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Three methods of handling problems in relativistic quantum mechanics are discussed. One is the Tamm-
Dancoff method, one is the Bethe-Salpeter method, and the third is a new method intermediate between the
other two. The connections between the three methods are investigated. It is shown that the new method
provides a kind of bridge between the 3- and 4-dimensional points of view. The new method is illustrated

with applications to simple examples.

I. INTRODUCTION

HE purpose of this paper is to clarify the physical
meaning of a wave function in relativistic
quantum mechanics. The subject is full of obscurities
and unsolved problems, most of which will not be dis-
cussed here. Only some facts will be pointed out, which
it is hoped will stimulate further thought on these
questions.

A relativistic system can be described from two
points of view, 3 dimensional and 4 dimensional. In the
3-dimensional point of view, the wave function de-
scribes completely the configuration of the system at a
particular time. The typical example of this point of
view is the formalism of Tamm! and Dancoff.? In the
4-dimensional point of view, the wave function de-
scribes the probability amplitude for finding particle 1
at position 1 and time 1, particle 2 at position 2 and time
2, and so on. This is the point of view of Bethe and Sal-
peter.? Each point of view fails to include important as-
pectsof thesituation. The 3-dimensional picture conceals
the relativistic invariance, and thereby makes practical
calculations much more complicated. The 4-dimensional
picture is manifestly relativistic, but the wave function
does not give a complete description of the system in
the sense of elementary quantum mechanics. The
physical meaning of the 4-dimensional wave function
is quite unclear.* Worst of all, there still exists no exact
method® of relating the two wave functions to one
another so as to make use of the advantages of both in
the same problem.

This paper is concerned mainly with establishing
connections between the 3- and 4-dimensional wave
functions. The connection is made via a new formulation
of the Tamm-Dancoff method which was briefly ex-

* Now at the Institute for Advanced Study, Princeton, New
Jersey.
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plained in a recent letter.® Section V deals with the
important unsolved problem of the correct normaliza-
tion conditions to be imposed on the 4-dimensional
wave function. The later sections discuss the wave
equations of relativistic systems and the boundary
conditions which should go with them.

II. DEFINITIONS

We consider for definiteness a system of two quan-
tized spinor fields ¥ (x) and ¢¥ (x) representing protons
and neutrons, interacting with a neutral pseudoscalar
meson field ¢(x). The operators ¢ (x), ¢(x) are Heisen-
berg operators defined at a space-time point x and are
relativistically covariant. The actual state of the system
is denoted by ¥, a constant state vector in the Heisen-
berg representation. The vacuum state of the inter-
acting fields is ¥,. We suppose that ¥ is a state con-
sisting of one proton and one neutron in interaction,
but not necessarily bound together.

The 4-dimensional wave function of the 2-particle
state ¥ is, according to Gell-Mann and Low,” defined
as the matrix element

Vas (%, ¥)= (W T (¥ a(x), ¥Vs(3))D), (1)

where T represents the chronological product as defined
by Wick.? This wave function is a 16-component spinor
and is a function of the two independent space-time
points x and y. In particular, x and ¥ may be taken to
be two space points # and #’ at the same time ¢=0.
Then yqs(x, ¥) specializes to

Vs (7, 1) = (To™ PP a(r)¥ Vs (r')T). (2)

We may identify the Heisenberg operator yZ,(r)
at t=0 with the time-independent operator which
describes the proton field in the Schrédinger represen-
tation. Likewise ¥¥5(7’) is a neutron field operator in
the Schrédinger representation. With this identification
the state vector of the actual state in the Schrédinger
representation is

¥ exp(—1iEt), 3)

6 F. J. Dyson, Phys. Rev. 90, 994 (1953).

7M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).
8 G. C. Wick, Phys. Rev. 80, 268 (1950).
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supposing the actual state to have a given total energy
E. The Schrédinger state vector of the vacuum state is

‘I’o exp ( -_ iEol) y (4)

where E, is the vacuum energy. We are using natural
units so that z=¢=1.

The Schrédinger operator ¥, (r) may be represented
as a superposition of plane waves obeying periodic
boundary conditions in a finite box of volume V, thus

PP (r)=V"1 31 3, thaby, exp(ik-7), (5)

where % is summed over the normal frequencies of the
box and # is summed over the 4 spinors satisfying the
Dirac equation for given k. For each & the # are nor-
malized by

(w*s') = 8. (6)

The by, are proton absorption operators and antiproton
creation operators, and satisfy the anticommutation
rules

Ebku, bk'u’*]+= 5uu'6lck" (7)
The neutron field is similarly
Y a(r)=V=4 2k 3w thaiw exp(ik-7), ®)

and the b, anticommute with the d,.
The meson field in the Schrédinger representation is

o(") =21 V) ar+a—i*) exp(ik-7),

[as, ¥ ]=8ur, we= (u2+DY ©)

Finally the interaction between the fields in the
Schrédinger representation is

with

H'=G f @ OO O O (dy (10)
=G X o (2Ver)Harta*) 2o 2. (u™yv)
X (bk'u*bk’—k, v+dk"u*dk'-—k. v)y (1 1)

where v is written for the Dirac matrix i837ys.

Let N be a set of occupation numbers for the non-
interacting fields. Thus, N is a set of integers
(N, Ng, - - +), one corresponding to each state of a free
proton, antiproton, neutron, antineutron or meson.
Let A(N) be the product of the absorption operators
Bty Or™, druy di™, and az, which annihilate the particles
represented by N. Let C(V) be the product of the cor-
responding creation operators. Then the normalized
state vector of the state in which the particle occupation
numbers have the values V is

(V) =[I(N) I7C (V) %o, (12)

where ®, is the vacuum state of the noninteracting
fields, and
II(N)= (N )NV -, (13)

The ®&(NV) form a complete orthonormal set of states for
the system of fields. The 3-dimensional wave function
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of the system in the state ¥ is given according to Tamm?
and Dancoff? by the set of amplitudes

a(N)=((2(N))*¥)=[IL(N) ] H(@*4 (N)¥). (14)

The a(V) define the state ¥ completely in the sense of
elementary quantum mechanics. We denote by B(V)
the Tamm-Dancoff amplitudes for the interacting
vacuum state ¥y,

- BIV)=[II(NV) I H(Do*4 (N)¥y). (15)
us
V=3 ya(N)B(N), Yo=Y nBN)DWN). (16)

There is no clear relation between the 4- and 3-dimen-
sional wave functions (1) and (14). Substituting from
(5) and (8) into (2),

lpaﬁ(f’, 7’,) =J-1 Zk Zk’ Zu Zu’ %auﬁl
Xexp(ik-r+ik"-7") (Vo*brudin¥).  (17)

Thus ¢ (7, #') is a linear combination of the coefficients
(¥o*brudr¥), which are a special case of the coefficients

a(N, N')=[I(M)I(N') JH&*C(V)AN)¥).  (18)

We take the a(V, N’) as an alternative 3-dimensional
wave function® of the state ¥. We will call the theory
using «(V) the “old Tamm-Dancoff formalism,” and
the theory using a(N,N’) the “new Tamm-Dancoff
formalism.”

III. PHYSICAL MEANING OF THE WAVE FUNCTIONS

The meaning of the old Tamm-Dancoff wave function
a(N) is clear. It is just the probability amplitude for
finding the free particles specified by &, if the system
is first put into the state ¥, and the field interaction is
then instantaneously switched off.

The physical meaning of the wave function a(V, N')
cannot be expressed so directly. Intuitively we can say,
by looking at Eq. (18), that a(V, N’) is related to the
probability amplitude for ending in the true vacuum
state W, if we start in the state ¥ and instantaneously
annihilate the particles N’ and create the particles V.
Thus a(N, N’) describes the probability in the state ¥
of finding N’ particles more, and NV particles less, than
are to be found in the vacuum of the interacting fields.
A less exact but briefer way of expressing it, is to say
that a(N, N’) is the probability of finding N’ plus
particles and V minus particles in the state ¥. A “minus
particle” is defined as one which is absent in ¥ but
present in the comparison state ¥,.

A great advantage of this introduction of minus
particles is that it enables us to handle the positive and
negative energy solutions of the Dirac equation to-
gether. Using the old wave function a(V), one is forced
at every stage to separate the proton states from the
antiproton states and write a separate equation for
each. This makes the old Tamm-Dancoff method ex-

9 The notation here differs from that of reference 6 by a nu-
merical factor.
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tremely cumbersome when applied to processes involv-
ing pair creation and annihilation. On the other hand,
the one-proton component of the new wave function
a(N,N') is

(19)

where bz, is an annihilation operator for a proton when
% is a positive-energy spinor. The same expression (19)
also represents, when # is a negative-energy spinor, the
minus-one-antiproton component of the wave function
since i, is then an antiproton creation operator. We
may always take the one-proton and the minus-one-
antiproton parts of the wave function together in the
equations. That is to say, we may proceed as if the
Dirac hole theory had not been invented, as if the
proton were actually allowed to occupy states of both
positive and negative energy. The hole theory has to
be taken into account only at one place in the calcula-
tions; when Eq. (18) is used to define ¢(V, N’) we must
make sure that the creation operators C(V) are written
to the left of the annihilation operators 4 (NV').
Similarly the component,

(11’ (ku) = (\IIO*bku*\I’))

ai (ku) = (‘I’o*blm‘I’),

(20)

of a(V, N’) represents both the one-antiproton and the
minus-one-proton part of the wave function. In this
way a physical interpretation is found for the negative-
energy components of the wave function y.s(7,7’) in
Eq. (17). This two-particle wave function represents
the amplitude for finding in ¥ either one proton and one
neutron, one proton minus one antineutron, one neutron
minus one antiproton, or minus one antiproton minus
one antineutron. The general 4-dimensional wave
function ¥(x,y) has no such simple interpretation,
when x and y are separated by a time-like interval. But
at least we have now an understanding of the meaning
of Y (x, y) for equal times, including positive and nega-
tive energy components on an equal footing.

IV. CONNECTION BETWEEN THE WAVE FUNCTIONS

We have now established a direct connection between
the 4-dimensional wave function and the 3-dimensional
amplitudes ¢(V, N’). It remains to work out the con-
nections between the a(NV, N’) and the a(N) and B(V).
Substituting from (12) and (16) into (18),

a(N, N’)=§, J‘VZ B*(NV)a(lV,)
X[ (V)I(N)IL(N)II(N ) ]

X(2¢*A (N)C(N)AN)C(N)B). (21)

The expectation value in (21) is zero unless there exists
a set of nonnegative occupation numbers

M=N2—'N'=N1—N, (22)
and is then equal to
(V)N ) [TI(M) . (23)
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We define a symbolic binomial coefficient
N,
(,)-neomen@-nry, e

and then (21) becomes
a(N, N') =2 u B*(N+M)a(N'+M)

N+M\} N+ My}
This gives the formal definition of the ¢(V,N’) in

terms of old Tamm-Dancoff wave functions.
The inverse of the relation (25) is

B*(V)a(Ne) =2 u(—D)Ma(N+M, No+tM)
% NiF+MN\t fNo+MN\?
()

(25)

,» (20)

where (—1)¥ means (—1)%¥ and > M is the sum of
the occupation numbers M. To verify (26), substitute
back (25) into (26). The result is

B*(NV)a(N2) |
=Yy L (—D)MB*(Ni+M~+M)a(No+-M+M')

(NH—M—{—M’)*(NH—M—I—M’)*(M—i—M’) 1
Ny N, u )

But it is easily proved that, keeping M+ M’ fixed and
summing over M,

7

M
)=

except when M+ M’=0. Therefore the right side of
Eq. (27) reduces to the term M=M’'=0 and is equal
to the left side. This verifies Eq. (26). In consequence
of Eq. (26) the amplitudes a(V, N’) include a com-
plete, and indeed redundant, determination of the
a(N) and B(NV). Therefore, the a(V, N') in principle
provide a complet e description of the states ¥ and ¥,
and determine all measurable properties of these states.

M
e~ 1>M( (28)

V. NORMALIZATION AND CONVERGENCE
. CONDITIONS
The old Tamm-Dancoff wave function, being defined
directly as a probability amplitude, must be normalized
by the conditions

ZylaW)[2=FN|B(NV)[?=1. (29)

In a particular theory the sums (29), which arereally
multiple integrals, may or m ay not converge. If they
diverge then the a(N) and B( V) cannot rigorously be
defined, and the whole Tamm -Dancoff picture makes
no exact sense. It is likely that this is the case for the
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field theories now in general use. Nevertheless the
method of renormalization can be incorporated into the
Tamm-Dancoff formalism,® and probably some kind
of “renormalized” a(N) can be defined for which the
integrals (29) become convergent. We may say that if
the Tamm-Dancoff point of view finally makes sense
in this context, Eq. (29) will remain as the correct
normalization condition for the a (V).

We now discuss the appropriate normalization con-
dition for the a(V, N’). Let 2 be any positive number,
and write ¥ for s as in Eq. (26). From Eq. (25) we
derive

2 ZnaV Y a(N, N') |2
=38 X Zm 2w B¥(IN+M)a(N'+M)

N4-M\?
Xﬁ(N+M’)a*(N’+M’)zN+N’( Iy )
N'4-MN\ yN+M\  N'+M'\}
)G ) G ) o
M M M

Using Cauchy’s inequality, the right side of (30) does
not exceed X*V?, where

X=YV=3nv2n 2u 2u|aN'+M)?

N+M N+M'
v ) )
=§%Ia(Nl)lzlﬁ(Nz)lz(Z-f—l)N“N”, (31)

1o+ s

by the binomial theorem. Thus for every z,

T Tav ™4 [a (N, N) |2 ()Y [a) |2

XECrEHDYB@I)[?).  (32)
The same argument applied to (26) gives
v 2 (z+ 1)V [a (N, N') [
2 v e[y [BW) ). (33)

The inequalities (32) and (33) show that there is a
close connection between the normalization integrals
for the a(N) and the a(N, N’). In particular, suppose
a theory is such that the old Tamm-Dancoff amplitude
for finding more than 85 particles simultaneously present
in the state Y or in W, is sirictly zero. (Here 85 is chosen
only as an example of a large but finite number.) Then
the right side of Eq. (32) converges for all z if it con-
verges for z=0. In this case the normalization condition,

ZN ZN’la(N, N’)P———ﬁnite, (34)

may be imposed, and the sum (34) will automatically
converge provided that (29) is convergent.

10 M. Cini, Nuovo cimento 10, 526 and 614 (1953) has shown
how to renormalize the Tamm-Dancoff theory. See remarks in
Sec. VII below.
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In practice the Tamm-Dancoff method necessarily
requires that the amplitudes « (V) be calculated with a
cut-off theory, in which all the amplitudes involving
more than say Q particles are set equal to zero by
definition. It is taken as a fundamental hypothesis that,
if Q is sufficiently large, the results of the calculation
will be insensitive to the value of Q and will tend to a
limit as Q tends to infinity. If this hypothesis fails then
again the Tamm-Dancoff point of view makes no sense.
Therefore, we must always suppose in practice that we
are working with a cut-off theory with some finite
value of Q. This being so, the previous argument
applies, and we may take (34) as a practical normaliza-
tion condition for the a(NV, N') which will always be
valid in circumstances where the Tamm-Dancoff
method itself is valid.

If (V) and B(N) are set equal to zero for 3~ N>,
the a(V, N’) defined by (25) will also be zero for
2 N>Q or 3 N'>Q, and Egs. (25) and (26) will
still be consistent. Thus, the old Tamm-Dancoff for-
malism with cutoff is equivalent to a theory in which
a cutoff is applied directly to the amplitudes a(V, N)
involving more than Q particles.

Supposing that we are not content with the above
arguments and wish to obtain a rigorous normalization
condition for the a¢(V, N') independent of cutoff, then
Eq. (32) is just not strong enough to deduce anything
nontrivial from (29) alone. In order that (34) should
hold, we must assume

2n 2V [a(NV)[P<w, Xy 2¥[BWN)[*<e. (35)

Thus the normalization condition (34) will apply,
provided that the expectation values of 2¥ in the states
¥ and ¥, are finite. More generally, a practical nor-
malization condition for the a(V, N’) will result from
Eq. (32), provided that the expectation values of z¥ in
the states ¥ and ¥, are finite for some 2> 1. In practice
it is very likely that these conditions will be fulfilled
in cases where Eq. (29) holds. In any case, the order
of magnitude of the Tamm-Dancoff amplitudes for
large IV is so hard to estimate accurately that there is
practically no likelihood of being able to distinguish
between (35) and (29). Therefore again we may con-
clude that (34) is a correct normalization condition for
the a(V, N’) in all cases to which the Tamm-Dancoff
point of view is applicable.

From (34) we may derive in turn a normalization
condition for the wave function Y.s(7,7’) defined by
(2). Using Egs. (17), (6), and (34), we find

f f dsrdsr’ ¥ a Xslas(r, ) |P=finite.  (36)

It is convenient to take (36) equal to 1, although
Y(r,7’) is not strictly a probability amplitude. The
space integrations in (36) extend over the whole space,
since the volume V of the normalization box can be
made to tend to infinity without introducing any dif-
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ficulties. Equation (36) gives important information
about the normalization of the 4-dimensional wave
function ¥(x, v), although it still does not throw any
light on the behavior of the function for x and y sepa-
rated by a time-like interval. At least Eq. (36) is a
necessary condition for the 4-dimensional wave function
to have a physical meaning.

VI. AN ELEMENTARY EXAMPLE

To illustrate the preceding sections in a simple way,
consider a neutral scalar meson field ¢(x) interacting
with a classical source. Let the interaction be

H'=3 p(k) (axtar®), 37

where p(k) is a given function of k. As is well known,!
the stationary states of this system can be found ex-
plicitly. Let .S be the anti-Hermitian operator

S=3kr(k)(a*—a), r(k)=wp(k).  (38)
A complete set of stationary states of the system is
¥ (N)=exp(—S)2(N), (39)

with ®(V) given by Eq. (12). Let ¥ be the state in
which just one real meson is present with momentum #.
The old Tamm-Dancoff amplitudes of ¥ and ¥, are

a(V)=[II(V) J}(2s*4 (V) exp(—S)a,*®o), (40)
BIV)=[IL(N) IH(2o*4 (N) exp(—S)®0).  (41)
An elementary calculation gives!
BW)=[I(N)]* exp{—3 Zulr(R) I}
XIL[—r()V®, (42)
a(N)=B(I)[r(p)— IV (p)/r(p))]. 43)

The necessary and sufficient condition that the old
Tamm-Dancoff wave functions be normalizable is that

the sum
2ilr () =2k oo (k) I

be convergent.
For the same state ¥, the wave function ¢(V, N') is

a(N, N')=(II(N)II(N"))~#(®o exp(S)C(N)A(N")
Xexp(—S)a,*®o)
=I(V)I(N)) L =N'(p)/r(p)]

(44)

XIGL—r(k) JV®+N'E - (45)
This gives immediately
v Xw|a(V,N)|?
={1+Lr(P) T} exp(2 Zilr (B) T}  (46)

Hence Eq. (34) also is satisfied if, and only if, the series
(44) converges. Thus, in this example, the normalization
condition (34) for the a(V, N’) is precisely equivalent
to the condition (29) for the old Tamm-Dancoff wave
function to be definable.

1 See R. J. Glauber, Phys. Rev. 84, 395 (1951).
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VII. EQUATIONS OF MOTION

The Schrédinger equation for the old Tamm-Dancoff
wave function is.

(E—Ep)a(M)=2n@* (MH'D(N))a(N), (47)

where Ej; is the sum of the energies of the free particles
specified by M. The corresponding equation for the
a(N,N') is

(€+EN_EN’)G'(N7 NI)
=[NV IH@ICIV)AW), H' 1Y), (48)

where e=E—E,. The a(N,N’) were originally intro-
duced in order to avoid difficulties with the vacuum
energy, which arise with Eq. (47) but not with Eq.
(48). This aspect of the a(V,N’) has been already
discussed,® and no more will be said about it here.

It is important to distinguish between two possible
methods of solving Egs. (47) and (48). The first method
is the Tamm-Dancoff method proper, as discussed in
Sec. V. All amplitudes (V) or a(V, N’) involving more
than Q particles are set equal to zero, and the result
is a finite set of coupled linear integral equations for the
a(N) or a(N, N') involving not more than Q particles.
The finite set of integral equations is then to be solved,
numerically or otherwise, without any further approxi-
mations. The only hypothesis made in this method is
that the a(V) or a(V, N”) for sufficiently large numbers
of particles are unimportant. The second method is the
method of Lévy® and Klein.”? In this method we single
out the components of the wave function involving the
smallest possible number of particles for the given
system. Thus, for the state ¥ of one proton and one
neutron, we single out the (M) in which M denotes
one proton and one neutron and no other particles, and
we call this lowest-order part of the wave function ay;.
Similarly, we single out the components a;; of the
a(N, N') representing one proton (or minus one anti-
proton) and one neutron (or minus one antineutron),
which are just the components appearing in ¥.s(7, #’)
according to Eq. (17). Equations (47) and (48) are
then converted into integral equations for the ay; or ay;
alone, successively eliminating all the rest of the a(V)
and ¢(N, N') by substituting from one equation into
another. The result of the elimination is a linear integral
equation for the a;; or ayy, in which the kernel appears as
a power-series expansion in the coupling constant G.
The integral equation is in principle exact, if the sub-
stitution process could be carried to completion. In
practice the series for the kernel has to be broken off
at some finite power of G. So the Lévy-Klein method is
based on the assumed convergence of the power-series
expansion of the kernel, a much stronger hypothesis
than that used by the Tamm-Dancoff method.

Klein has shown by actual calculation that the
power series for the kernel diverges badly, even if one
considers only those meson exchange processes in

2 A, Klein, Phys. Rev. 90, 1101 (1953).



1548 F. J.

which ultraviolet divergences of the self-energy type
do not occur. For this reason the Lévy-Klein method
must be considered unworkable, and we must in future
rest our hopes on the Tamm-Dancoff method. Unfor-
tunately the solution of the Tamm-Dancoff equations
becomes a formidable task as soon as the Lévy-Klein
expansion is abandoned. There is no evidence showing
whether or not the solutions converge as the number of
particles considered increases, because nobody has ever
solved the equations taking into account more than a
very few components of the wave function.

The 4-dimensional wave function ¥ (x, ¥) satisfies the
Bethe-Salpeter equation,® which is again a linear integral
equation with a kernel which is expressed as a power-
series expansion in G. This equation is open to the same
objections that were raised against the Lévy-Klein
treatment of Eqgs. (47) and (48). Only in this case the
situation is worse, because there is no known way of
expressing the equation in any form other than the
series expansion. There exist no 4-dimensional equa-
tions analogous to (47) and (48) from which the
Bethe-Salpeter equation might be derived. Up to now
the 4-dimensional theory has been inextricably tied up
with the power-series expansion.

Whichever form of the equations of motion is chosen,
in order to solve the equations it is necessary to use the
method of renormalization to eliminate self-energy
and other divergences. The renormalization is at present
only possible in terms of a power-series expansion in G.
Thus, Lévy® renormalized the power-series expansion
of the Bethe-Salpeter kernel, and he found an approxi-
mate connection between that kernel and the kernel of
the integral equation for the old Tamm-Dancoff wave
function ;. In this way he could obtain a divergence-
free integral equation for a;;, using an expansion in
powers of G and various other approximations. More
recently Cinil® has succeeded in writing the old Tamm-
Dancoff Egs. (47) in a covariant form, and so he is able
to renormalize directly the kernel of the integral equa-
tion for ai;. But Cini’s method is still based on the
power-series expansion; he can renormalize the Lévy-
Klein treatment of the Egs. (47), but he cannot yet
renormalize the Tamm-Dancoff treatment.

The method of Cini can be used with Eq. (48) just
as well as with Eq. (47). Also, since the a(V, N') is
much more closely related than the a(V) to the 4-dimen-
sional wave function, it seems likely that it will be
easier to renormalize the Tamm-Dancoff treatment for
Eq. (48) than for Eq. (47). It remains an outstanding
task for the future to avoid the series expansions and
to renormalize Eq. (48) directly.

VIII. THE ONE-PARTICLE SYSTEM

In this section we illustrate the use of Eq. (48) by
setting up the equations for a state ¥ consisting of a
single proton. In this case the lowest-order component
of a(N, N') is the one-proton wave function (Wb, ).
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It is convenient to use instead of this wave function the
related quantity,

Ya (P) = Zu (\I,O*bpu\I,)uay

which is a Dirac spinor, the sum being taken over the 4
solutions # of the Dirac equation for a free particle of
momentum p. We write

E,= (M%)},
1(p)=E; (- p+BM) &)

be the Dirac operator whose eigenvalues are -1 for the
positive energy states and —1 for the negative energy
states of momentum p. The equation (48) for ¥ (p) is
then

(49)

(50)
and let

Le—1(0) EpJa(p) = u(¥o*[bpu, H' JW)tha.  (52)
Using (11) and (7), the right side of (52) becomes
sz (2 Vwk)‘% Zv (’Yv)a(‘I’O*bp—k, v (ak”‘l" a—k*)‘I’). (53)

Equation (52) couples the one-proton wave function
Ya(p) only to the one-proton-one-meson wave function

ot (P» k) = Zv (‘Po*bmak\y)va: (54)

and to the one-proton-minus-one-meson wave function

‘ba— (?’ k) = Z'n (\Ilo*a——k*bpv\lf)va- (55>
With these notations, Eq. (52) becomes
Le—n(P)Ex W (p) =G Zi(2Ver)?
The equation (48) for y+(p—~k, k) is
Le—n(p—R)Epr—wr W+ (p—Fk, k)
= Z,, (\I’o*[dkbp_k, vy H’]\I/)v. (57)

Equation (57) couples the one-proton-one-meson wave
function to the one-proton wave function and to various
components a(V, N’) involving 3 particles. To obtain
the first approximation of the Tamm-Dancoff method,
we set all the 3-particle amplitudes equal to zero. To do
this we must arrange the commutator in (57) as a sum
of terms written in normal form® with creation operators
standing to the left of absorption operators, and then
keep only the term which involves a single b, operator.
This gives for the right side of (57)

. GV (p— B (p), (58)
with
At (p)=3[1+2()], -A-(@)=31—2(p] (59
Because of the A* in (58), Eq. (57) becomes
(e~ Epimwd¥ (p— b, 1)
=GQ2Ver) M (p—k)n(p). (60)

18 The Tamm-Dancoff treatment in this first approximation
gives the same results as the Lévy-Klein treatment with the inter-
action kernel calculated to order G2 The two methods become
different only in the next approximation.
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Similarly, the equation for y—(p—k, k) is

(e+Epitw )y (p—Fk, k)
=GV~ (p—E)(p). (61)

Substituting Egs. (60) and (61) into Eq. (56), and
letting V— o, we derive an integral equation for ¢ (p)
alone,

(e—a- p— B (p)= (62/16«3>| [t
><v[e~n(p—k>(EH+wk>J~w]w>. 62)

Equation (62) gives the second-order self-energy of a
proton interacting with the meson field. The Dirac
operator multiplying ¢ (p) on the right side is the self-
energy operator. This operator in general has matrix
elements between positive and negative energy com-
ponents of ¥(p). Thus, Eq. (62) is a set of 4 coupled
equations and will have four independent solutions
¥ (p), two with a positive eigenvalue € and two-with a
negative e. The positive e is the energy of a proton of
momentum p, including self-energy, and the negative
is minus the energy of an antiproton of momentum #.

It is noteworthy that Eq. (62) differs from the cor-
responding equation obtained using the old Tamm-
Dancoff wave function a(V). The form of the energy
denominators is here symmetrical between positive and
negative energy intermediate states, whereas in the
equation for a(V) the negative intermediate states give
denominators of a quite different and unsymmetrical
form. The denominators in Eq. (62) are much closer to
those which appear in the covariant 4-dimensional per-
turbation theory. This removes one of the major dif-
ficulties found by Lévy® and Klein? in connecting the
Bethe-Salpeter equation with the 3-dimensional treat-
ment.

IX. THE TWO-PARTICLE SYSTEM

We now use the method of Sec. VIII to construct
from Eq. (48) the wave equation for the neutron-proton
system, setting equal to zero all components a(V, N”)
involving 4 or more particles. We define the 2-particle
wave function

Vap (? 3 Q) = Zu Zv (‘I’O*bpudqv‘l’)uavﬂ-

This is just the momentum transform of the configura-
tion-space wave-function (17). Similarly we write

(63)

Vras(p, ¢, ) =20 200 (¥0*Dpud gt ¥)1tals, (64)
¥ ap (P > 9 k) = Zu Zv (\I/O*a—k*bpudqp\l')uavﬁ. (65)
The equation (48) for ¥/(p; ¢) is
Le—n' (D) Er— () E N (P, 9)
=G 2 x(2Ver)Hy¥F(p—k, g, k)
+‘YI¢—(P“k» q, k)+72¢+(Py q_k) k)
+72‘/’-—(?7 q— kr k)]) (66)

1549

where the indices 1, 2 denote Dirac matrices operating
on the first and second spinor suffix of ¥, respectively.
The equation for y*(p—£&, ¢, k), dropping the 4-particle
components, is

[e—"’ll (P—_ k)EP—k_ﬂz(q)Eq_wk]‘lﬂ-(p—' k7 g, k)
=GQ2Vur) AT (p—Ek)YY¥(p, 9)

FARQ (P~ ¢ +B]. (67)
Similarly,
[5_‘ 7t (P_ k)Ep—k_' "72 (Q)Eq"{"wk]\b— (?— k7 q, k)
=GQ2Vwr) AT (p— k)Y (p, @)
+A (VY (p—k, ¢+k)].  (68)

Substituting from (67) and (68) into (66), we find the
two-particle wave equation '

[e— (o p+BM)— (o?-g+BM) ] (p, @)

= (G¥/161) f A ()T (5, ¢)
+Ly(p—k, g+R)].

The kernel K gives the effect of the self-energies of the
two particles,

K= 'Yl[é""ﬂl (P —k) (Epitor)—n (QE ™
+vLe—n*(g+k) (Eqprtwr) =0 (p) Ep o2

The kernel L gives the interaction between the particles
resulting from exchange of a single meson,

L=v9'Le=n'(p—B) Eps—1*(9) (E;+wr) '
+v*Le— 1 (q+R) Egpi—n' (p) (Epter) . (71)

Again we see that Eq. (69) differs from the two-body
equation derived from the old Tamm-Dancoff method.
The energy denominators in Eq. (71) are similar to
those which appear in the Bethe-Salpeter equation and
are symmetrical between positive and negative energies.

To make use of Eq. (69), it is necessary to use the
Cini method of renormalization® to eliminate the
divergent parts from the self-energy kernel K. The
resulting equation is free of divergences and suitable for
practical calculations. By separating the center-of-mass
motion and considering a state with a definite angular
momentum, we can reduce the equation toa one-
dimensional integral equation for a 16-component
function of one real variable. The number of components
can be reduced by making further use of the symmetry
properties of the equation. In any case, a one-dimen-
sional integral equation of this kind can be solved
numerically without a prohibitive amount of work. We
are, therefore, in a position to explore quantitatively the
behavior of the wave function y.s(r, #') of a relativistic
2-body system, without assuming the velocities of the
particles to be nonrelativistic and without assuming the
negative-energy components of the wave function to
be small.

(69)

(70)



1550 F. J.

The solutions of Eq. (69) will divide into four
classes, characterized by the way in which they behave
for small G. The first class tends as G—0 to a state of
one free proton and one free neutron. The second class
tends to one free proton minus one free antineutron,
the third to one free neutron minus one antiproton,
the fourth to minus one antiproton minus one anti-
neutron. It is possible that for large G these classes of
solutions will no longer be clearly distinguishable.
However, in studying the two-body system we are only
interested in the solutions of the first class. The other 3
classes represent systems in which real particles are
present in the comparison state ¥y, so that ¥, for these
solutions is not the vacuum state. We have never used,
in the whole analysis leading to Eq. (69), the informa-
tion that ¥, is the vacuum state. The fact that ¥, is
the vacuum state is an additional boundary condition
which we impose on Eq. (69), restricting the allowed
solutions to those of the first class.

A practical difficulty in the use of Eq. (69) is the fact’

that the energy denominators in Eq. (71) may vanish.
When
(72)

e—E, 1—E;—w;,=0,

the energy of the system is sufficiently large to allow
production of a real meson. In this case the wave
function ¢+(p—Ek, q, k) has a singularity where (72)
is satisfied, representing an out-going wave of created
mesons. This singularity appears in the integral Eq.
(69) as a Dirac 8, function, in consequence of the
assumed boundary condition that the free mesons form
an outgoing wave. The integration over the &; function
then has a well-defined meaning and does not introduce
any ambiguity. The type of vanishing energy denomi-
nator typified by Eq. (72) is handled here in exactly
the same way as in nonrelativistic scattering theory.

DYSON

However, another type of singularity in Eq. (71)
occurs when
e+Ey i—E,—w:=0. (73)

This corresponds to a singularity in Y*(p—k, ¢, k) at
the point where one neutron and one meson and minus-
one antiproton are present. Such a singularity could
exist only if a real antiproton were present in the com-
parison state ¥, So again we use the fact that ¥, is
the vacuum state as an extra boundary condition,
implying that there is no §-function singularity in
yt(p—k, q, k) where Eq. (73) is satisfied. This means
that the integrations over vanishing energy denomi-
nators in Eq. (69) are always to be taken as Cauchy
principal values, except in the case where they are of
the form (72) and are associated with real particle
creation.

The appearance of the “spurious” vanishing energy
denominators in Eq. (69) is a defect of the new Tamm-
Dancoff method, which may considerably complicate
the practical use of the method. But it is clear that this
defect is also inherent in the Bethe-Salpeter equation.
The Bethe-Salpeter equation is also derived formally
without using the fact that ¥ in Eq. (1) is the vacuum
state. Hence the fact that ¥, is the vacuum state must
be used as a boundary condition in order to obtain the
physically meaningful solutions of the equation. Only
because there is no known method of solving the Bethe-
Salpeter equation except in a quasi-static approxima-
tion, this need for additional boundary conditions has
hitherto been concealed.

Note added in proof>—W. M. Visscher (Cornell
thesis, 1953, to be published) has calculated the finite
part of the self-energy kernel (70) which remains after
mass-renormalization. He used the Cini method,
adapted to this problem as explained in an earlier letter
[F. J. Dyson, Phys. Rev. 91, 421 (1953)].



