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A new type of representation of the wave function of quantum mechanics, and a new form of the statistical
interpretation of the wave function, are presented. The variable in the new representation is a mapping of
points of differential space, closely related to Hilbert space, but having an associated measure for suitably
defined sets of points in it. In the new statistical interpretation, an eigenvalue of every observable defined in
the system is associated with each point in differential space. This can be done in such a way that, for each
observable, the measure (=probability) of the set of all differential-space points belonging to a given set of
eigenvalues is equal to the quantum-mechanical probability, calculated in the usual way (Born statistical
postulate), that an experiment will yield an eigenvalue in this set. Thus we obtain an interpretation of
quantum mechanics in terms of probability densities or probabilities instead of probability amplitudes.

I. INTRODUCTION

HE statistical interpretation of the wave function,
introduced by Born,! consists of the following
postulate: If ¢(g) is the wave function in a representa-
tion in which any operator q (having eigenvalues ¢) is
diagonal, the probability that the corresponding ob-
servable ¢ will be found on measurement to lie in the
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if q has a continuous eigenvalue spectrum with an
analogous expression for discrete spectra. Since the
entity in terms of which the dynamics of the system is
expressed, through the time-dependent Schrodinger
equation, is the wave function ¢(g) and not the proba-
bility density |¢(g)|?, actual physical probabilities—
i.e., frequencies of occurrence of given events—play a
noncentral role in the conventional quantum theory.?

In this paper we propose an explicit statistical postu-
late distinct from that of Born, which is equivalent to
the Born postulate so far as final results are concerned,
but which has the effect of altering the structure of
quantum mechanics in such a way that the dynamics is
capable of being formulated as a time-rate of change of
probabilities.

II. MATHEMATICAL APPARATUS

We first put the wave function into a representation
such that its change with time, under any time-inde-
pendent Hamiltonian? is a measure-preserving point

1 M. Born, Z. Physik 37, 863 (1926).

2 We speak here in terms of the Schrédinger picture. In the
Heisenberg picture, where the dynamics is applied to the operators
representing physical observables rather than to the wave func-
tion, probabilities are (at least formally) still further removed
from any role in the dynamic part of the theory. The operators are
here entirely independent of the probabilities, which vary with the
initial conditions of the problem.

3 This is not an essential restriction, provided we may regard any
system with a time-dependent Hamiltonian as part of a larger,
isolated system having a time-independent Hamiltonian. The
former case then involves an inessential alteration in the proposed
statistical interpretation.

transformation of its argument. The mathematical
techniques involved have been fully described in the
literature.* However, in order to make the basic ideas
readily accessible to those unfamiliar with them we
shall give here a full, but nonrigorous, account of all the
underlying mathematics.

We have first to consider Wiener’s mathematical
generalization of the Brownian motion. We are actually
not concerned with the literal, physical Brownian mo-
tion, but with a set of functions having statistical
properties very similar to those of the set of functions
(describing the displacement of a Brownian particle in
its dependence on the time) that would be obtained if we
selected a large number of paths of such particles at
random from a given solution.

Imagine a fluid containing a large number of particles
undergoing Brownian motion. Describe the path of each
particle as a function of time. The ensemble of all these
functions has rather easily describable statistical prop-
erties when considered on a comparatively gross scale;
this is due to the randomness (again on a gross scale) of
the impacts to which the Brownian particles are con-
tinually subjected, this randomness being reflected in a
corresponding randomness of the paths. With a finer
scale of description, however, a nonrandom element
begins to appear. This is, of course, due primarily to the
nonvanishing mass of the Brownian particle, which
gives it the ability at least partially to maintain its
direction and velocity through a series of not too large a
number of molecular impacts.

Wiener postulates a set of functions which is an
abstraction from the ensemble of physical Brownian
motion paths. Roughly speaking, the abstraction con-
sists mainly of retaining the randomness of the ‘“dis-
placements” under indefinite subdivision of the paths.
Wiener’s set also contains discontinuous functions,
which of course would not exist at all in the physical
Brownian motions; but all such functions, relative to
the whole set, constitute a set of zero probability—in the

4R. E. A. C. Paley and N. Wiener, Fourier Transforms in the
Complex Domain (American Mathematical Society, New York,

1934), Chap. 9; N. Wiener, Acta Math. 55, 117-258 (1930), Sec.
13; N, Wiener, J. Math. and Phys. 2, 131 (1923).
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terminology of measure theory, ‘“almost all” the
Brownian motions are continuous. The statistical prop-
erties possessed as an approximation by the physical
Brownian motions become exact for Wiener’s set, i.e.,
they subsist even under indefinitely minute scrutiny of
the “paths.”

From now on, we shall refer to the generalized set of
functions referred to above simply as “Brownian motion
functions.” Whenever we refer to the physical Brownian
motion, we shall explicitly include the additional
adjective.

We now proceed to give a partly heuristic, quantita-
tive account of the statistical properties of the set of
Brownian motion functions. Consider a one-dimensional
Brownian motion taking place in a discrete “time”
described by the variable x, which can take on the
equally spaced values 0, 1/N, 2/N, ---1(N =integer).
(This variable is not destined to play the role of time in
the theory we shall ultimately describe, hence we avoid
using the symbol ¢ for it. It is, however, the analog of the
time of the physical Brownian motion.) The “displace-
ment” is a real function X (o, x). Here « is a parameter
whose value singles out a particular function from the
whole set. Wiener has shown that a set of real numbers «
from zero to one is sufficient for this purpose, for
Brownian motions not only in one dimension, but in any
finite number of dimensions. We shall not prove this
here, although we shall describe and utilize certain im-
portant properties of this mapping of the functions on
the unit interval.

Let

X](a)=X(a,]/N), (.7:0’ I}N)7
Aj(@)=X ()= X;(@), (j=0,1,---N—1).

We now postulate that the “number’® of Brownian
motions, in the whole set, having its jth increment A;
(for any given value of 7) in the range a<A;<¥, is pro-
portional to

(%/N)%f ( 2/N A

independently of what ranges may be fixed simultane-
ously for the A’s having other values of j. In other
words, each A; has a Gaussian distribution of values
from — o to -, centered at zero, with mean square
1/N, and statistically independent of all other incre-
ments; we shall say that the increments have inde-
pendent Gaussian distributions. This will be recognized
as the same as the gross statistical behavior of the
increments of displacement in the physical Brownian
motion: In the physical Brownian motion the inde-
pendence of increments results from the large-scale lack

2

¢ Actually, measure rather than number. The “number” here
involved is infinite. It must thus be dealt with quantitatively in
terms of measure, just as the “number” of points in a line segment
is dealt with in terms of the measure of the segment—a segment
being, of course, an example of a simple type of set for which the
measure is given merely by its length.
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of influence of all prior states of motion on the motion of
the particle at any given moment, the increment in a
given time interval thus being given entirely by the
integrated molecular impulses received during that
interval ; while the Gaussian distribution can be shown
from general probability laws to result from the fact
that the individual molecular impulses are random in
nature.

It can readily be shown that, with the above distribu-
tion for the elementary increments of the process, the
distribution of the increment for an arbitrary multiple
of the elementary “time interval” 1/N will obey the
same Gaussian law, and will always have its mean
square equal to the reciprocal of the length of the
interval. We could multiply 1/N in the elementary
distribution law by any constant, and have an analogous
proportionality of the mean-square increment for arbi-
trary intervals; but for our present purposes such a
coefficient need not be included explicitly.

Since the distribution law given above is normalized
to unity, it may be used in the sense of a probability,
ie., the probability that ¢=<A;(e)=<0b for a chosen at
random is

1 b Al
Pr{aéAj(a)éb}:mj; eXp(—z/AT)dA. (3)

In theabove assertion, the basic property of the mapping
of Brownian motions on the parameter o, which has not
been given up to now, is implicitly assumed : The set of
Brownian motions is uniformly distributed over the
interval 0=a=1, i.e., the probability of a given subset is
equal to the Lebesgue measure of the corresponding set
of o’s. If, moreover, the distribution law for the incre-
ments within each of the elementary ‘time” intervals
1/N is normalized to unity, as above, it is easy to show
that the distribution law for any interval equal to an
integer multiple of the basic interval is also normalized
to unity.

Since the distributions of the A; are mutually inde-
pendent, it is a simple matter to obtain the probability
that a randomly chosen Brownian motion will have all
of its increments within a given set of ranges,

Pr{alé Al(a) by, = Az(a)ébz,
an—1

ORI

Ag? An_1
2/N 2/N

SAva(@= bN—l}

2/N

)dAldAz- cdAy_. (4

This is equal to the measure of the set of &’s for which
X (e, x) satisfies the given inequalities.

The set of Brownian motions in a continuous “time
variable x varying from O to 1 may now be characterized
in its statistical properties by going to the limit N— in

b2
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the above equations. This gives the measure of any set
of Brownian motions all of whose X vs x graphs lie be-
tween those of any two given Brownian motions, or the
measure of any sum of (a denumerable number of) such
sets.

The general reasoning so far given can be readily ex-
tended to any range of the x variable, including an
infinite range, without any essential changes. '

The multidimensional Brownian motion is a simple
generalization of the one-dimensional case. X will in this
case have a number of components, all functions of one
time variable x. The increments of any component are
independent of one another as well as of those of the
other components; the measure of a set is given by an
obvious generalization of the method already given,
based on the independence of all increments. As already
mentioned, a measure-preserving mapping onto the
interval (0, 1) is still possible.

An important special case of multidimensional

Brownian motion, which is particularly important to us, -

is the complex Brownian motion. Here X is a complex
number, a function of the real variable x and the
parameter a. The increments of its real and imaginary
parts are all independent of one another.

The usefulness for us of the set of Brownian motions
lies in the fact that it is capable of giving a measure for
a set of functions. If a function is thought of as a vector
in function space in the usual way, namely, if the
variable x in the function f(x) is considered as a com-
ponent index, i.e., f(xo) is the xoth component, etc., of
the representative vector, then one might expect to
have a measure of certain simple sets of functions,

simply by using a volume element in the function space.

This expectation is, of course, not borne out, because a
volume element in a space of an infinite number of
dimensions can only be equal to zero or infinity. The
statistical weighting technique used with the Brownian
motions, on the other hand, gives a manageable defini-
tion of measure for a set of functions.

This measure is made visualizable in another kind of
space, the “differential space.” Imagine all the incre-
ments A; divided by the increment Ax=1/N. Then the
set

Al (O()
Ax

Az (Ol)

y y ceey

Ax

A N—1 (OL)
Ax

is a set of difference quotients which approaches, in the
limit N—, the values of the derivative of X (o, x).
(Since almost all of the X (e, ) are nondifferentiable,
most of the difference quotients will approach infinity;
but one may imagine the derivative as obtained by
termwise differentiation of an expansion of X (¢, ) in an
orthogonal series of continuous functions.) The ordinary
function-space representation of the derivative of
X (e, x) has components equal to the above difference
quotients, in the limit N—w, Ax—0. Again, a set of
finite components may be obtained, in a nonrigorous
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sense of course, by a Fourier transformation of X (a, )
followed by termwise differentiation: Let the range of x
be from O to 1, and expand X (e, x). In terms of the
orthogonal set 2772

0
X(o, )= Y. ane®mine,

dX (a, x)/dx=73_ 2wina,e** "=

Thus dX (e, x)/dx is represented in Hilbert space by the
components 2wina, with respect to the orthogonal axes
given by the functions €*"#, The norm of dX/dx,
Y- |2wina,|? will not converge, of course, except for a
set of a of measure zero, hence dX/dx is undefined,
strictly speaking.

Differential space, referred to above, is not quite
the same as the function space of the derivative; it is
defined as the space in which a function is represented
by its differentials (“limits” of the increments A;) as
coordinates, rather than by the values of its derivative.
This makes the norm of the vector almost always finite,
since

N—1
lim 37 [4;[?

N—w =0

is the quadratic variation of the function, which is finite
for almost all of the Brownian functions as a result of
their definition.

If now we select a large number of Brownian motions
at random, and imagine the fine dust formed by their
representative points in differential space, we would
find a Gaussian distribution of the density of this dust,
centered at the origin, as we moved out along any axis.

* The number of dust particles in a given region of the

differential space is proportional to the measure (in
physical terms, probability) assigned to this region by
going to the limit V— in Eq. (4), or the counterpart
of Eq. (4) for a Brownian motion of whatever number of
components may be involved. This in turn is the meas-
ure assigned to the functions satisfying the inequalities
given in the curly brackets on the left-hand side of
Eq. 4).

The mean squares of all increments are kept equal to
one another in the limiting process N— o, and therefore
the density of the “dust” in differential space is hyper-
spherically symmetrical. Considering for a moment a
real Brownian motion, this corresponds to the fact that
in Eq. (4) the exponent of the Gaussian function is
proportional to the squared magnitude of the differ-
ential-space vector. Hence any rotation of the axes in
differential space, or any rigid rotation of all vectors in
the space, would leave this exponent invariant, and we
would have the result that the independent Gaussian
distribution of differential-space components of the set
of real Brownian motions is invariant to such rotations,
i.e., to any real orthogonal transformation of these
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functions. It is, in fact, readily apparent that such
transformations transform the set into itself.

In the case of complex Brownian motions, the
Gaussian exponent is equal to the sum of the squares of
the real and imaginary parts of the complex increments
in the limit N—, or the sum of the quadratic varia-
tions of the real and imaginary parts of the Brownian
function. In this case, the analog of the rigid rotation in
the real case is a unitary transformation; hence a uni-
tary transformation of the differential-space vector
conserves the independent Gaussian distributions of the
differentials and transforms the set of complex Brownian
motions into itself.

Consider now a subdivision of the interval (0, 1) of
definition of the x variable of the Brownian motion
labeled as follows:

w1=1/N, x,=2/N, ---,

and a matrix depending on the two indices x;, ¥, having
matrix elements ¢(x; y»). These satisfy the unitarity
conditions,

20=0, an=1,

22 2(xs, ym) 0 (%, Ym) =83j,
Yym

()
Z ¢(xi; y"t) 5"(901" yn) =0mn.
The quantity
$(o30) = i@ ) ©

then has the meaning of a component, namely, the mth
of the vector representing the ath Brownian motion in
the differential space (of Brownian functions of the
discrete time variable x) with respect to a new set of

axes labeled by the indices y.; or alternatively, as a |

component of the vector obtained by rotating the
original Brownian motion vector. In the case of a
unitary transformation represented by a function
o(x, y») which is continuous in %, the counterpart of
Eq. (6) is the Stieltjes integral

W (e, ym) = f 0% (@) (&) ym). @

Because the Stieltjes integral is not rigorously defined
for all Brownian motions X (a, %), since not all are of
bounded variation, it is necessary to state that (7) is to
be interpreted only in a formal sense. The right-hand
side of Eq. (7) obtains its rigorous definition through
integration by parts

W@ ) =— f X (o, 2)do (@, ). ®)

As a result of the interpretation given ¢(a, y») in the
case of discrete x, immediately following Eq. (6), we
would expect that the distribution of the values of the
real and imaginary parts of ¥ (a, yx), obtained by letting
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a range through all its values, is Gaussian and inde-
pendent of the values of the similarly distributed real
and imaginary parts of all ¥ (e, y.) for which #54m. This
is indeed the case; the proof is given in the references
cited, and we shall not repeat it here.

The functions ¥ (e, ¥») may be interpreted in another
way : They are the coefficients in the formal expansion of
dX (@, x)/dx in terms of the orthogonal set of functions

(%, ym). If for ¢(x, y») we take the exponential func-
tion ¢+ (the interval of x being from 0 to 1), the
term—by term 1ntegrat10n of the series gives the ex-
pansion of X (o, ) in terms of these functions. Going
back to Eq. (7), with ¢(#, ¥..) an arbitrary orthogonal
set other than the complex exponentials, the expansion
of X (e, ) in complex exponentials may be used in this
equation to yield a formal proof of a second basic
property of the functions ¥ (e, y): They are a normal
orthogonal set in «, if the (%, y») are normal and
orthogonal in x,

f F(e, Y (@, ya)da= f 5@, yn) e (@, y)dx (9)

= 0mn.

Hence the quantities A;(a) are in a generalized sense
also representatives of a unitary transformation be-
tween the discrete “‘axes” represented by the letters ¢
and the continuous variable «; and the improper func-
tions dX (e, x)/dx represent a generalized unitary trans-
formation between the two continuous variables x and .
Hence ¥/(a, y») has a double meaning: It may be re-
garded as (a) the representative of ¢ (&, 1) transformed
from the variable x to a, or (9) the representative of the
formal derivative dX (a, x)/dx transformed from the
variable ¥ to y,. The independence of the ¥ (a, )
follows from (b), and their orthogonality follows from
(a); but it should be noted that, even if the ¢ (x, y,) are
a complete set in the variable x, the ¥/ (e, y,) are not a
complete set in a.

III. THE WAVE FUNCTION IN THE
‘“a REPRESENTATION”

We now consider x as the spatial variable of a
normalizable wave function ¢(x, ), where ¢ represents
the time.

Let

Wle )= f 0X (@, %) ¢ (x, 1). (10)

We shall call this the “wave function in the a representa-
tion.” The use of the term “representation” is justified
by the remarks above to the effect that dX (e, )/dx
behaves like a unitary transformation representative.
This is an extension of the usual meaning of a repre-
sentation, since a is equivalent to an infinity of ordinary
variables of the type of the spatial variable x and,
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although dX (a, x)/dx behaves, as we saw above, like the
representative of a unitary transformation, it com-
pletely lacks the symmetry that would be expected be-
tween a and « in an ordinary unitary transformation.

Suppose now that ¢(x, #) transforms with time ac-
cording to the equation

o, )= f W o3 Do, 0d, (1)

where % (%, 2’ ; £) is a unitary kernel. If (11) is substituted
into (10), the result can be formally altered according to
the following steps:

Vo 0)= f 0 (, %) f (e, o5 ) o (e, 0)da’

=fdx’[fd)_((a, x)u(x, x'; t)]sa(x', 0)

- f iX (T'a, &) o (', 0). (12)

The first line shows the result of direct substitution. The
second is obtained by interchanging the order of the
integrations. The quantity

dx’fd)_((a, x)u(x, 2’ ;1) (13)

can be seen, by a reasoning analogous to that given in
connection with Eq. (7), to be the formal expression for
the &’ component in differential space of a vector ob-
tained from that having components dX (a, x) by a
“rotation”—i.e., a unitary transformation in differential
space.® Hence da’ S dX (a, x)u(x, x’;t) is the &’ com-
ponent of a new Brownian motion, and the transforma-
tion merely rotates the entire differential space. From
this it follows that the set of Brownian motions is
transformed into itself. This transformation is denoted
in the third line of Eq. (12) by the operator T'¢; T'a is
the new value of & obtained from the rotation of the
Brownian function having parameter o by the unitary
kernel u(x, x’; ). As suggested by the hyperspherical
symmetry of the distribution in differential space, this
rotation sends a given region of differential space into
another region with preservation of measure. Crudely
speaking, the ‘“number” of Brownian motions in the
original region and the transformed region is unaltered
by the transformation; the rigorous statement of this
fact is that for all « belonging to a given measurable set
on the interval 0=a=1 the measure of the set of the
corresponding T'e is equal to that of the original set.

6 The formal parallelism between Egs. (7) and (13) is estab-
lished by associating &, with &” and ¢(x, &) with u(x, 2'; £)dx’;
the differential in the latter quantity is necessary in doing this
because %’ is a continuous variable while &, is discrete.
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Comparing the third line of Eq. (12) with Eq. (10),
we see that

¥(a, )=¢(T"a, 0),

i.e., the change with time in Y (, t) is in general a measure-
preserving point transformation on the argument a. Such a
result is impossible for the wave function in any of the
usual representations of quantum mechanics. It would
contradict the characteristic spreading-out in time of
wave functions in representations such that operators
diagonal in them do not commute with the Hamiltonian,
and would be similarly inconsistent with the mode of
change with time [_through exponentials exp (iEt/%) ] of
wave functions in representations such that the diagonal
operators do commute with the Hamiltonian.

The transformation ¥ (e, 0)—y¢ (¢, £)=¢(T*a, 0) may
be “visualized” in differential space as follows: ¥ (e, 0)
associates with each point « in this space a complex
number ¢ (a, 0). The time-transformation brought about
by the dynamics in time ¢ corresponds to a ‘‘rigid
rotation” of the generalized contours in differential
space that characterize this function, i.e., to a rotation
of the structure of complex numbers that are values of
¥ (e, 0) for the different points a.

(14)

IV. IDENTIFICATION OF DIFFERENTIAL-SPACE
POINTS WITH INDIVIDUAL SYSTEMS

With quantum dynamics in the form of a transforma-
tion of points in differential space into one another, the
final step that we want to make is the identification of
these points with individual systems having well-defined
values of all observable quantities. This section is
devoted to establishing an algorithm for this purpose,
which takes the form of a new statistical interpretation
for the wave function, as promised in the introductory
section.

Consider an observable ® to which corresponds an
operator R acting on the variable x of the wave function
o(x). Suppose at first that R has only discrete eigen-
values R, Ry, corresponding to eigenfunctions
Xl(x)y X2(x)7 .o, L,

Rx:(®)=Rux1(®), Rxa(x)=Raxa(x), (15)

We suppose the x;(x) normalized and orthogonal. Ex-
pand the wave function in terms of the x;(x),

¢(x>=§_’:l ax:(#). (16)
Now let
Eie)= f 0% (o, 2)xi(a). 7
Then, integrating term by term, we get
V()= f R DeW=S o). (19
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We now consider each £;(e) as a random variable, a
function in turn of the random variable a. As we have
seen (end of Sec. II), the distributions of the real
and imaginary parts of £;(a) are mutually independent
of one another and of those of all other £;(a) and are
Gaussian in form, i.e., the relative probability that any
Ret;(e) or Img,;(e) lies between a and b is

b

f exp(—3/2)dy,

19
Y (19)

independently of what ranges may be fixed simultane-
ously for the other part of the same £; and the real and
imaginary parts of the others.

We now assign an eigenvalue of R to any given value
of a in the following way : Divide ¢ () into two parts, say

¥ (@) =¢u(@)+¥(), (20)

=]

@=L 0k, dn@= T sk @

=n1+1

Since Y11 and yie are orthogonal, the distributions of
their real and imaginary parts are independent and
Gaussian. The mean square of Reyqy, ((Rey11)?), equals
that of Imyy;, and similarly for Rey1s and Imyys. Hence
the mean square is

ou=((Rey11)?) = ((ITmy11)%=3(|¢11|?

1 ™ 22
-3 Wll(a)lzda:%fIX11(x)l2dx=%§'afl2 Y

e

(242 202 +y7)

%2+ 7)2 x2+ y2
) exp ( - )dudvdxdy
2011

20’12

0 © 0 0 u2+v2 x2+y2
f f f f exp(— )exp( — )dudvdxdy
—0 Y—00o Y —0 Y — 2”11 2012
4 ® ¢
[l
11012 Yo 2012

which is equal to the relative probability according to
the Born postulate that the measured value of ® lie in
the set S1i. The probability that R(e) is in Sy, is obvi-
ously 2012, and the sum of the two probabilities is 1.
At any later step, moreover, we shall obtain a set of
probabilities for R(a) lying in the ranges defined at this
step (there will be at this step 2” ranges in the subdivi-
sion of the total infinite range of R) having the following
property: The relative probabilities of the two ranges
obtained by subdivision of any single one of the ranges
of the previous step are proportional to the Born
probabilities. Since the absolute probabilities of the two
ranges obtained in the first step agree with the Born
probabilities, it follows that those of the second step
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for Rey1; and Imyyy, and

ru=(Rep)=(Imp)=% > |a? (23)

=n1+1

for Reyys and Imyys. We shall take ¢(x) normalized,
hence

f l\//(a)]2da=f[fl//11(a)|2+le(a)mda
0
=2(outow)=1.

We now determine which is bigger, |¢n(a)| or
[¥12(a) |- If the first, we take R to liein theset Ry, - - - R,
which we shall call S11; otherwise, in the remaining set
S12. This completes the first step in an infinite dichotomic
process, consisting of steps similar to the above, whereby
the choice of an R belonging to « is successively nar-
rowed down, leading in the limit to a unique value
(except for a set of a of measure zero) of R, which we
shall call R(e). In the next step, we take Y11 or Yio—
depending on which was chosen in the first step—and
proceed with it exactly as we did in the first step,
dividing it into two parts, finding which is of bigger
modulus, and assigning R (e) to the corresponding range;
and so on. '

We now wish to know, first, the probability of R(a)
lying in Sy or Sis. Since the real and imaginary parts of
Y11(e) and ¢12(e) are all mutually independent, the
probability that |¢u(e)|2 |¢(@)], ie. |Yula)|?
= "1/12(0‘)12, is

Ul s 11 ny ’
)‘”f P ("“‘)ds: =2ou=3lail, (24)
t 2011 gutor =1

also agree, and so on, as may be shown by mathematical
induction.

We are evidently at liberty to choose the indices
defining the successive subdivisions in any way we wish.
In particular, with normalizable wave functions the
eigenfunctions can be numbered and #; chosen so that
the probability of .S;. is as small as we wish, and the set
S11issimultaneously finite. This choice insures that, after
some finite number of dichotomies for each «, the set of
all « that are still not assigned an R eigenvalue is of
measure assmall as we wish, i.e., that the still unassigned
R eigenvalues are of correspondingly small probability.

The case where R has continuous eigenvalues, i.e.,
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where )
(@)= f x(x, R)a(R)dR,

—0

x(x, R) satisfying the orthogonality and normalization
conditions

[ 6 Rxte, R)ia=s®=R),

f %(, R)x (&, R)IR=b8(x—1),

is treated along the same lines as the discrete case, by
exploiting the formal parallel between ¢(R) and a;, and
between x (x, R) and x;(x). Specifically, we proceed as
follows:

Let
V(a)= f X (@ )0 (), (26)
as before. Then
V(@)= f " e(®)IR f X (@ 9x@E R (27a)
- f " i@, Ra(®), @7b)
where -
dE(e, R)=dR f % (e, )x (x, R). (28)
Now put 4
Yur(e)= f dE(a, R)a(R), (209)
Y@= [ die Ra®. (20b)

41

These two quantitieshave, like the like-named quantities
in the discrete case, independent Gaussian distributions
for their real and imaginary parts, and are orthogonal to
oneanother. The mean squares of the real and imaginary
parts of, respectively, Y11 and 1, are

A1
eu=t [ a®IR, cu=} [

. A1

0

la(R)[*dR, (30)

i.e., again the usual quantum-mechanical probabilities
for finding a value of R in the ranges indicated by the
limits of integration. From here on, the calculation is the
same as in the discrete case: One assigns to a given « the
range (— o, A;) or (41, + =), depending on whether
[¢1(a)| or |¢12(a)] is the greater. The measures of the
two sets of values of a corresponding to these ranges will
be 2011 and 20ys, respectively (if ¢(x) is normalized),

agreeing with the quantum-mechanical probabilities for

these two ranges. Successive steps in the sequence of

@25) -
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dichotomies are modeled on the first one, exactly as in
the case of discrete eigenvalues.

Although we have in the above development given a
privileged status, so to speak, to the variable x, formally
speaking x and R are really on the same footing. This is
readily apparent from the completely parallel form of
Egs. (26) and (27b): £(a, R) is a complex Brownian
motion in R, and X (e, x) and ¢(e, R) may be thought of
as representatives, in terms of different variables, of a
single element of an ensemble of abstract elements
represented by points in differential space. Using
Dirac’s bra and ket notation, it is possible to demon-
strate this equivalence in a formal way. We take
advantage of the fact already shown that dX (a, x)/dx
and dE(a, R)/dR behave to some extent like unitary
transformation coefficients; let us then denote them by
(ee| %) and {a| R), respectively, although it must be borne
in mind that this notation is not completely justified in
view of the lack of symmetry between the « variable and
the ordinary variables of quantum theory. Let us put

X(x) R)=<x{R>;
(@) =(x|¢),
a(R)=(R| ¢),
and
Y(@)=(a|¢).

The first equation is of standard type. The second and
third are the ordinary consequences, expressed in the
Dirac notation, of the assumption that the state vector
of the system is | ¢). The fourth equation has the same
interpretation as the second and third, once one accepts
the treatment of « as on the same footing as x or R as is
implied by the very use of the symbols (e|x) and {«| R).
Equations (25), (26), (27a), and (27b) may now be
written '

o= f (x| RYIR(R| ), (25)

(el 0= [(alds(el o 26)

- f f (| 2)da(x| RARR| 0)  (27'a)

- f (a| RAR(R| ). @7'b)

In order to go from (27'a) to (27’b) directly, one has to
assume

(a|R)= f (el 2)dx(| R), (28)

which is entirely consistent with the previous identifica-
tions and corresponds to (28).

When R has a discrete spectrum, the situation is
formally not changed, and we shall not trouble to write
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down all the equations corresponding to (25’) to (27'b).
The transformation equations

(@|R)=t:(e)= f (el 2)da(x| R,

(al2)=dS (0, 2)/dw=(a| RYRA| ),

where
(x| R)y=x:(x),

reveal that £;(e) is the ith increment of a Brownian
motion in the discrete “time’’ variable R which takes on
the values Ry, Ry, - --.

We can now give a concise general statement of the
new statistical postulate for quantum mechanics: Given
a division of the (continuous or discrete) set of eigen-
values of a quantum-mechanical operator into two non-
overlapping subsets,” and a normalizable state vector
| ¥). The state vector is projected onto the two subspaces
of Hilbert space corresponding to the two subsets of
eigenvalues, and the “wave functions’” in the a represen-
tation for these two projections are evaluated. The
“wave function’ having the larger modulus is then
selected and its subspace divided in turn into two non-
overlapping sub-subspaces. The “wave functions” in «
representing the projections on these smaller subspaces
are again compared in modulus, the larger selected, and
so on. At each stage the eigenvalue of R that we seek is
assigned to the subset corresponding to the subspace
chosen, and its range thus narrowed down, in the limit,
to a single number R (). At each stage, moreover, it can
be shown that the relative probability of the two
subsets of eigenvalues involved is equal to that given by
the Born postulate; the total probability of all subsets is
one, so that the absolute probability of any subset,
with this normalization, also agrees with that of the
Born postulate.

In this way we may obtain a function R(«) for each
observable ®, such that

f R(@)da=(®), (39

where (®) is the quantum-mechanical expectation value.
Since the set of such functions for all observables also
gives the probabilities for any defined ranges of values of
any observables, we have a postulate entirely equivalent
to the Born postulate. Moreover, we now have quantum

©
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dynamics expressed as a transformation of the same
random variable o as that which furnishes, via the
measure of appropriate subsets, the probability basis of
the theory. This conclusion, stated only briefly here,
will be discussed more fully in a subsequent paper.

V. NONUNIQUENESS OF R(«). THE
POLYCHOTOMIC METHOD

The particular way in which the Hilbert space is
divided at each stage of the succession of dichotomies is
evidently entirely arbitrary. This means that the R
value assigned to a given « is correspondingly arbitrary.
For example, if at any stage R is found to be in a given
subset of eigenvalues, the extension at this stage of the
subspace corresponding to this subset at the expense of
the other subspace might well throw R into the other
subset, even though it has become smaller; and by the
very nature of the dichotomous process, R cannot at any
later stage re-enter the region from which it was thus
ejected.

A brief calculation will show that the division of the
subspace at each stage of the sequence into more than
two parts will not work ; for example, if one divides the
subspace into three parts and assigns R to the subset of
eigenvalues for which the projection of the wave func-
tion is the largest in modulus of the three, the relative
probabilities of the three subsets do not satisfy Born’s
postulate.

It is interesting to note that this limitation can be
removed by an alteration of the method in a different
respect, as follows (for the sake of illustration, we treat
first the case of discrete eigenvalues): We choose as
R(a) the eigenvalue Ry for which |£x(a)/ar| (see Eq.
(18)) is the smallest of the entire set of these quantities;
the probability that |£(x)/a| is the smallest of all the
|£:(2)/a;| is just | ax|? as given by Born’s postulate. To
prove this, consider first a wave function for which only
n coefficients a; fail to vanish, and let these be named
ai, as, -+ -a,. We first find the probability that

[En/an| <|Eni/@na| < <|&1/ai,
which we shall call for brevity
Pr{in<n—1<---<1}.

The quantities |£;(e)/a;| have mutually independent
Gaussian distributions of their real and imaginary parts,
with mean squares 3|a;|% Let 4;=|a;|% Then

0 00
f G-A”""d“nf e An—tun—1qy, .. f e~ 4rudy,
0 Uun ug

Prin<n—1<---<1}=

0

0
f e 4Anundy,, f
0 0

0
e An—tun—1qy ... f e 41udy,
0

An An—l
At F A At +dns Artds

(35)

7If the eigenvalues are discrete, no further characterization is necessary. If they are continuous, the subsets must be measurable.
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The probability that |£./a.| is the smallest of all,
Pr{n<n—1,n—2, ---, 1}, is the sum of the above over
all permutations of 4y, As, -+ A4n1. To carry out this
summation, we note that since (35) must hold for any #,

Pr{in—1<n—2<---<1}

An——l An——2 A2
_ 5 (36)
At ot A Ast - FAn ArtAs
hence
Pr{in<n—1<---<1}
A,
=———Pr{n—1<n-2<---<1}, (@37)
A1+ -+4,

and for the sum of the permutations we obtain
Pr{in<n—1,n—2,---,1}
= > Pr{in<n—1<---<1}

perm. of
L, Apa

An
= 3 Prin—1<n—2<---<1}
Ayt '+A,n 4 pe‘r.n_n.zf

’ n-1

=" (38

o
which is the Born probability of the eigenvalue R,,. Since
the numbering of the eigenvalues is arbitrary, the
theorem holds for any of the R; in the set Ry, Ry, - - - R,.
It holds, moreover, for any value of #, and therefore
holds in the limit #— 0.

It is not necessary to carry the breakdown all the way
to individual eigenvalues; we can assign R(a) merely to
one or another subset of the set of # eigenvalues, with
the correct probability for each subset as follows: If the
n eigenvalues are to be divided into #’ subsets, they may
be renumbered in such a way as to make the indices
consecutive in each group; then one has a set of numbers
1=ki<ky - <kw_1<m such that the particular in-
equality satisfied by ¢ from the set

1§7/§k17
ki<iZk,,
kn'_1<’i§1’l«,

determines the subset to which R; belongs. Let

bi= (‘é las[®)?,

be= (2 |a:[M},

k1+1

bw=( X la:i|®}
knr—1+1
then
1 *
g'=—2 ait,

1 1

OF QUANTUM MECHANICS 1559
1 * .
& =— aq,
b2 k1tl1
1 n
'=— 2 ai,
bnl knt—1+1
is a set of orthonormal functions such that
Y(@)=2 bt (o). 39
=1

Then the preceding method may be used, with b,
replacing @, £/ replacing £, and #’ replacing ». This
determines R(a) only as belonging to one or another of
the #’ sets, but gives the correct probability |b;|? for
the ith set, for any 1.

The method for continuous eigenvalues is modeled on
that for groups of discrete eigenvalues. If

V()= f dE(a, R)a(R), (40)

we break up the infinite range of integration into #’
subsets; for simplicity, let these be intervals, although
they need only be measurable, nonoverlapping subsets.
Then we choose a set of numbers 7, <ro<:-:-7,_1,
corresponding to &1, kg, - -kn. If

bi= (L, Ia(R)PdR)%,
b= ( f |a(R)[2dR)%,
- ( f I;(R)'l2d1.€)%.,

1 pn
= f dX (o, R)a(R),
bl —00

then

1 7
fo=r f X (e Re(®)

S .
f=— f 0% (o, R)a(R),

n' Y Tala

is a set of orthonormal functions such that
Y(@)=2 biti(a),
=1

and the real and imaginary parts of the £;’s have inde-
pendent Gaussian distributions with mean squares equal
to 3. Then the method of discrete eigenfunctions can be
applied, determining R(e) to within one of the »
subsets, with the correct probability |b;|? for the ith
subset.

The general method presented in this section, which
we will call the polychotomic method, has certain
advantages over the dichotomic method. First, it has

(41)
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the advantage, so far as manipulation of its results is
concerned, of yielding a result at one step. Second, for a
given subdivision of the total set of eigenvalues, it gives
a unique result, unlike the dichotomic method. In
particular, when a discrete set of eigenvalues is divided
up into individual eigenvalues, it gives a unique as-
signment of eigenvalues to values of a, except for those
values of a for which two or more | §;(e)/a;| are smaller
than all others but equal to one another, but these
values of a form a set of measure zero and can be
neglected. On the other hand, it does not yield a unique
R(a) in the continuous case: A sequence of finer and
finer subdivisions, each yielding a range for R () by the
polychotomic method, will not give convergence to a
unique single value of R () in the limit. The dichotomic
method, on the other hand, does in the limit converge to
a single value of R(a) for almost all values of a, for any
given sequence of dichotomies.

The polychotomic method, on the other hand, can be
used in a way analogous to the dichotomic method ; this
is because, using the polychotomic method with subsets
of eigenvalues, one can take a set of a for which all R
values belong to one of the subsets of R and make more
precise assignments of R values within the subset, by a
further polychotomy or sequence of polychotomies of
arbitrary type. In particular, the mode of fixing upon a
subset of R eigenvalues (to be associated with an «)
characteristic of the polychotomic method could if
desired be used with a sequence of dichotomies (to avoid
confusion, such a procedure might be dubbed a dicho-
polychotomy). Thus the polychotomic method is a
generalization of the dichotomic method. A fixed suc-
cession of finer and finer dicho-polychotomies will
converge for almost all a values. Here every finer
division is a subdivision of the coarser divisions which
precede it.

VI. CONCLUDING REMARKS

At this point, we wish to call attention to the fact that
it was only for the sake of simplicity that we presented
the preceding material as if x or R were single variables.
No essential change is required if one has a system of
more than one degree of freedom, in which case x and R
stand for sets of more than one variable, some of which
may even be discrete while others are continuous. The
Brownian motion functions X («, %) or 7(e, R) are then
still single complex numbers, but functions of several
variables—complex Brownian motions of a multidi-
mensional “time.” Integrals like JSdX (a, x)o(x) are
multidimensional. The set of values of « is still the unit
interval. Where in the case of a single variable the
division of ¥(a) into two parts is a division of the line
into two subsets, a division of the multidimensional
space of eigenvalues into subsets takes its place when x
or R stands for more than one variable

It should be emphasized that the purpose of our
theory is simply to achieve an interpretation of quantum
mechanics in terms of probability densities, and not to
reconcile quantum concepts with classical ones. The
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method rests on the identification of observables with
operators in Hilbert space, and achieves quantization
purely as a result of this assumption, which has basic,
not derived, status.

The following simple example will suffice to show the
nonclassical nature of the observables in our theory:
By the method we have given, simultaneous values of
position ¢ and momentum $ can be assigned to almost
all values of a. Consider, on the other hand, the operator
for p*+¢?; its eigenvalues are quantized, and the value
obtained for this observable, for a given «, will not in
general coincide with the sum of the squares of the
position and momentum variables belonging to this
value of a. Thus our method does not restore the
classical meaning of observables. In fact, it would seem
reasonable to picture the process of determining an
eigenvalue to go with an « value as the mathematical
counterpart of “forcing” the system into an eigenstate
by the measuring process. This “forcing” is closely as-
sociated with the uncontrollable disturbance of the
system, emphasized by Bohr, which necessarily ac-
companies measurement of an observable when the
system is not in an eigenstate of that observable.

Closely associated with the preceding considerations
is the lack of invariance of the individual eigenvalues
tied to values of « under transformations of the as-
sociated variables. If, for example, the zero point of the
scale of R eigenvalues is translated an amount Ry, i.e.,
the wave function a(R) is transformed into a(R4+Ry),
the value of R belonging to an individual «, say R(«),
does not go into R(a)— R, (unless, of course, the state is
an eigenstate of R). It is, however, trivially evident—
from the fact that our postulate is equivalent to the
Born postulate—that the distribution function of R () is
correctly displaced by an amount R, and this is all we
can reasonably expect, given the essential impossibility
of a classical type of assignment of R values to indi-
vidual systems.

In this connection, we wish further to point out that,
since the operator formalism of relativistic (Dirac)
quantum mechanics is subsumed under that of non-
relativistic quantum mechanics, the application of our
method to Dirac particles is straightforward. On the
other hand, the preceding remarks show that, although
distributions of relativistic dynamic variables in differ-
ential space transform covariantly under Lorentz trans-
formations, given the correct transformations of the
wave functions, the individual values attached to points
in differential space do not do so (except, again, for
eigenstates of the variable concerned). Here again it is
impossible to attribute any meaning to these individual
values independent of the act of measurement. No
contradiction can come from this, since the verification
of covariance of momentum and energy of a single
particle would imply at least two measurements of the
components in two different Lorentz frames, and since
the disturbance due to a quantum-mechanical measure-
ment prevents the second quantity measured from ever
being “the same” as the first.



