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The Onsager relations assert certain symmetry relations for the cross coefficients that connect rates of
Qu~ in stationary nonequilibrium processes with the driving "thermodynamic forces. " These relations are
usually derived by an argument borrowed from Quctuation theory, with the assumption that the rate at
which a fluctuation in an equilibrium ensemble regresses equals the rate at which the ensemble average of
the same quantity will change in a nonequilibrium ensemble. In this paper, we have by-passed fluctuation
theory and have derived similar symmetry relations for the corresponding cross coefficients in ensembles
consisting of thermally isolated systems diGering but slightly from an equilibrium canonical ensemble.
For the case of large deviations from equilibrium, we have found expressions for the same cross coefficients
which possess no symmetry properties but which are exactly the usual correlation coefficients of fluctuation
theory. Because our present work is concerned with thermally isolated systems, we cannot yet describe in a
satisfactory manner stationary nonequilibrium processes. For the representation of such processes, one
~ould need an ensemble of systems in which the interaction with the surroundings is described in terms of
additional random variables.

I. INTRODUCTION with the Gibbs form of the H-theorem. ' We are inter-
ested in the potentialities of a second type which we
have called "generalized canonical ensembles. " These
ensembles seem in many cases to be a more adequate
statistical collection than the generalized microcanonical
ensembles, and are easier to work with.

Generalized canonical ensembles were introduced by
one of us (Peter G. Bergmann)r in a previous paper.
We shall discuss the general properties of these en-
sembles in greater detail, and then as an example show
their use in the near-equilibrium case in deriving the

. Onsager relations.

' 'HE first major contribution to a general thermo-
dynamics of irreversible processes was the

Onsager theory of interfering linear processes. In this
work the cross-coefFicients describing the interference
were shown to be related by a set of reciprocal relations.
These relations have been demonstrated by a sta-
tistical mechanical argument using properties of the
equilibrium microcanonical ensemble. "In this proof
the techniques used are restricted to processes taking
place near equilibrium.

Recently considerable progress has been made toward
widening the scope of statistical mechanical methods
for treating irreversible processes. ' ' These investigators
also use the equilibrium ensemble as a starting point.
They obtain nonequilibrium results by considering
suitable nonequilibrium subsets of the equilibrium
ensemble. That is, specific fixed values of the interesting
time-dependent macroscopic variables of the system at
a particular time characterize a certain subset of
members of the equilibrium ensemble, and the proper-
ties of this subset are investigated. Though this ap-
proach is not restricted to near-equilibrium processes,
to date results have been obtained only under such
conditions.

A second method which is based on the same view-
point is provided the use of nonequilibrium ensembles,
constructed specifically as such. We have felt that this
approach might provide a better starting point for the
study of more general nonequilibrium situations. One
such ensemble, a sort of "generalized microcanonical
ensemble, "has been used for a long time in connection

II. CONSTRUCTION OF THE ENSEMBLE. ENTROPY

Thermodynamic measurements on a system in non-
equilibrium consist of the determination of the values
of interesting local variables in the system. For example,
one might measure local temperatures and pressures in
a gas. The choice of variables is dependent on the type
of system and the amount of its deviation from equi-
librium. For instance, temperature would be meaning-
less in a case where the temperature gradient (i.e., the
gradient of mean energy per degree of freedom) is large
over a mean free path. Furthermore, care must be
exercised in nonequilibrium cases that the measured
quantity actually is properly interpreted in terms of
the variables of the system, For example, diferent
types of thermometers thrust into an anisotropic beam
like the sun's rays will measure di8erent "temperatures"
because of their diferent absorption properties.

If any suitable set of variables and measurements is
chosen (it might, for instance, include cruxes, or even
quantities moving with the Qow), then a statistical
treatment in principle can be used to obtain a thermo-
dynamic description of the process. "Suitability" here
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is taken to mean that the variables selected for obser-
vation do not Quctuate significantly during the time
required to complete one observation; this, of course,
is dependent on the refinement of the apparatus as
well as on the extent of non-steadiness of the system
with respect to those variables. And it is also necessary
that those variables which represent local contributions
to a variable characteristic of the whole system, like
the energy, have an approximate additive property;
that is, that the sum of the local contributions should
approximately equal the system variable, with inter-
action corrections negligible. For example, the total
energy should approximately equal the sum of the
local energies measured. But this condition generally
admits a wide class of variables. In the energy example,
the interaction across the boundary between regions
where measurements are made is required to contribute
little to the total energy, and this is frequently true
even though the atomic interactions are strong, merely
because of the large number of atoms in each measured
region. These requirements are in some sense equivalent
to saying that meaningful measurements are indeed
possible. An example of the possible use of variables
moving with the Qow is the use of a Brownian particle
as a measuring instrument in a Quid in nonequilibrium.

One further requirement is that the set of variables
selected be "complete" enough that the ensemble
averages described below are defined. Thus we mus't

avoid a speci6cation which would lead to finite ensemble
densities (i.e., densities bounded away from 0) over
unbounded regions of y-space. For instance, we cannot
specify temperature measurements at each end of a
rod with no measurement bounding the mean total
energy of the rod.

Once a set of measurements has been made, the
statistical method involves the choice of a suitable
collection or ensemble of identical systems in micro-
scopic states which either exactly, or in the ensemble
average, correspond to the macroscopic state implied

by the measured values. Then the prediction of the
future for the actual system is made through the study
of the behavior in time of averages over the ensemble.

The ensemble density which was called a "generalized
microcanonical ensemble" above is constructed as
follows: the p-space of the system is conceived to be
divided up into cells of size corresponding to the
definition of the measured local variables. Each mole-
cule-space in the p-space is similarly divided. The
information obtained in the measurement is now
interpreted, on account of the macroscopic character
of the variables, as giving an occupation number to
each cell in p,-space. Then, using the principle of equal
a priori probabilities, we construct an ensemble which
has initially constant values over corresponding cells
in y-space.

This procedure is not always appropriate. For one
thing, certain important thermodynamic measurements
are made on intensive parameters, for example, local

temperatures, rather than directly on dynamical vari-
ables like local energies, and it is easier to treat these
parameters meaningfully with a canonical-like en-
semble, Such ensembles are really defined by the values
of the parameters, whereas it is more difricult to relate
such quantities to the generalized microcanonical
ensembles. In addition, the physical regions in which
measurements are made are not usually isolated but
are rather to be considered in loose contact with their
neighbors, in the sense of the requirement mentioned
above of "additivity" of the selected dynamical
variables. This contact suggests the usefulness of
canonical-like ensembles which admit members diGering
slightly in the values of the interesting dynamical
variables.

If the interesting variables are designated as
a;(p&. p„, q& q„), (we shall assume in the following
that they are not explicitly time-dependent, although
this restriction is not necessary), then the generalized
canonical ensemble density is

t (p, q, t) = (Zo)-' exp( —P, p,oo,o),

Z'=
y-space

exp( —P P co)dX

f
(a;)A„(to) =) a;tj, (to)dX= A '(to), (3)

where A, (to) is the measured value of a, at to. In other
cases the p;o are the measured quantities. For example,
if the a; are local energies, the P,o are proportional to
the reciprocals of the initial local temperatures. In this
case the conditions (3) determine the average values of
the u; at time to.

The density p satishes Liouville's equation. In fact
it is merely a way of writing that solution of Liouville's
equation which has the canonical form and the correct
average properties at to.

In (I) a quantity called the "system entropy" was
introduced which takes on its minimum value at the
time of observation and has other properties suitable
to entropy. This quantity is defined as follows:

S*=k(lump+ inZ+P; P,(a;)A„), (4)

where k is Boltzmann's constant, p, o is a constant, and

where dX is the volume element in y-space; p, q is a
symbol for the set of coordinates and momenta p, p„,
q~ q„; p,o are constants; a,o is that constant of the
motion which at the time of measurement equals the
value of the variable u;, that is,

Ba,o/Bt+(a, ', II) =0, aP (p, q, t) =a'(po, qo), (2)

where po, qo are the values of p, q at to. Now in some
cases it may turn out that the measured quantities are
the variables a;, in which case the p;0 are determined

by the conditions:
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P, and Z are defined by the requirements

Z ' a, exp( —p; p,a,)dX=(a,)p„

Z= '

exp( —Q, P,a,)dX

That is, P, and Z are time-dependent quantities which
are used to de6ne a 6ctitious canonical ensemble which
yields at all times the same averages of the a, as the
actual- ensemble density p, .

The quantity 5* is a generalization of the ensemble
definition of I1oltzmann's quantity (—kH) for general-
ized microcanonical ensembles. ' S* reduces to (—kH)
if we consider the a; as designations of cells in phase
space. Thus if y-space is divided into small but not
infinitesimal cells as described above, then we define

1 inside the zth cell,
a;=X; '8;(q, p)=

0 outside the ith cell,

(ai)A„=X, ziti(q, p)dX= p, .

From the definition of Z and Pl„

Z(a, )A„—— a; exp( —Pi, Piai, )dX,
4

Then

=X, ' exp( —PhPpap)dX=exp( —P/X).
~ ith cell

S*=k(lnZ —P; in(Zti, )ti,X,+lntip)
kH+k lnpp. —

In (I) it is shown that S* has an absolute minimum
at the time tp, both with respect to past times and
future times. We conjecture that the usual behavior of
this function is an initial increase continuing for very
large times with perhaps small undulations, then at
vast intervals large fiuctuations and eventually a
decrease to, but not below, the original value. This
behavior is, of course, the same as that usually con-
jectured for the ensemble definition of (—H), and any
entropy defined for a closed system so that it does not
eventually decrease would be a violation of the Poincare
Theorem on quasi periodicity of dynamical systems.
Note that the property of 5* of having a minimum at
tp which may later be reached but never surpassed, a
property previously proved for (—H), ' is quite difFerent
from the behavior of the Boltzmann p,-space de6nition
of (—H), which we shall designate (—H'). This latter

where X; is the volume of the ith cell. H is defined as

H =Q; ti, inta;X, ,

where p; is the average value of p, over the ith cell. Then

quantity can, indeed, Ructuate below its value at tp.

The behavior of S* and the ensemble quantity (—H)
is, of course, an ensemble property which is dt;pendent
on the collective behavior of all the systems, and under
certain rare dynamical conditions, individual systems
in the ensemble may indeed eventually have values of
( H)—deviating below their initially observed values.
The point is that even the "average" system eventually
decreases in entropy, but it does not decrease below
the initial value at tp. We identify the ensemble property
of 5* with the "thermodynamic" behavior of entropy
for the physical system under observation.

Taking the time derivative of S* in (4) we 'get

dt

d
kzi Pi(ai)A~+kzi Pi(ai)A~+kz~ Pt (ai)All

dt

III. NEAR EQUILIBRIUM. ONSAGER RELATIONS

We shall assume that one of the variables a;, say ap,
is chosen as the Hamiltonian B. The corresponding
Pp' (the reciprocal of kT), is the "thermodynamic force"
associated with the mean total energy of the system.
Then the density p, can be written as

p= (Z ) ' exp( —pp H —p p a ')

and the equilibrium ensemble is characterized by zero
values of all the P,', i/0 If, for. example, we have
chosen the a; for i)0 as local energies (i.e., energies of
parts of the system), then the kPP for i)0 will be not
the initial values of the local reciprocal temperatures
but the differences between reciprocal local tempera-
tures and the reciprocal over-all temperature.

The quantities (a,)A, can be expressed as functions of
the set of PiP and t. The derivatives B(a,)A„/BPiP are as
follows:

&(a;)A

clP .P
~i~j Av ~i Av ~j Av (10)

If the initial measurements (ai)A„are close to equi-
librium values and, accordingly, the pip(j&0) small,
then we can express (a,)A„by the first terms in a Taylor
series expansion in the P, (jAO). That is,

(a;);(P' P:, t)

pj(a;)A„
=(a')"(0 «)+r. (0 o t)P '+ . .

clP .P

=( ')"(o o, t)+Z ~',P,',

By integrating by parts we can put -this equation in
the following form:

dS*/dt= kg; p,(a;)A„.

This equation suggests the role of the kP, as "generalized
reciprocal temperatures" and the (a;)A„as "generalized
heat Rows. "
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6i
a;(x) = p;u, (x')

for even functions,
(13)

for odd functions.

where

A,;(t)= —(u,aP)„„(0 0, t)

+ (a;)„„(0 0, t)(a; )p, (0 0, t) (12)

The first term in (u;)q„(PP P„, t) is constant in time,
being an average over the equilibrium ensemble of a
quantity which is not explicitly time-dependent. We
shall now show that the quantities A;; have certain
symmetry properties. We distinguish between those
variables ai which are even functions of the momenta
of the system, and those which are odd functions of the
mom|.'nta. We assume in the following that the Hamil-
tonian II of the system is an even function of the
momenta. Consider a point x in phase space which
moves from an initial value x' according to the equa-
tions of motion. We can symbolize this as x=M(x', t)
where M(x', t) is the mapping of x' in phase space.
Any constant of the motion, in particular an ensemble
density p, , will satisfy

p (x, t) =p (x', 0) =p(M '(x, t), 0).

If we designate by a prime the transformation reversing
the signs of the p~, then the even or odd character of
the ai is given by

(a;aj')~„——(Z') —' exp( —Pp'H —g; PPp, a;[M(x', t)j)

X ppag(M(x', t))p;a, (x')dX','
(»)

, f(, ,').„=(Zo)-
~

p( —P,oH —P, P,', ( ))

Xal, (M (x, t))a, (x)dX.

Now we want to relate the quantities Aij, to the
Onsager coefficients. First note that Eq. (9) identifies
the Pq as the Onsager forces. ' We form the difference
quotients

G;= -'[(,)"(~" ~:,t.+ )—(a )A~(Pi' P„', tp) j (18)

over a time interval v which is, on the one hand, not
infinitesimal, and, on the other hand, so small that
the deviation from equilibrium has not materially
changed. The condition for the latter is that the
generalized reciprocal temperatures P, remain un-
changed over the interval v.'

O'=o, O'=PI (19)

librium case, but do not hold for the general case. If
we carry out a similar transformation of the first term
in the general expression (10) for 8(a,)&„/BPP, we get

The assumptions on the Hamiltonian lead to the
property

M(x", t) = [M '(x', t)]'. (14)

This equation is a consequence of the time reversibility
of the equations of motion.

Now we want to show that

Then we investigate the dependence of G; on Pq.

a(a, )A, a(a;)= r ' (tp+r) — (tp),
- &4~ &Pp

= r '[A;„(tp+ r) A;I, (tp)]— (20)

A''I =A I,i~I,~;.
Hence I.;~ has the same. symmetry properties as A;q.

15

= (Z') ' exp( —Pp'H)u&(x')a, (M(x', t))dX',

= (Z') ' exp( —PpPH)ag(M '(x, t))a, (x)dX,

= (Z') ' exp( —PpPH)up([M(x', t)]')u, (x)dX,

(Z') '~ exP( —

PpPH')Pinup(M(x',

t))P,u, (x')dX',

=(aI,a ),„(0 0, t) p, &,. (16)

Equations (15) are true for all time for the near-equi-

We shall show this property for the 6rst term in
expression (12); the second term is treated in exactly
the same way:

(u;ag)A. (0 0, t)

Li I = ~i~aLI i (21)

These latter equations are the Onsager relations. ' The
quantities L, I, are identified with the thermodynamic
coeKcients in linear irreversible laws.

The requirement of a lower limit on the time in-
terval r is necessary because the quantity 8(a;)Av/l9PIg
= —(a,

asap)~„+(a,

)A,

(asap)~„

is zero at time tp if a, and aq
are either both even or both odd functions of the
momenta. In some sense the ensemble fails to demon-
strate the dissipative process instantaneously.

The upper lgnit rejects the fact that the Onsager
relations apply to a system in which one portion
"drives" another in an approximately steady state,
i.e., a state in which the parameters like temperature
and chemical potentials are constant in time but vary
throughout the system. Wp may, for example, conceive
of a system composed of three parts: two large regions
which act as "reservoirs" under different thermo-
dynamic conditions and a small connecting region
through which steady-state cruxes take place. In this
case the P, referring to the small sub-system are zero
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I.;g(H) = L~, (—H) p;p~. (21)

by virtue of the steady fluxes, and the p; referring to
the reservoirs are zero because of the large size of the
reservoirs. The a; of the reservoirs will steadily change.
In this situation the interesting relationships are be-
tween those a; characterizing the sub-system and the
driving "temperatures" of the reservoirs. Thus we
require the time r over which the difference quotients
are calculated to be at least small enough that essen-
tially steady conditions exist over it.

This treatment in terms of dif'ference quotients is
analogous to earlier derivations. ' It is perhaps just as
realistic, however, to identify the thermodynamic
coeKcients with genuine time-derivatives 8(o;)A„/BpI,
evaluated not at tp but at a time tpj7, where 7 satisfies
the above restrictions; these quantities, of course, have
the same symmetry properties as the difference quo-
tients. This second viewpoint makes clearer the manner
in which the nonequilibrium ensemble gives a continued
description of the thermodynamic process.

It is sometimes desirable to express the Onsager
coeKcients as functions of an external magnetic Geld.
We have previously assumed a closed system, but it is
nevertheless easy to treat this slightly more general
case. We need only remember that if the sources of the
field were included within the system, the Geld would
change its direction under reQections of the time axis,
and the Hamiltonian would be invariant under the
reQection. Hence if we consider the field as external,
we must reverse it whenever it would be reversed if its
sources were considered internal. The modiGed Onsager
relations are then

IV. DISCUSSION

In thermodynamics we are in the habit of distin-
guishing between the "thermodynamic system" and its
"surroundings, " including possible "reservoirs. " In
many arguments, foremost among them those leading
to the establishment of the Second Law, it is useful to
shift one's point of view, to regard a certain accumu-
lation of matter alternately as part of the "system" or
as a driving reservoir. It is to be expected that a similar
elasticity of approach would serve well in statistical
mechanics. In the foregoing discussion, however, we
have dealt exclusively with the development of systems
that from a time )0 onward are thermally isolated;

, hence we have been forced to include possible reservoirs
as parts of the composite system. This approach can
never lead to a rigorously stationary process, because
any reservoir of Gnite size in a nonequilibrium process
will undergo secular changes. If the theory is to be
capable of describing stationary nonequilibrium proc-
esses„we must introduce idealized reservoirs of inGnite
size; that step implies that the reservoir must be
treated as distinct from the thermodynamic system
proper.

On the other hand, the interaction of the reservoir
with the system is stochastic, both because of the
stochastic nature of the system ensemble and because
of the molecular structure of the reservoir or reservoirs.
We are planning to address ourselves to this problem
and hope to arrive eventually at a realistic statistical-
mechanical description of the stationary process. Such
a description should yield the Onsager relations in a
thoroughly satisfactory manner, without restrictions on
the choice of the time constant r in Eqs. (18) and (20) .


