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suggested for diR'erent reasons by Peaslee. '7 In any
case, the (y, ot) reaction to the ground state should be
due almost entirely to IIv(E2) and seems to exhaust
about half of the sum rule (10).

In the region of the giant E1 absorption resonance,
Goward and Wilkins" have observed several peaks in
the cross section for 0"(y, cr) C'"—+3n, of heights
roughly equal to that of the ground state peak of
Millar and Cameron 4 as in C", the absence of a
spectacular rise in the (y, cr) cross section is in agreement
with our theory.

The threshold for the allowed E1-induced (y, cr)-
process is 7+15+3=25 Mev. Peaks in the cross section
observed by Goward and Wilkins" above this energy
(up to 30 Mev) are of roughly the same magnitude as in

region "8," though the absorption cross section has
presumably fallen considerably; again the theory
appears to be borne out. It is, of course, extremely
important to check whether an overwhelming propor-
tion of the events in region "C" really proceeds via
T=1 levels in C". It may be significant that Livesey
and Smith" have reported a change in mechanism
around 25 Mev.

At sufficiently high energies ()35 Mev), the most
allowed transition should lead through T=1 states in
0", C", and Be'; the violation of isotopic spin con-
servation would be postponed as long as possible. It

"D.C. Peaslee, Phys. Rev. 88, 812 (1952).
ss F. K. Goward and J. J. Wilkins, Proc. Phys. Soc. (London)

A65, 671 (1952).
~ D. L. Livesey and C. L. Smith, P'roc. Phys. Soc. (London)

A65, 758 (1952).

would be interesting to know whether such cascades do
occur.

Experimental eGects of the isotopic spin selection
rules for p-ray absorption should, on the whole, be less
striking in odd-odd nuclei with T,=O than in the even-
even ones. Perhaps the most noteworthy prediction
that can be made is one concerning the competition
between (y,d)- and (y, rtP)-reactions in the region of Ei
absorption. Below the. energy at which the residual
even-even nucleus can be left in a T= 1 state, the (y,d)
process is forbidden, while a corresponding reaction in
which a neutron and a proton are emitted together in a
T= 1 state (particularly in the virtual 'Sv state near
zero energy) is fully allowed. Goward and Wilkins"
appear to have observed an excess of (y, rtp) over (y,d)
reactions. It would be useful to search for the allowed

(y,d) process as well; for example, above 25 Mev the
reaction B"(p,d)Be" should lead predominantly to the
state at 17 Mev or higher T= 1 states. f.

For a more detailed discussion of (y, cr)- and (y,d)-
reactions in light nuclei, the reader is referred to a
forthcoming review article by one of us (V.L.T.) to
appear in the Reviews of 3IIoderrt Physics.

f 37ote added in proof. Hsiao and T—elegdi LPhys. Rev. 90, 494
(1953)g have recently presented strong evidence that the reaction
0' (y, o,) C —+3o. does lead to T=1 states of C' in energy region.
C. They have also reported cascades of the type predicted in the
text. Our discussion of these cascades ought to be completed by
the remark that their probability is greatly reduced through the
fact that the emission of the second a suffers competition from
nucleon emission.

The same authors, in unpublished work, have found that the
reaction N" (y, d)C" —+3m proceeds predominantly through a 16-
Mev level in C", preumably with T=1, as predicted.
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A method of approximating solutions of the one-dimensional Schrodinger equation is presented in this
paper. The method closely resembles the usual WEB approximation. Whereas in the ordinary WEB
method the exponential function is used as the basis of the approximation, in this paper the solutions of an
arbitrary Schrodinger equation are used. The general advantage is that by proper choice of the arbitrary
equation an improved approximation can be obtained. The method is illustrated by treating the potential
well and potential barrier problems when there are two turning points. The approximations to the wave
functions are continuous even across the turning points. The barrier transmission problem is treated uni-

formly for energies above and below the peak of the barrier.

I. INTRODUCTION

~ 'HE WEB method, as well as showing the corre-
spondence between classical and quantum me-

chanics, provides useful approximations to the solutions
of the one-dimensional Schrodinger equation. A limita-
tion on its usefulness as an approximation is that it
becomes infinite at the classical turning points of the
motion. Langer' introduced an approximation based on

' R. E. Langer, Phys. Rev. 51, 669. (1937).

Bessel functions which remains finite at any one turn-
ing point and, far from the turning point, becomes
identical with the WKB approximation. However, at a
second turning point his result is infinite and, to obtain
approximate solutions which are everywhere finite, one
must join it to a similar approximation 6nite at the
second turning point.

The ordinary WEB method is based on the exponen-
tial function and Langer's approximation on Bessel
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functions. In this paper it is shown that a general
WKB-type approximation ca,n be constructed based on
the solutions of an arbitrary Schrodinger equation. A
good approximation is obtained if the arbitrary equa-
tion is chosen to resemble the Schrodinger equation to
be solved. In this respect the approximation is similar
to perturbation theory. As a particular example of the
general approximation, if the arbitrary equation is that
of a free particle, one obtains the ordinary WKB
approximation. As another special case, I.anger's ap-
proximation can be interpreted as arising from the
Schrodinger equation in which the kinetic energy is a
power of the coordinate. Also, by properly choosing the
equation, one may 6nd approximate solutions which are
6nite at several turning points. The only example con-
sidered below is that of two turning points; many
problems fall into this class.

An advantage of the method used here is that a
problem does not need to be broken up into regions
with connection formulas between them but instead a
single approximate solution can be obtained which is
continuous over the whole region. Because of this con-
tinuity one can use the approximate wave functions to
discuss matrix elements. Ordinarily this is not done
because of the infinities at the turning points. In general
one must use numerical integration to calculate the
matrix elements from the approximate wave functions.
However, the numerical integration can be avoided in
some special cases discussed in Sec. III. Another ad-
vantage of the method is that the problem of trans-
mission through a potential barrier can be discussed
uniformly for particle energies above and below the
peak of the barrier. The usual WKB approximation
gives complete transmission when the energy is above
the peak.

The general treatment, for an unspeci6ed basic func-
tion, is given in Sec. II. The application to a potential
well problem with two turning points is given in Sec.
III, basing the approximation on the solutions of the
Schrodinger equation for a harmonic oscillator. In,Sec.
IV the complementary problem of transmission through
a potential barrier is discussed.

II. GENERAL TREATMENT

The general problem is to 6nd approximate solutions
of the one-dimensional Schrodinger equation,

dV (x)/dx'+ t P'(x)/K4 (x)=o,
where

p'(x) =W —U(x). (2)

Here W is 2m times the total energy of a particle of
mass m moving in a potential U(x)/2m. The approxi-
mate solutions are to be based on preselected functions
@(5) which satisfy

d'4 (5)/dS'+L&'(5)l/Ã4 (5)=o (3)

for some function P($). Ordinarily one will be guided
to an appropriate choice of P(5) by choosing P(5)

qualitatively similar to p(x). In the ordinary WEB
method' one finds approximations to the solutions of
Eq. (1) by first changing the dependent variable from
P(x) to 5(x) through the substitution

P(x) = exp[ih 'S(x)]
The problem then reduces to finding a solution of

—5"+ihS"+p'= 0,

and one thinks of solving this by a series expansion on
k, which is assumed to be small:

5(x) =So(x)+5,(x)h+52(x)h'+ . . (6)

Ordinarily only the 6rst two terms are calculated, with
the result that

p& exp—+ih 'p—(x)dx, (7)

where the usual connection formulas between regions
on opposite sides of the turning points (points at
which p=0) are to be used.

In parallel with the ordinary WKB method, the first
step in attacking the general problem is to change the
dependent variable to 5(x) by the substitution

4 (x) = T(x)WLS(x)j,
where the function' T(x) will be specified below. It is
needed in order to obtain an equation in S, independent
of p. On substituting Eq. (8) into Eq. (1), one finds
immediately that

P~~+ (p2/h2)P —(h2T&1/T 5&2P2+p2)h —2'
+ (2T'/T+S"/S') TS'dp/dS, (9)

where Eq. (3) has been used to eliminate p". Here one
sees that if-

(10)

then the problem reduces to 6nding a solution of

h'T"/T S"P'+p'= 0. — (11)
The value of T from Eq. (10) makes this a differential
equation in S(x) alone. The next step is to find a series
solution for small h. Since only h' appears in Eq. (11)
one may write

S(x)=So(x)+52(x)h'+S, (x)h4+ .. (12)

If, as usual, the approximation is carried to two orders
in 5, only So will be retained in this series, and evidently
from Eq. (11)

5 ~2P2 p2

If the positive square root is used, the approximate
solutions are

=5' '*4(5) (14)
~ See, for example, Leonard I. Schi6, Quantum Mechanics

(McGraw-Hill Book Company, Inc. , New York, 1949), 6rst edi-
tion, p. 178; Edwin C. Kemble, The Fundamenta/ Princip/es of
Quantum Mechanics (McGraw-Hill Book Company, Inc. , New
York, 1937), Grst edition, p. 90.
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lator problem, '
d'p/dS'+ (E—5')p= 0 (18)

(here E is a parameter which will be chosen later), are
convenient to use as the basis of the approximation in
this problem because their properties are very well
known and because P'(5) has the same type and num-
ber of zeros as p'(x).

Using the notation of Whittaker and Watson to
describe the solutions of Eq. (18),' one finds the fol-
lowing approximate solutions of Eq. (1):

f—S 'Dt~@ i) (v25), (19)
)J 5' &D—;(E

—
i) (—@25), (20)

where

where

FIG. 1. Type of potential well considered. 8 fS

(E o')Ido—= p(()dt.
Xg

(21)

sp

P( )«= p(~)d~J p

(15)

))s d t' d d
(16)2' dS 0 dS dS

This is a consequence of the choice of T in Eq. (10) and
the fact that p itself satisfies a Schrodinger equation.
One may verify that

O..."+(p'-/~')a. „=L:(5"/5')'-!5'"/5'3.„.-(»)
The accuracy of the approximation depends on the size
of the term on the right.

III. APPLICATION TO POTENTIAL WELL PROBLEMS

In this section the approximation will be applied to
the problem of a particle in a potential well with just
two turning points x& and x2. Only the simple case
when the zeros of p' at xi and x2 are of first order will

be considered. The potential will then be qualitatively
as shown in Fig. 1. The solutions of the harmonic oscil-

1

The two independent solutions p(S) of Eq. (3) give
the approximations to two independent solutions of
Eq. (1). In many problems the integration constants
sp, xp may be chosen to make the approximate wave
function continuous across the turning points, as will

be illustrated in Secs. III and IV. With the choice
P'(5)=1, the approximation reduces immediately to
the ordinary WXB approximation. By taking xp to be a
turning point of p'(x), P'(S) =5", and so ——0, one ob-
tains Langer's approximation for the case when p'(x)
has a zero of the vth order at the turning point.

Whenever the function 5(x) is real, as in Secs. III
and IV, the approximate wave function will exactly
satisfy the conservation of probability equation,

Its d ( d
app app app app2' d'x E d'x dx

These are independent if (E 1)/2 is no—t an integer.
The integration constants in Eq. (21) have been chosen
for the following reason. Since S'=p(x)/P(5), if the
function 5(x) is chosen so that the zero of P(5) at—gE corresponds to the zero of p(x) at xi, then S(x)
will be continuous at this point. This means that the
approximate wave function itself will be continuous
across the turning point x&. Continuity across the sec-
ond turning point x2 is obtained similarly if one chooses
the parameter E so that

2

p(k)dt=
Si

(E—o') &do = —,'Em-. (22)

This makes S real when x is real and completely specifies
two independent continuous approximate solutions of
Eq. (1). In some problems it is of interest to have
asymptotic expansions of the approximate wave func-
tions for large x. From Eq. (21) it is seen that

lim S(x)=a ~

so that the asymptotic behaviors of the. approximate
wave functions depend on the asymptotic forms of the
function D~z &)~2. Using these asymptotic forms as
given in Eqs. (39) and (45) in the Appendix and ex-
panding Eq. (21) for S—+& Do, one finds that

L(2~) '(2&/E)' I'(kE+2)j
X2cos(~Esr)[p~ ' pl

' (p(&)td& ~)

+sin(-,'E~)
f p f

& exp/ — '

f p(p) J dg f

( t*'

)
+— 2t (2 o/E)t (S ) ID)&@ i) (%25)

(
)'-lpga 'expl — tp(k) Id' I (23)

'In this and subsequent equations units have been chosen so
that k= j..

4 E. T. Whittaker and G. N. Watson, 3fodorn Amolysss (The
Macmillan Company, New York, .I947), p. 347.
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IP I-' expl —
I P(a) I de I

(
)

2&(2e/E)&~(5') 1DI&r ti(—%25)

:L(2r)—'(2e/E)'* P(sE+s)j

avoids calculating the wave functions and making a
numerical integration. Consider, for example,

I P.I'x"d*

~A ' ~ (S')—' exp( —5')Fl„'(5)@~de

X2 cos(sEr')IPI 'expl ' IP(bid& I) =A ' (5')—' exp( —5')EI 'x~dS, (29)

+sin(-,'Er) IPI ' expl — Ip(k) Idk I. (24)
(

When W is large, it is clear from Eq. (22) that the
parameter E is large. In that case the factor in the
square brackets in Eqs. (23) and (24) approaches one,
as is seen by using the Stirling approximation for the
I"-function. The connection between the two exponential
regions is then identical with the one obtained by the
ordinary VVKB method using the usual connection for-
mulas across the turning points without regard to
direction.

For the bound states one must use the solutions of
Kq. (18) which are finite at infinite S. These solutions
are

D„(VZS)= 2 &"II„(5)exp( —stS'), (25)

where m is some integer. This quantity might be evalu-
att'. d by expressing x and 5' ' as power series in S and
performing the integration. As an approximation one
may use, instead of power series, (2K+I)-degree poly-

VIr)

-2

where n= (E 1)/2 is a positi—ve integer or zero and the
B„are the Hermite polynomials. The approximations
to the bound state wave functions are then

«4
«4

0.7 .

«2

'iP„—A„S' & exp( —sS')H„(5), (26) 0.6

where S is still given by Eq. (21) and the A„are nor-
malizing constants. The eigenvalue condition, from
Eq. (22), is

0.5

04

f $2

P(k)dk= ( +l),
X]

(27)
0.2

which is identical with the usual WEB eigencondition.
If a different P(S) had been used, a different condition
might have been obtained. The potential'

V(x) = —1.922e*(1+e*) '—11.20e (1+e ) ' (28)

has been chosen for an example. The reason for choosing
this type of potential is that the exact solutions for the
bound states can be expressed in terms of elementary
functions. The constants have been chosen to allow
only two energy levels and to make the wave functions
unsymmetrical. The exact and approximate wave
functions have been plotted in Fig. 2.

Since the approximate wave functions are continuous,
they can be used to obtain approximations to matrix
elements. In many problems diagonal matrix elements

0.I

0
«2

0.6

0,2—

;0.2—

I
X

can be found by making a further approxnnation which Fio. 2. The potentiaI, p(x) = —1.922e (I+e ) & —11.20e.
X (1+e*)~,and the wave functions of the two bound states. Each

~This potential is of the type which was introduced by Carl 'wave function separately has been normalized so that the in-
Eckart, Phys. Rev. M, 1303 (1930). tegral-square is 1.
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0.8-

0.6-

The polynomial method in general may be criticized
because there is no way of estimating the error in the
approximation of a matrix element and because it
cannot be applied to off-diagonal matrix elements,
since different functions 5(x) arise for different energies.

04-

0.2-

0
2

W

FIG. 3. Transmission coefBcient for the potential, t/" (x)
=1.922e*(1+e') '+11.20e*(1+e*) s. (This is the negative 'of the
potential shown in Fig. 2.)

nomials chosen to give the correct values of x(5) and
its derivatives up to the Eth order at both turning
points. The values at other points could be used but the
turning points are especially suitable since their loca-
tions are known immediately once the energy has been
found and also since ordinarily the wave function will

be large only in the region between these points. The
needed derivatives at a first-order turning point can
be found by using Eq. (15) to make a series expansion
of the type

x(S)=xp+ [(dp /dx)zp/(dP /dS) p] I(5—sp)+ '. (30)

One can easily express (S') ' in terms of S by differenti-
ating the polynomial x(5) with respect to S.

As a special case of Eq. (29) this procedure may be
used to normalize the approximate wave functions of
bound states so that their integral squares are one.
For example, for the two levels of the Eckart potential
used above, one finds for the normalizing constants
Ao and Ag ..

d'y/dS'+ (E+S')y= 0 (31)

will be used. The zeros of (E+S') will be labeled in
parallel with those of P(x) so that when E is negative
sr ———g( E), ss ——+—g(—E) and when E is positive
sr +i+E——, ss = —i+E.

Following the general treatment, and in parallel
with the potential well problem, one finds the following
approximate solutions:

where

lf'—S'—~D;i+;E t& (V25e
—"'),

tp—5 fDf(;@ tl (V25e+' ~ ),

(32)

(33)

IV. APPLICATION TO POTENTIAL
BARRIER PROBLEMS

The penetration of a particle through a potential
barrier will be discussed in this section. The discussion
will be restricted to those potentials for which, when
the energy is below the peak of the barrier, p'(x) has
two first order zeros x~ and x2, where x~(x2. As a further
restriction on the type of potential discussed, it will be
assumed that the two real turning points for energies
below the peak of the barrier go unambiguously into
two complex turning points for energies above the peak
of the barrier. Since P'(x) is a real function, these two
turning points will be complex conjugate; the one with
the positive imaginary part will be called x& and the
other x2. As basic functions for the approximation the
solutions of the equation

Ap
(first level) (second level)

1.627 1.686
1.600 1.483

1.700

Numerical integration
First degree polynomial approximation

(x=0)
Third degree polynomial approximation 1.629

(E=1)

and the parameter E is chosen to satisfy

(34)

(xs)Ay (approximate wave function,
polynomials)

(x')A„(exact wave function, numerical
integration)

(x')A„(approximate wave function, numerical
integration)

j

First Second
level level

1.237 9.52

1.223 10.19

1.224 10.51

As a further example (x')A„, the expected value of x',
has been calculated for the two bound states of the
above Eckart potential. Third-degree polynomials were
used, both for normalizing and for evaluating the in-
tegral. For comparison the same quantity has been
calculated using the exact wave functions and also
using the approximate wave functions with numerical
integration throughout. The results are as follows:

P (g)d&= (E+o') ~do = ——,'iEx..
Xg

(35)

In performing the 0--integration here and in finding the
results below, the branch of the square root used is the
one for which, when E)0 and S is real, arg(E+5')& is

0, and for which, when E(0 and 5 is real, arg(E+S')&
is 0 if S&s&, w/2 if s& &5&ss, and 0 if ss &5. The similar
branch of P(x) must be used in the $-integration. From
Eq. (35) one sees that E is real and positive when W is

above the peak of the barrier V(x) and that E is real
and negative when S' is below the peak. Using Eqs.
(34) and (35), one may verify that 5 is real when x is

real. In order to find the transmission coefFicient the
asymptotic forms of the approximate solutions for
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[(2/~)'(IE I/2e) "EI'(liE+ l)

(
Xcosh( ,'Es)—]elE p 'expl i Re ~ —p(p)dg l)

+e-&' p-& expl i Re p(g)d( l

f
)

~—(2e &'~)'(lEl e" /2e) " S' &D;~,E r~(&2e &' S)

:e&E p-&expl i Re p(()dg l, (36)
(.

where Re indicates that the real part of the integral is
to be used. The corresponding relation for

D;&;E n (v2et' S)

is the complex conjugate of this one. The transmission
coeKcient T, defined as the ratio of the transmitted
to the incident current, is then

T (~I+e E~) 1——
(3&)

An example of the application of this result 'is given
in Fig. 3. A connection similar to the one given in Eq.
(36) was found by Guth and Mullin' using a method
indicated by Kramers and Ittman. ' Using the relation
between the gamma and the trigonometric functions
one finds that the absolute value of the quantity in the
square brackets in Eq. (36) is [2 cosh(srEs)]&. Also,
using the Stirling approximation, one finds that for
large E the quantity in the square brackets is e'l~~ .
For energies below the peak of the barrier one'may dis-

cuss the same transmission problem with the ordinary
WKB method, using the connection formulas without
regard to direction. When the energy is so far below

the peak of the barrier that eE can be neglected com-

pared to one, the resulting connection across the entire
barrier is identical with Eq. (36) when the square
bracket can be replaced by e:~~~ .

APPENDIX

The asymptotic representations of D„(s) are needed
in Sec. III when n is real and args=0 or x and in Sec.
IV when the real part of e is —

s and args= —a./4 or
37r/4. In general the asymptotic representation is of the

'Eugene Guth and Charles J. Mullin, Phys. Rev. 59, 579
(1941).

r H. A. Kramers and G. P. Ittman, Z. Physik 58, 225 (I929).

large x are needed. From Eq. (34) it is seen that

lim S(x)

Performing the e-integration in Eq. (34), expanding for
S—+&De, and using the asymptotic forms of D„(s) as
given in Eq. (40) and Eq. (41) in the Appendix, one
finds that

form

D„(s) n exp( —r~s')s"[1+0(s—')]
+p exp(-,'s')s " '[1+0(s ')] (38)

where n and p are independent of lsl but vary with
argo. The predominant terms in this representation are
conveniently given by Whittaker and Watson. From
their results one may infer immediately that the com-
plete representation is

D„(s) exp( —~r s')s", when args =0, (39)

because if P were not zero the term which P multiplies,
containing exp(~s'), would be predominant. Here and
below the terms of order g ' compared to one have been
omitted. Similarly, when the real part of n is —~~ and
args= —7r/4 or 3s/4, the terms multiplying n and P
are each of order

l
s

l

'*, so again the predominant terms
give the complete representations:

D„(s) exp (——,'s') s", when args = —s/4, (40)

D-()- p( —l ') "—(2 )'9'(—)] '

&&exp(ns. i) exp(sts')s " ', when args=3s/4. (41)

These are the representations used in Sec. IV.
When args=s. , the P term is the predominant one

and therefore P= —(2s)Ie" '[I'(—e)] '. One may infer
the value of n when n is real and args= m. by an indirect
argument using the fact that

D„(s)= (27r) lI'(n+ 1)[eI" 'D „ (is)
+e—**" 'D „ t(—is)], (42)

as is shown by Whittaker and Watson for all n and s.
One may assume that, for z real and positive,

D (elias)~exp(rss) (eI~~s)—n—1

+b exp( —4ts') (e' e&' s)" (43)

where b and m are real numbers to be determined. The
first term on the right is simply Whittaker and Watson's
predominant term and in the second term p has been
written as be' " . It is seen that m must be an integer
or zero since D „r(s) is a real function of s. Substi-
tuting Eq. (39), Eq. (43), and the complex conjugate
of Eq. (43), into Eq. (42), one obtains

b = (27r) '/21'(m+ 1) cos((m+ I)ns ) (44. )
I

Here it is seen that m must be —1 if b is to remain
finite for all n. Using these values for b and m and re-

placing s by —s in Eq. (42), one may conclude that

D„(s) cos(ms)e " ' exp( —sts')s"
—(2s)&P'(—e)] 'e~~'exp(res')s ~ '

when args= s. (45)

This representation and the one given in Eq. (39) are
used in Sec. III.

' Reference 4, pp. 347—348.


