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Exchange Scattering in a Three-Body Problem~
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It is proved that in the three-body scattering problem, the prototype of which is the scattering of an
electron by a hydrogen atom, the coeKcient corresponding to exchange scattering behaves like a radially
outgoing wave. The essential conjecture used by Mott and Massey in their treatment of the problem is thus
verified.

I. INTRODUCTION

E shall consider the problem of the scattering of

~ ~ ~

~

an electron by a hydrogen atom the nucleus of
which is considered to be infinitely heavy. We shall
take the case where the electrons are considered identi-
fiable. Furthermore, since we do not wish to discuss
convergence difhculties arising from the fact that
Coulomb forces die out slowly, we shall replace the
Coulomb interactions by shorter-range interactions.

Mott and Massey' treat this problem. They obtain
an equation for the eigenfunction of the total Hamil-
tonian by expanding this eigenfunction, insofar as it is
a function of the coordinate of the electron of the hy-
drogen atom, in terms of the eigenfunctions of the
hydrogen Hamiltonian, and impose suitable conditions
on the coefficients of this expansion. In their treatment
of exchange scattering they use this same eigenfunction
of the total Hamiltonian, re-expand it, this time insofar
as it is a function of the coordinate of the scattered
electron, in terms of the eigenfunctions of the hydrogen
Hamiltonian. Mott and Massey then assume certain
conditions on the coeKcient of the second expansion.
It is our purpose to show in which sense their assump-
tion is correct. We now proceed to discuss the assump-
tion explicitly.

I.et us denote by the subscript 1 the electron which is
scattered and by the subscript 2 the electron of the
hydrogen atom. Then the Hamiltonian for the problem
is the following:

H(xy, xs) = T( xl)+ HH(x )s+ V(x» xs)+ V(xr). (1)

The operator T(x) is the kinetic-energy Hamiltonian
for a particle of mass m:

T(x) = —(1/2m) P (2)

The operator HH(x) is the hydrogenic Hamiltonian
which we take as

HH(x) = T(x)+V(x).

and V(x&, xs) is the interaction of the two electrons
with each other. These interactions take the place of
the usual Coulomb interactions.

In the above expressions we have taken 5= 1 and
have designated the three coordinates collectively of
the first electron by the vector x& and those of the sec-
ond electron by x~.

We are interested in eigenfunctions of the total
Hamiltonian H (xr, xs) which describe a situation which
corresponds to the condition that before collision the
atom have the energy E, and that the energy of the
incident electron be E—E . We shall denote this eigen-
state by P(x» xslE, E,). The total energy initially is
thus E. Since the energy of the system is a constant,
the total energy of the system at any time is E also,
so that f(xr, xs lE, E,) is an eigenfunction of the total
Hamiltonian H(x&, xs) corresponding to the eigenvalue
E; i.e.,

H(x» xs)P(xr, xslE, E,)=EP(xrxslE& E,). (4)

To specify the boundary conditions on/(x&, xs l E, E,)
corresponding to the initial condition, we introduce the
eigenfunctions of T(x) and HH(x).

Let us designate the eigenfunctions of T(x) associ-
ated with the energy E by x(x l E); then

2'(x)x(xlE) =Ex(xlE), (5)

where 8 is in a continuum whose values range from 0
to +~. Furthermore, let us denote the eigenfunctions
of H» (x) associated with the energy E by p(x l

E).Thus

HH(x)lp(xlE) =Ey(xlE). (6)

The argument E of p(xlE) has discrete values for
E&0 and lies in the continuum for 0&E&+~. We
shall call the lowest of the discrete eigenvalues E, (g
indicates "ground" state).

Mott and Massey expand P(xr, xslE, E ) in terms
of the eigenfunctions g(xsl E), as follows:

V(x) is the interaction of an electron with the nucleus,
f

P(x» xslE, E.) = P(x, lE, E.lE')y(xslE')dE', (7)
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where the integration is to be understood as a summa-
tion over values of 8' belonging to the discrete spec-
trum of IIH.

The functions F(xrlE, E, lE') have the signi6cance
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that lF(x&lE, E,lE')l' is the probability density of
finding electron 1 at x~ when electron 2 is in the state
P(«2 l

E') and when the entire system has the energy E;
Mott and Massey prescribe that the asymptotic form
of F(«ATE, E,

~

E') shall be as follows when
l

xy
~

—+~:

F(xgiE, E, iE')-+8(E' —E,)x(xgiE —E,)
~sl p'I I &xi

+ f(8) (g)

First let us consider the eigenfunctions of the kinetic
energy operator T(x). Usually the three momentum
components are taken as the complete set of commuting
variables. For our purpose, however, we shall take as
the complete set of commuting variables the energy
and the polar angles of the momentum 8, co. In terms of
these variables we write the eigenfunctions of T(x)
corresponding to the energy eigenvalue E as

y(xlE, 8, co) = (2s) &(2m'E)&(sin8)&e'&~*' (11)

where 8(E' E,) is—to be taken as a Kronecker 8 if
both S' and E are in the discrete spectrum of HH, as
a Dirac b if both are in the continuous spectrum of BH,
and as zero otherwise. Also

I
V'I =22m(E —E')]'. (9)

This boundary condition corresponds to the condi-
tion which we want, namely that before collision the
atom be in the state of energy E and the incident par-
ticle have the kinetic energy E—E,. After collision
there is to be a Qux of outgoing electrons.

Mott and Massey's conjecture is that if we use the
expansion

Here (px) is the inner product of the momentum vector
p and the coordinate vector x. In the right hand side
of (11) we replace p, p„, p, by (2mE)&sin8cosra,
(2mE)& sin8 since, and (2')& cos8, respectively. The
eigenfunctions as chosen above satisfy the normaliza-
tion conditions:

x(«iE, 8,

a))x(«ATE',

8', co')dx

=b(E—E')8(8-8')8((u —(o'), (12)
p2I

x(«ATE,

8, co)x(x'lE, 8, (o)d(od8dE
&0 ~0 ~0

=b(x—x').

y(x, «, lE E,) = G(«, lE E,(E')y(«, ~E')dE' (10) For simplicity we shall denote the angular variables
8, co collectively by the variable e, so that the ortho-
normality conditions (12) become

instead of expansion (7), then G(x2~ E, E,
~

E') will be-
have like

~sl u'I l xsl

g(8)

x(«ATE, a)x(«ATE', n) xd= (8E—E')8(a—a'),

(12a)

for
~

x2~ —+~. That is, having prescribed'(x~, x2~E, E,)
by imposing boundary condition (8) with respect to
x&, we assume that the outgoing wave condition on x2
can be proved.

The significance of G(«2)E, E, lE') is that IG(xml
XE, E, lE') l' is the probability density that the sec-
ond electron is at x2 when the first electron has been
captured by the hydrogen atom and is in the state
@(x&

~

E'). Since initially the first electron was free and
the second electron was part of the hydrogen atom,
where~a after collision IG(xmlE, E.I~') I' for

I
x&l~~

gives the probability that the first is part of the hydro-
gen atom and the second is free,

~
G(«2~ E, E,

~

E') l' is
called the "exchange probability. "

In the following section we proceed to show in what
sense Mott and Massey's conjecture is valid.

2. MORE EXPLICIT DISCUSSION OF THE
EIGENFUNCTIONS

In order to prove the conjecture we must be more
explicit as to the nature of the eigenfunctions involved.
In particular, we shall have to take into account the
auxiliary variables, which together with the Hamil-
tonian form a complete set of commuting variables.

x(«ATE, n)x(x'lE, n)dndE=8(x x'), —

where we write

x(«ATE, n)=—x(xlE, 8, ~). (13)

The bar means the complex conjugate.
Let us now consider the eigenfunctions of ZH(x)

=T(«)+V(x) and for the moment restrict ourselves
to the continuous spectrum. If we assume that V(x)
dies suKciently rapidly, we may write the eigenfunc-
tions of HH(x) belonging to the continuous spectrum
as the sum of an "incident wave" which is an eigen-
function of T(x) and a "scattered wave. " We shall
prescribe the boundary condition that the scattered
wave shall be a radially outgoing wave. This condition
is the one which will enable us to prove the conjecture.
Mott and Massey are not explicit as to the nature of the
eigenfunctions of HH in the continuous spectrum. The
ones we choose are the natural ones to use. In the ex-
pansions (7) and (10) for F and G we shall have to use
eigenfunctions of BH with these boundary conditions.

Now as auxiliary variables we shall take the polar
angles which describe the incident wave. The eigen-
functions of BH belonging to the eigenvalue 8 for
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E&0 satisfy the following integral equation:

y(XIE, 8, cu) =x(xlE, 8& ~)

t
t,~ly'll* —x'I

V(x')P(x'I E, 8, o))dx', (14)
2~~ fx-x'I

where
f
p'I = (2mE)&. If, as before, we denote collec-

tively the polar variables 8, co by n we have

y(XIE, n)=x(XIE, rx)

I
g~l u'I I X—*'I

V(x')y(x'IE, n)dx', (14a)
2~~

f
x-x'

f

where
I
y'I = (2')l.

For the discrete spectrum, i.e., for E&0, we may
choose any convenient set of auxiliary variables: for
example, we might choose the total angular momentum
if V (x) is spherically symmetric. Denoting these
auxiliary variables by n, as above, but keeping in mind
that n may be quar~turn numbers of an entirely dif-
ferent character than the n used for E)0, we have as
the integral equation for E&0

capital Roman letters and eigenvalues corresponding to
the auxiliary variables by small Greek letters. The range
and nature of the eigenvalues are to be read oG from the
way in which they appear in the various eigenfunctions.
%'e shall not hesitate to relabel the eigenvalues where
necessary to prevent confusion, especially in integra-
tions where they appear as dummy variables.

Now let us consider the eigenfunctions of the total
Hamiltonian H which we previously denoted by
P(x~, x2IE, E,). We must now also indicate the de-
pendence of the eigenfunction on the direction of the
incident electron, which we shall call n„and on the
initial auxiliary quantum number of the hydrogenic
atom, which we call P,. We shall now denote this eigen-
function by $(x&, x2IE, E., a., p.). We write the ex-
pansion (7) as

$(xg, x2 IE, E„a,P,)

F(x, lE, E.. ., p. lE', p')
dg J

&«(»IE' p')dp'dE' (19)

In Eq. (19) and everywhere below, integrations over
variables which belong to the discrete spectrum are to
be replaced by summations. We impose the condition
that for Ix~l~ao, F(X~IE, E., n„P,IE', P') shall be
the sum of an incident wave,

m
t

e"&'~~* *'~

g(x I E, a) = —— — V(x')P(x'IE, a)dx', (15)
2m~

I
x—x'I

where lp'I = (2mE)&. Note that since E., is negative,
I
p'I is imaginary, and hence that p(X IE, a) decays ex-

ponentially for
I XI~ac, as required. We can combine

(14a) and (15) as follows:

8(E'-E.)8(p- p.)x("IE-E.. .),
and a radially outgoing wave. Substituting (19) into
(4) and using the orthonormality conditions on
g(XIX, p) one obtains the following integral equation
for F which satisfies the boundary conditions:

$(XIE, a) =q(E)x(x IE, 'a)

m &~~I p'l I x—x'
I

V(x')p(x'I E, a)dx', (16)
F(x, lE, E.. ., p. lE', p') =8(E' E.)8(p' p—.)—

where
I
p'I = (2mE)&, and where g(E) is a step function

given by

q (E)= 1, , E)0;
g(E) =0, E&0.

These functions satisfy the orthonormality rein, tioris:

t

y(XIE, a)y(XIE', n')dx=8(E —E')8(a, a'),

m ~ ~sl p'l l »—&i'I

(xz IE—E„aa)——

XI V(x, ')+ V(x,', x.'))j(x,'IE', P')

XP(x» x& IE& E„a.„Pa)dx&'dxg ) (20)

with
I
p'

I

= L2m (E—E')$l, which, when substituted
into (19), gives us the integral equation for f:

(1g) 0'(x» X2IE) Eal aa) pa) =x(xiIE Ea) a )4(xa-IEa& 9pa)

y(x IE, n)lfl(x' IE, lx)dcxdE= 8(x—x'),

where one has to use care in interpreting b(n, a') or
equivalently the integration over n, since n may change
character for E)0 or E&0. The function h(E—E') is
to be interpreted as a Kronecker 8 if the arguments
belong to the discrete spectrum.

The following, our notational convention is: Gener-
ally we shall denote eigenvalues of energy operators by

t
q~lu'I l*~—»'I

2m'~z ~ ~ ~ lxy —xy
I

Xg(x2IE', P')4 (x2 IE', P')Lv(xg')+ V(xg', x2')j
XP(xg', x2'I E, E„a„P,)dx, 'dx2'dP'dE', (21)

with lp'I =
I 2m(E —E')$&.

We shall discuss eigenfunctions of two more Hamil-
tonians which will be useful. The Hamiltonian IIO is
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dined by
Hp(xi xp) = T(xi)+HH(x&).

expansion (10), which we now write as

(22) P(x„xp~E, E., n. , P.)
l

The incident term of the integral equation (21) is an
eigenfunction of Ho corresponding to the eigenvalue E,
We note that

H(xi xp) =Hp(xi xp)+ V(xi)+ V(xi, x,), (23)

hence (21) gives the eigenfunction of H in terms of a
Green's function of (E Hp), —where V(xi)+V(xl xp)
is considered a perturbation. We shall denote the eigen-
function of Hp(xi, xp) corresponding to the eigenvalue
E, by X(xi, xp j E, E', n, P), where

X(x,, xpiE, E', n, P)=x(xiiE E', n)P—(xpiE') P). (24)

The eigenfunction X (xi, x,
~
E, E', n, P) is an eigen-

function corresponding to the situation where the erst
electron is in the free state x(xi~E E', n) —and the
second is in the hydrogenic state P(x&

~

E', P). From the
orthonormality conditions on p and x we have

li (xii xp j Ey E ) n, P)X (xii xp
~
E$ E 1 ni P)dxidxp

"G(x&IE, E„n„P,iE', P')
gg a)

XP(xi
~

E', P')dP'dE'. (28)

Using the orthogonality relations (18) for p we have

G(X, ~E, E., n., P.(E', P')

J p(xi, xpiE, E., n., p.)p(xiiE', p')dx. (29)

To show that 6 is an outgoing spherical wave in x2 we
shall use the integral equations (21) for P. However, to
isolate the outgoing part, it is convenient to work in
the H~ representation since the outgoing part will be
recognizable in this representation as a 8+ function.

Let us denote P in the Hi representation by
r(F, G, p, p~E, E„n„P,), which is given by

= fi (E E)6 (E'—E')8 (n —n) 8 (P —P), —
(23)

$. (Xi XpIE, E', n, P)

Xl~(x, ', x,'t E, E, n, P)dndPdEdE'

= 8 (Xi—Xi')5 (Xp—Xp') .

Xp(xi) xp~F) Gi 'f, p)dxidxp, (30)

p being the eigenfunction of H~. Using the orthogonality
relations (18), (12) for p and x and the expression (27)
for p, we see that (29) is equivalent to

G(x, iE, E., n., P.(E', P')

Integrations with respect to E have the limits from
E' to + pp. Integrations with respect to E' range from
E, to ~. Thus the order of integration is important:
one must integrate over E first. The last Hamiltonian
which we shall introduce is Hi(xi, x&), which is just
Hp(xi, xp) with the first and second particles inter-
changed:

(F, E', y, P'I E, E., n. , P.)
QI

Xx(xp
~

F E', y)dydF. (31)—

We shall calculate r in terms of p as given in the II,
representation. Denoting P in the Hp by u(F, G, p, p

~
E,

E„n„p,), where

Hl (xi, xp) =Hp (xp, xi) . (26) N(F, G, y, piE, E„n„P,)
The eigenfunctions of IIi corresponding to the eigen-
value E are given by

p(x&, xp~E, E, n, P) X(x9, xitE, E, n, P)
X(x& I

E E', n)4(» I
E', p)— (27)

The eigenfunction p(xi, xp
~
E, E', n, p) is the state

vector corresponding to the first electron's being in the
hydrogenic state p(xi E', p) and the second electron's
being the state x(x, E E', n). The orthonorm—ality
relations for p are analogous to those for X.

p(xi, xp~E, E„n., p,)

Xli(xi, xp)F, G, y, p)dxidxp, (32)

we have, on using (30), (27) and (25) together with
orthogonality relations for p and x.
r (F, G, y, p

~
E, E„n„p,)

3. METHOD OF PROOF

The function G(x ~E, Ep, ~E'), which we now call
G(X2~ E, E„n„p,

~

E', p'), is de6ned by the alternative

Xw(F —G, p~G', .')e(F' G', p'~G, .)—
Xdy'd p'dF'dG', (33)
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The proof of (35) involves the following well-known

identity:
s(E, a~F, P)=

J x(xtE, n)y(«~F, P)dx; (34)
oa 2

where

m e'~~~~' "~

t'

e(E, n
~
F, P) is thus the eigenfunction P of IIn as given gt,'XIE, 8, 07&y (F—E&g(X' E, e, Gr&dMdedE

in the representation of the kinetic energy operator T.
We shall use the integral equations for I and v to obtain
the outgoing parts and finally use (33) and (31) to get J 0 J

~

0 0 ~

x
» xI E) ~t ~ ~~ F

the expression for G.

4. THE EQUATIONS FOR u AND v

We shall first show that N(F, G, y, s~E, E, n, P )
satisfies the relation

u(F, G, y, s
i E, E„n„P,)

= 8 (F—E)8 (G—E.)8 (y —n.)8 (e—P.)
+~ (E F)T(F, G—, ~, s~E, E., n. , P.), (35)

where

T(F, G, y, s
~
E, E„n„P,)

= " "x(xi~F—G, p)y(», ~G, s)t V(x,)+ V(x„x,)]

Xk(xl »2~E E n, p )dxidxs, (36)

and where p (f) is essentially the 5+ function; it is
defined by

Xx(x~E, 8, oi)doid8dE= ——,(3&)

where tp~ = (2mF)'*.
The verification of (35) is obtained by replacing P

in Eq. (32) by the right-hand side of (21): Using the
identity (38), we replace

~ g~lP'I I*I—»'I
with

~

y'~ = t2m(E —E')]l,
2s (xi—x,'(

by

p 00

~o ~

i~»(x, 'i F'—E', ')y (E F')—
X&(x, ~

F'—E', n')dn'dF'.

y (f')= lim
++0 f.+sP-

s7i8(f)+P— (37) We then have

X ' dF' dp' dn'X(x, '~F' —E', n')y(x, '~E', p')

Xy(x, ', x,'IE, E., n. , P.)

where P indicates that in integrations over f, the prin- N(Fi Gi » s
I E~ Es~ n~~ P~) =

J J &(»r»s I E& E~~ n~~ PN)

cipal part of 'the integral is to be used. It might be
noted that in accordance with the general formalism of

tt i g op tos, T(E, G, y, iE, E„„P,) is the X ("' 'I »»') ' '+
amplitude of the scattered spherical wave obtained when
one sets

~
xi~~~ in the integral equation for P [Eq.

(21)]. This scattered wave corresponds to the case
where after scattering the hydrogen atom is in the
state described by the quantum numbers G, y, and the X& (E F')LU(x, ')+U(», ', «,')]
incident electron has the direction e.

Incidentally, one can write (35) as an equation for I,
namely

N(F, G, » ~Es, E„Pa~)
=~(F E)b(G E.)o—(v )n—b( sP.)—
+y (E F)[V(xt)+V(xi, xs—)]~'

XN(F, G, ».~E, E., n., P.), (35a)

where LV(xi)+U(xt, xs)] & is the operator V(xi)
+V(xi, xs) as given in the Hs representation; it oper-
ates on the variables F, G, y, e of

I(F, G, » s
~
E, E., n., P.),

on the right-hand side of (35a). Equation (35a) can be
made the basis of a discussion of the scattering problem
in terms of the scattering operator (see, e.g. , Moses' ).

' H. K. Moses (to be published).

dx (ixx~ iFE n)x(xi~F G y)

X dxs4 (x ~E,sP )$(«2~Gp s)

which, on using the orthonormality conditions on P, z,
P, gives (35).

Similarly we find for v:

.(E, n~F, P) =&(F)~(E-F)t (a-P)
g& (F E)T,(E, n

~
F, p), (39)—

where

Ti(E, n~F, p) = I x(»~E, n) U( )p«(x~ pF)dx. (40)
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5. THE EVALUATION OF r(E, 6, y, elE, E„n„II,)

We shall obtain r in several steps; in each step it
will be our objective to isolate a y function, since this
function in the x representation is the radially out-
going wave. We shall first indicate several useful
identities for r . First, from (37) we have

from which we obtain 6nally

v(F—G, y I
6', c')v(F' —G', r'I G, c) =g(G')g(G)

X8 (F—P)8 (F—G—G') 8 (r—c') 5(r '—c)

+y (F'—F)gv(F' G', y—'IG, c)Ti(F—G, pl G', c')
—.(F—G, ~IG', ')r, (F' G',—&'IG, .)j. (48)

"7 (t)= r—( f—)
It can also be shown that

(4~) In (48) we have achieved our aim of isolating a y
function.

To evaluate
(f )~-(~ ) =r O-.)~ (t +f )

+v 0- )v 0 +~-) (42)

On using (41) we see that (42) can be written as

v-(i )v-(f ) =v (f )v (f —
f )
+r-(t.)r (f —f.) (43)

In expression (33) we note that the product v(F G, —
'r

I
G', c')v(F' G', y'

I
G—, c) appears. We shall use the

identity (43) and Eq. (39) for v to isolate a y function.
From (39) we obtain immediately

v(E, nlF, p)v(E', a'IF', p') =g(F)q(F')
X& (E—F)&(E'—F')8(a—P)8 (n' —P')

+q (F)fi(E F)g (n P)q—(P E—') T, (E', —u'
I
F', P ')

+a(F')fi(E' F')&(n' —P')v (F—E)T-i(E—, u
I F, P)

+7 (F'—E')'r (F—E-)Ti (E a
I
F-P)

X T, (E', n'IP, p'). (44)

We shall siniplify the last term of (44). Using (43), we
have

(F' E')& (F E) =& (gi' E')& (F E F'+.E~)

+r (F—E)r (F'—E'—F+E). (45)

Hence the last term of (44) is

(F'-E') T.(E', -'IF', p')~ (F E-F'+E)-
xT, (E, IF, p)+~ (F E)T,(E,.IF', p)-
X'r (F —E F+E)T (E u IF —P )
=v(E', n'IF', p')v (F E F'+-E')—Ti(—»nlF) p)
—

q (F')6 (E'—F')fi(a' —P') r (F—E—F'+E')
x T,(E, a IF, p)+.(E, a IF, p)~ (F'—E —F+E)
X Ti (E', u'

I
F', P') g(F) g (E F)fi (n —P)— —

Xy (F'—E'—F+E)Ti(E', a'—
I
F', P'), (46)

where we have used (39) to obtain r Ti in terms of v.
Now the second and fourth terms on the right-hand
side of (46) are just the negatives of the third and
fourth terms on the right-hand side of Eq. (44). Hence,
substituting the last term of (44) as given by (46), we
have

v(E, nlF, P)v(E', n'IF', P') =g(F)g(F')
X& (E—F)b (E'—F') & ( —P) & (

'—P')

+& (F—E—F'+E')Lv(E', a'IF', p')T, (E, alF, p)
—v(E, nlF, P)T, (E', n'(F', P') j, (47)

u(F', G', y', c'
I
E, E., n, P )

gc

Xv(F G, y I
G') c—')v(F' G') y'

I

—G) c)dy'dc'dF'dG',

we use expression (48) for the product of v v, and for u
we use equation (35). We obtain four terms as we did
when we evaluated the product v 8. It turns out that
by using (42) for the products of the r 's of the fourth
term one can eliminate two of the terms in a manner
analogous to the derivation of (47). We have, finally,

r(r, G, 'r, .IE, E., u., P.)=&(G)&(E.)f'i(F E)—
Xb (F G E.)~ (c — —

)n~ (~ p.)—+~ (Z —F)—
t'

~ v(F—G, 7 I
G', c')v(F' —G', ~'IG, c)

XT(F', G', y', c'IE, E„n„P,)dy'dc'dF'dG'

+ " " e(F'-G', 'IG, .)T,(F-G, ,IG.. .,)
J@g alga J J

XN(F', G', y', c'IE, E,) n„P,)dy'dc'dF'dG'

i' v(F—G vlG' c')Ti(F —G' &'IG c)

Xu(F', G', r', c'IE, E„u„P,)d'r'dc'dF'dG' . (49)

Now, using the definition (34), (48), (32), (36) for v,
T& and u, T, respectively, and the orthonormality prop-
erties for x and p, one obtains

.(F-G, , I
G „).- (F -G, , I G„)

~s ~,, J J

XT(F', G', y', c'
I E,'E„n„P,)d'r'dc'dF'dG'

,

' x(x& IF—G, r)g(»IG, c)LV(xi)

+V(xi, x2)]tP(xi, x2IE& E~, az, P~)dxidx2, (o0)
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& (F'—G', y'
I G, «) &i(F—G, y I

G', «')
~E, ~g, ~ ~

X&(F', G', y', «'IE, E„n„P,)dy'd«'dF'dG'

Now we use (38) to obtain

00

x(x2IF—E') p)y (E F)x—(x2'IF E')—y)dydFJ,~

and

' x(X2IF—
G& y)g(xilG, «)V(X2)

Xf(xi, x2IE, E„n~, p, )dxidx2, (51)

00

~
x(x IF &)v-(E—E'—F)x(»'IF, v)dvdF

0

m ~sly'I lx2—xs'I

(54)

~(F—G, el G', .') &,(F'—G', ~'IG, ~)
~Eg ~or J «J

Xu(F', G', y', «'I E& E„n„P.)dy'd«'dF'dG'

x(x2IF—G, y)p(xilG, «) V(xi)

XP(xi, x«IE, E„n„P,) dxi dx~. (52)

Hence we have finally

r(F, G, ~, «IE, E., a., P.) =~(G)&(E.)

X 8 (F E)8(F —G E,)8—(« —n) 8 (y —P,)—
P

+y (E F) ) x(X—~IF—G, y)y(xilG, «)[V(xi, x«)

+V(x«)7'(x&, x2I E, E., n., P.)dxidx2 (53).
Equation (53) can be written as an equation for

r(F, G, ~, .IE, E., n., P.),
as follows:

r(F, G, y, «IE, E„n„p ) =g(G)rl(E )8(F—E)
X&(F—G—E.)&(«— )n8(y —P )
+y (E—F)[V(xi, x2)1V(x2)7~'

Xr(F, G, y, 6
I
E, E., a„P,), (53a)

where [V(xi, x2)+ V(x2)7 ' is the operator V(xi, x2)
+V(x2) as given in the 8'i representation; it operates
on the F, G, y, «variables of r on the right-hand side
of (53a). Equations (21), (35a), and (53a) are the in-
tegral equations for the same eigenfunction of II in the
x, Ho, and H& representations, respectively.

6. THE EVALUATION OF G(x2iE, E„n„g,i
E', g')

Using Eq. (31) which gives G in terms of r, we have

G(x, IE, E., a., p. I
E', p') =&(E')&(E.)

Xx(X2 I
E—E', P,)8 (E—E'—E.)8(a,—P')

where
I
p'I = [2m(E —E')7'. Finally, our generalization

of Mott and Massey's conjecture is

G(x, I E, E., a., p. lE', p') =&(E')&(E.)

Xx(»IE, p.)8(E—E'—E.)5(n.—p')

+&zl p'I I X2—x2 I

4(»'IE, p)[V(»', »')
2'~ J Ix —x2'I

+V(xg')7$(xi', x2'IE, E„n„P~)dx dixg . (55)

wh«e
I
p'I = [2~(E—E')7'

It is clear that the second term represents outgoing
spherical waves. In Mott and Massey's conjecture the
first term is ignored. If the initial state of the hydrogen
atom is such that the electron is bound, then E (0
and hence the first term vanishes for all E', P'. Even if
initially the hydrogen atom is in an ionized state, the
first term vanishes for E'(0, i.e., for exchange scatter-
ing where the incident electron is captured.

Sorowitz and Friedman' point out that the integral
of the second term diverges for E'&0. This is not sur-
prising because G is a symbolic function in the sense ofI. Schwartz. That is, 6 contains a part resembling 6-
function. This is clear from the fact that the first
term contains a 5-function. This statement can also be
shown to be true on more fundamental grounds which
we shall not discuss here.

Borowitz and Friedman extract the symbolic part of
this integral and are left with a convergent part. Ke
prefer to consider a wave packet of incident electrons
and hydrogenic atoms as being given initially. The
initial state would then be

t'
X(xi, x2IE& E~& n~) p~)aEdE4

Xf(E, E., a., P.)dn.dP.««.,

while at any finite time the state is given by

P
x(x2IF—E' ~)~-(E—F)

Xx(x2'IF —E', 7)dydF y(xi'IE', p') [V(xi', x«)

+V(x,')Q(xi', x2'IE, E„n,& P,)dxi'dx2'.

P(X„X,IE, E„a., P.)
Eg aJ E~~ eJ

Xf(E, E., n„P,)dn, dP,dEdE„

where we take f(E, E„n„p,) to be a quadrically in-

3 S. Borowitz and 8, Friedman, Phys. Rev, 89, 441 (1953).
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tegrable function of its arguments. Then

G(x, ~E, E., n., p. ~E', p')

Xf(E, E, n„P,)dn, dP,dEdE„

is a well-defined function of x2 and is the probability
amplitude for exchange scattering.

Some generalizations of the above expressions are
possible, for although we have assumed that V(x),
V(x&, x&) are simply functions of their arguments, our
results can be generalized to take into account the
possibility that V(x), V(x&, x2) are operators. The
generalization can be obtained immediately, but we
refrain from giving it here explicitly.

It should be pointed out that the Mott and Massey's
F„(r), G„(r), P(r~, r2) are not quite our functions F,
G, and f. They are related as follows:

E (r) = (2m) &L2m'(E —E,)j—'
Xsin—~8.P(x~E, E., n., P.~E', P'),

P (r~, r,) = (2~)&L2m'(E —E,)j '

xslll '8glp(xy, X2 ~E, E~, n~, p~)

G„(r)= (2~)&L2m'(E —E.)j l

)&sin '8,G(x~E, E„n„P,~E', P'),

where the quantum number n corresponds to the pair
of quantum numbers E', P', and n, represents the pair
of polar angles O„co of the incident electron. Also,
the vector r is just our vector, x.

One could also expand 4'(x~, x2~E, E., n. , p.) as
follows:

4'(xg, x2iE, E„n„P,)

= t

~
D(x, (E, E., n. , P.(E', P')

&&x (x2 i
E', P') dP'dE'. (56)

Here D(x~~E, E„n„P,~E', P') represents the proba-
bility amplitude that the incident electron has the
position x~ when the second electron has the definite
energy E' and direction p', i.e., where the second elec-
tron has a definite momentum. It can be shown by an
analysis similar to that used for exchange scattering that

D(x, iE, E., n. , P.iE', P')

=n(E.)x(* IE—E.. .)8(E' E.)~(—P', P.)

~~I y'I I *a—*i'I

2~»
] x,—xi'(

)&+(x~', x,'~E, E,) n, ) P,)dxg'dx2'. (57)

with ~p'~ =[2m(E—E'))&. Hence, except for an in-

cident term, D(x~ E, E„n„P,~E', P') is an outgoing
spherical wave in x~~. The amplitude of this spherical
wave as

~
xj

~

—+~ can be used to calculate cross sections
describing the scattering of the first particle when the
second electron has a definite momentum.


