1).The different graphs should
be distinguished by the number of meson lines (e), the number of
closed loops (m), and the different topologies v which are possible
with given e and m. Further, we have to distinguish the order of
the 2n points where the meson lines end. In this way, every Feyn-
man graph (nmr) consists of (2n)! ordered graphs, built up by all
permutations (x) of the points without alteration of the topology.
Our interaction operator consists of the sum over all these graphs,

V=Z V. .., (2)

where for every term V, there is an analytic representation
of the general form

dkl' ' 'dk Zgl' ' 'dg Fl' ' 'F2
&emrn= ( 1) &
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The meaning of the terms of this formula is

X=g'(2') ', co„= (p'+k„')&, hE=E, W, (—4)

where g is the coupling constant of the meson 6eld, and p, is the
mesonic mass. Every point of the graph means a transition to
another virtual state; E, is the energy of the virtual state and
depends on the lines lying between the two points. If two fermion
lines of such a virtual state are both in the initial state or in the
final state, the energy of both is 8' (see Fig. 1).All other fermion
lines give E(p) = (m~, P+ p )&, and the meson lines s& (k) = (ys+ks) &.

Graphs that contain a virtual state with only two fermion lines
are to be cut out. The connection between the variables p„and
k„ is given by the graph in the usual way. The F's have the same
meaning as in Levy's paper. ' The lines running backwards are
related to negative energy states, the lines with normal direction
are related to positive energy states. i in (3) is the number of lines
running backwards.

If a graph contains no closed loop (m =0), the integrations go
over all meson variables dk„. If it contains one closed loop (m= 1),
one variable k„of the adjacent meson lines can be eliminated,
because ZR„=O holds for those lines. But here the integration goes
over the momenta dq of the particle in the closed loop. All other
prescriptions remain unchanged. If the interaction takes place
between different particles, every closed loop appears twice, once
for mi and once for m2.

By these results an exact description of the interaction operator
V is given, being valid for all graphs and orders in the coupling
constant. It gives the Tamm-Dancoff equation with the follow-
ing exceptions: first, it does not contain the vacuum graphs, and
second, the excitation energies E, differ in the case in which the

, two fermion lines are in the initial or final state. Further, this
derivation gives us a direct possibility to carry through the re-
normalization of the remaining divergent parts; a paper on this
matter is in preparation.
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To clear up this situation, a rigorous treatment of the two-
particle potential was carried through, starting with the rela-
tivistic Bethe-Salpeter equation and passing on from this to the
one-time formalism. We give the results briefly here, whereas
explicit calculations and results will be outlined in detail in an-
another place. 5 The results correspond to those of Levy in those
special cases he took into consideration. For the difference co-
ordinates in momentum space the wave equation

E@'—(~1'+p')' —(~2'+p')'lo(p) = —«(p') (1)

holds, where IV is the total energy of the system, —V is the opera-
tor of the interaction potential, and u(p) is a four-component wave
function, con'taining the spins of both particles. V is represented
by the totality of all Feynman graphs with two fermion lines
running from the left to the right (see Fig. 1), but without vacuum
graphs. The right ends should not contain self-energy parts but
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N experimental determination has been made of the hyper-
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one structure of the 'SI metastable state of helium-3. The
atomic beam magnetic resonance method was used in a manner
similar to that used in experiments on the magnetic moment of
the same state in helium-4. '
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A total of 3 cc NTP of He' was available. This was circulated
continuously through the system by a mercury diffusion pump.
Air leakage into the system was removed by the clean-up action
of the aluminum electrodes in the discharge tube. Hydrogen
generated within the system in small amounts was oxidized by
CuO at a temperature around 500'C. Liquid air traps removed all
condensibles.

The rf transition field was supplied by a rectangular cavity with
two slits through which the beam entered and left. The cavity was
driven in the TE&0& mode by a Sperry 2K-44 klystron on a con-
ventional regulated power supply, and further stabilized against
frequency changes by an Automatic frequency control circuit.
The cavity had a Q of about 1000.Major tuning was accomplished
by moving a strip of Teflon inside the cavity to regions of weaker
or stronger rf electric field. Since the width of the cavity response
was considerably more than the width of observed lines, tuning the
cavity in the course of a run was not necessary.

A copper loop located near one of the cavity slits served the
dual purpose of a cavity monitor and a source of low-frequency
magnetic fields when low-frequency resonances were observed.

Transitions (F, mp) = (2, ——,')~(-'„-',) and (-,', ——,')~(-,', ——,')
were observed at fields of about 2/3 gauss. The ultimate accuracy
of the measurement was limited by the inhomogeneity of the
magnetic field. Line widths due to this were about 0.3 to 1 Mc/sec,
depending on the Geld-dependence of the particular transition.

Our final result for the hyperfine splitting of the state is 6739.71
&0.05 Mc/sec. This is in agreement with a previous optical
measurement' of 6630&150 Mc/sec.

The theoretical value of the hyperfine structure has not yet
been computed to an accuracy comparable to the accuracy of the
present experimental value. The principal contribution to the hfs
due to a point dipole nucleus has been computed using a varia-
tionally determined electronic wave function which yields a value
for the ionization potential of 'Si helium accurate to within 5
percent. The hfs splitting thus calculated is 6660 Mc/sec with an
estimated accuracy of 5 percent. ' There will be a relativistic cor-
rection of order n2 which is similar in origin to the Breit correction
to the hfs of one-electron atoms. ' The principal radiative correc-
tion will be attributable to the anomalous magnetic moment of
the electrons; in addition there will be radiative corrections of
order a2 due to polarization and fluctuation energy effects. 4 The
effect of nuclear structure on the hfs is estimated in the accom-
panying letter to be ~1.3 parts in 104.'

A more complete report is in preparation.
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~ HE hyperfine structure of the He' atom in its metastable 'P&

state has been measured by the atomic beam magnetic
resonance method with an accuracy which is adequate to reveal
effects due to the internal structure of the He3 nucleus. ' An esti-
mate of the influence of the nuclear structure will be given under
the same assumptions as were made by Bohr for the hfs of deu-

terium. 2 When the electron is close to the nucleus it moves rapidly
compared to the nucleon velocities and will therefore be bound to
the two apparently stationary protons rather than to the center-
of-mass of the He3 nucleus. This approximation will be valid for
distances of the electron from the nucleus which are less than

p (A/mc) mc'/Ws

in which 8'& is some mean nuclear excitation energy. ' The quan-
tity p will be larger than the nuclear radius and much smaller
that the atomic radius. The contribution to the hfs from inside p
must be calculated using a wave function with the electrons cen-
tered on the two protons; the contribution from outside p will be
relatively insensitive to where the electrons are centered. When an
electron is in the nucleus, the neutron magnetic moment will
appear as a moment density distributed around the protons and
hence its effect on the hfs will be reduced compared to that of a
point magnetic dipole. This reduction is the principal effect of
nuclear structure on the hfs. To our approximation the protons
will have their spins antiparallel and hence will not contribute to
the hfs.

The neutron-electron hfs interaction operator is given by

in which e&'~ and e&'~ are Dirac matrices operating on electrons 1
and 2,

1
A& & ——p, )&vri 2'

fry, s—R/'

p,„is the magnetic moment of the neutron, xi and x~ are the posi-
tion vectors of the electrons relative to the mid-point of the line
joining the two protons, R is the position vector of the neu-
tron relative to this same point. The neutron-electron hfs energy
will be

(Hn) =f0 (rl r2)x*(R)Pnz(R)p(r&, r2)dr&dr2drz,

in which p(ri, r2) is the 'Si electronic wave function and x is the
nuclear wave function.

The nuclear wave function4 used was y=& exp( —s'X(rnpq
+rnp2+rpfn2)g, in which X is an adjustable parameter, rnp, is
the distance between the neutron and proton 1, and so on. The
normalization factor iV is given by E= (4/7)&P'. The electronic
wave function is actually a 16-component spinor, but the spinor
parts of the wave function will play the same role as in the usual
hfs calculation; and for the purpose of computing the fractional
change in the hfs due to the nuclear structure, it is sufhcient to
take only a Schrodinger wave function. The spatial electronic
wave function used was an antisymmetrized product of Z=2
hydrogenic wave functions for the configuration 1s2s. The result
of this calculation can be generalized easily to apply to an ad-
mixture of s configurations; however, in view of the other approxi-
mations being made and of the low accuracy to which the usual
point dipole hfs has been calculated thus far for helium, s this ex-
tension was not made. A possibly useful wave function which in-
volves the configurations 1sns (n= 2, 3, 4, 5, 6) and which gives a
calculated binding energy for 3S& helium which is within 0.2 per-
cent of the experimental value is being reported. 6

The integral to be evaluated for the 1s contribution to the hfs
is of the form'

1
drlal (1s)01(1$) f y (R)g(R)dryrP B(ri

The integral over the nuclear coordinates was done using Hylleraas
variables, s=rnyi+rny2, t=rnyi —m@2, and rpiy2, in terms of
which R=~(s+t —rp&p&)&. This integration was only approxi-
mate, with an estimated error of &10 percent. The unwieldy
results of the nuclear integration could then be integrated over
the electron coordinates and the result expressed as the sum of
two terms. One term gives the usual hfs due to a point dipole
neutron, and the other involves the nuclear structure parameter


