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Many-Body Forces and Nuclear Saturation*f

S. D. DRELL AND KERSON HUANGf.
Department of Physics and Laboratory of Nnctear Science, Massachusetts Institute of Technology, Cambridge, Massachnsetts

(Received June 10, 1953)

Nuclear saturation is studied with many-body interactions derived from pseudoscalar meson theory with
pseudoscalar coupling. All parameters appearing in this calculation are 6xed on the basis of the work of
Levy, who has shown that leading terms in a perturbation deduction of the two-body interaction are well
6tted to reproduce the experimental data. The leading term in the I-body potential depends only on the
interparticle distances and is repulsive (attractive) for n odd (even). The energy of the nucleus is calculated
with potentials up through 6ve-body interactions and with neglect of Coulomb and surface effects. Satu-
ration properties derived from these considerations are in accord with experience. Antisymmetrization of
the nuclear wave function reduces the many-body interaction energies considerably by inhibiting the close
approach of many particles. Thus the Pauli exchange terms are found to reduce the 6ve-body interaction
energy by 76 percent and to give a rapid convergence for the expansion in n-body forces.

I. INTRODUCTION

~ NE of the outstanding problems of nuclear
structure is the explanation of the saturation of

nuclear forces in complex nuclei. The main facts in-
volved in this problem are the saturation of nuclear
density and the saturation of binding energy. The first
refers to the fact that the density of nuclear matter
seems to be very roughly independent of mass number
A, for all but the lightest nuclei. Observed nuclear
radii equal, approximately,

E,=1.4A Xi10 "em=A&/ts,

with p ' de6ned as the meson Compton wavelength.
Saturation of nuclear binding energy refers to the fact
that the average binding ener'gy per nucleon is roughly
independent of A and approximately equal to 8 Mev.

These saturation features limit the choice of accept-
able theories of nuclear forces. For example, purely
attractive forces between pairs of nucleons (Wigner
forces) are excluded. '

In 1932, Heisenberg' borrowed the concept of ex-
change forces from molecular theory and applied it to
the nucleon-nucleon interaction problem. %ith the
introduction of such forces as these, which are attractive
or repulsive depending on the symmetry of the inter-
acting nucleon pairs, it has proved possible to account
for nuclear stability in terms of static, central, two-body
potentials of short range. Combinations of ordinary
and exchange forces consistent both with the saturation
requirements and with observations on deuterons,
0. particles, and nucleon-nucleon scattering have been
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U. S. Oflj.ce of Naval Research and the U. S. Atomic Energy
Commission.

t Part of a Doctoral thesis submitted by K. Huang to the
Physics Department at the Massachusetts Institute of Tech-
nology.

f E. I. duPont de Nemours Fellow.' J. M. Blatt and V. F. Weisskopf, Theoretical Egclear I'hysics
(J. Wiley and Sons, New York, 1952), Chap. III. In the follow-
ing, we refer to this book as B.W.' W. Heisenberg, Z. Physik 77, 132 (1932).

given during the 1930's by signer, Breit, Feenberg,
Kemmer, Volz, and others. '

Recent1y, however, the study of the rt-p and p-p
scattering cross sections in the energy region up to
300 Mev has cast some doubt upon the role of exchange
forces as the main reason of saturation. The analysis
by Christian and Hart' seems to reveal a mixture of
ordinary. and exchange forces (Serber force) incon-
sistent with the saturation requirements. ' It must be
said, however, that this analysis is based upon rather
incomplete experimental data; and the result, therefore,
cannot be taken to exclude dehnitely the explanation
of saturation by two-body exchange forces.

It has often been recognized and remarked that the
limitation of considerations within the framework of
two-body, velocity-independent interactions was too
restrictive. Primako6 and Holstein' and Wheeler' have
discussed extensions of the basis of considerations to
include many-body and velocity-dependent forces. Also
the development of meson theories of nuclear forces
has suggested that, especially, the many-body forces
should play an important role in nuclear matter. The
interaction between mesons and nucleons is strong
enough so that meson exchanges will be frequent
between more than two neighboring nucleons, and this
phenomenon leads to many-body forces.

The present status of meson theory is too uncertain
to permit us to draw any quantitative conclusions, let
alone to rely upon them. In this paper we consider the
pseudoscalar meson theory with pseudoscalar coupling

' G. Breit and E. P. Wigner, Phys. Rev. SB, 998 (1938).For a
comprehensive bibliography of the literature on this subject, see
L. Rosenfeld, Nuclear Forces (North Holland Publishing Com-
pany, Amsterdam, 1948), Chap. XI.

4 R, S. Christian and E. W. Hart, Phys. Rev. 77, 441 (1950).' This question is discussed in reference 1, Chap. IV. More re-
cently E. Lomon and H. Feshbach I Bull. Am. Phys. Soc. 28,
No. 3, 30 (1953)g have shown that the scattering data can also
be analyzed with forces which give odd-state repulsions that are
absent from a Serber mixture.

H. Primakoif and T. Holstein, Phys. Rev. SS, 218 (1939);
L. Janossy, Proc. Cambridge Phil. Soc. 35, 616 (1939); N. N.
Svartholm, thesis, Lund, 1945 (unpublished).

7 J. A. Wheeler, Phys. Rev. 52, 1083 (1937) .
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as a guide with which to explore some possible forms
which many-body forces may assume, and we study
the implications of these forces for the saturation
problem.

We are using a very primitive approach in the
evaluation of the meson theory. Perturbation theory is
employed and only the leading terms, in powers of the
meson-nucleon coupling constant G'/4' multiplied by
the meson-nucleon mass ratio p/M are considered,
although it has been shown that other terms contribute
also and may change the results considerably. The
two-body interaction emerging from this calculation is
identical with the one derived by Levy, ' and it seems
to be well fitted to reproduce the two-body experimental
data. We then choose for our work the same coupling
constant as Levy has used.

We note especially one feature of the Levy two-body
force: Outside of a repulsive core of radius r, =0.38/p,
it contains a strongly attractive short-ranged Wigner
force and two longer-ranged forces, one proportional to
((F1'Os) ('et' %Q) the other to (et 'es)Sts, where Sts is the
tensor operator. The combination of these terms repro-
duces a characteristic feature of the two-body inter-
action; namely, that the range of the tensor force is
longer than the range of the central force. The strongly
attractive short-ranged Wigner force comes from the
exchange of meson pairs, and it is this exchange, when
applied to more than two nucleons, which gives rise to
the leading terms of the many-body forces. We are
aware that this primitive evaluation of the pseudoscalar
meson theory neglects terms which may be important
and, indeed, not negligible. However, we plan to use it
as a first exploration of the many-body forces and to
make use of the fact that it gives us a set of many-body
interactions without the introduction of any new
adjustable constants. It is hoped that their orders of
magnitude, shapes, and nonexchange properties are
guessed correctly by this procedure.

One of the most striking properties of these many-
body forces is their alternation in sign. The potentials
between odd (even) numbers of nucleons are repulsive
(attractive). The average distance between nucleons at
which the forces act decreases with increasing number,
and at the same time the Pauli exclusion principle makes
it more difficult for the nucleons to approach close to
one another. These features are the main reasons for
the saturating eGects of the many-body forces. In fact,
the repulsive three-body forces contribute most de-

cisively to the potential energy and prevent the nucleus
from collapsing.

We elaborate on this point in Sec. III, which is concerned
with the deduction of the interaction potentials from the meson
field theory.' M. M. Levy, Phys. Rev. 88, 725 (1952).We consider just the
two leading and important terms V2 and V4& & in Levy's work.
Algebraic errors in his calculation of the correction terms, inde-
pendently noticed by A. Klein, Phys. Rev. 89, 1158 (1953),
destroy the validity of his convergence arguments. This is dis-
cussed more fully in Sec. III.

Another effect of possible importance derives from
the many-body forces. The marked position correlation
between nucleons resulting from strong, short-ranged
two-body forces is dificult to harmonize with the shell
theory model of a nucleon moving in an average
potential hole. The introduction of many-body repulsive
interactions will tend to weaken the correlation between
nucleons and bring the two viewpoints into closer
accord.

The program of this paper is to study the eGect of
many-body forces upon the energies of complex nuclei
in their lowest states. We use the results of the pseudo-
scalar meson theory as a characteristic example of such
forces, without implying their correctness.

The pioneering work of this nature is that of Wentzel'
in 1942. He discussed these questions on the basis of a
meson scalar pair theory and by treating the nucleus
as an infinitely large source of uniform finite density.
His methods and results will be discussed in Sec. IV.

We should mention here another recently developed
approach to an understanding of nuclear saturation
from the point of view of nonlinear meson theory.
Schi6" has studied the possible forms of nonlinearities
which may be introduced into the meson equations,
in a classical field treatment, and which predict satu-
ration. The effective mesic self-repulsion introduced by
the nonlinearity is the primary agent preventing
collapse of the nucleus in this approach.

II. OUTLINE AND SUMMARY

A brief outline and summary of our calculations are
presented in this section. Levy's dificult and important
analysis of the low-energy properties of the two-nucleon
system provides the point of departure for the present
work. Levy has applied the methods of Tamm" and
Dancoffi3 to calculate an effective two-body interaction
with the pseudoscalar meson theory through terms
of order (G'/4s) (p/2M)', (G'/4m)'(p/2M)' and
(G'/4s. )'(p/2M)s, where (G'/4s) is the meson-nucleon
coupling constant and p and M are the meson and
nucleon masses, respectively. Levy argued that, for
internucleon separations r& (Mp) *, terms of these
orders in the coupling constant and mass ratio are of
major importance in determining the potential shape
and depth. ' For separations r& (Mp) '* a complete
analysis was not possible, but Levy developed argu-
ments from the field theory indicating a strong repulsion
in this range. With choice of G'/47r= 10 and of the
radius of the repulsive core r,=0.38/p, the Levy po-
tential has been impressively successful in matching the
data for e-p and p-p systems with energies up through
40 Mev.

' G. Wentzel, Helv. Phys. Acta 15, 111 (1942); 25, 569 (1952)."L.I. SchiG, Phys. Rev. 83, 1 (1951);B. J. Malenka, Phys.
Rev. 86, 68 (1952l; D. Finkelstein, Ph. D. thesis, Massachusetts
Institute of Technology, 1953 (unpublished).

~ I. Tamm, J. Phys. (U.S.S.R.) 9,. 449 (1945)."S.M. DancoG, Phys. Rev. 78, 382 (1950).
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Guided by Levy's success and viewpoint, and adopt-
ing his parameters, we derive the interaction potential
from pseudoscalar meson theory for e-body interactions.
The leading term for an n-body interaction is propor-
tional to X with X defined by ) = (G'/47r)(p/2M), is
repulsive or attractive according as n is odd or even,
and is a function of the magnitudes of the interparticle
separations only. These potentials are identical with
those of Wentzel's scalar pair theory, " as is readily
shown with the Dyson" or Foldy" transformation. In
our calculations of the energies, we consider those
potential terms which are proportional to X' and to
Xp/M for the two-body interaction, and to X" for n-body
interactions (m)2). We then determine the nuclea, r
potential energies by taking expectation values of these
interaction potentials with a completely antisym-
metrized wave function of A particles confined to a
box of radius R=gR, . In order to determine, firstly,
whether the three-body repulsion derived from the
pseudoscalar theory is qualitatively sufficient to prevent
collapse of. heavy nuclei and, secondly, under what
conditions it is possible to make a convergent expansion
of the interactions in a series of e-body forces, we
approximate the wave function for each of the A
nucleons by plane waves for al/ internucleon separations
greater than r, . Within the repulsive cores, the wave
function is taken- to vanish. The potential energy per
nucleon for two- plus three-body interactions resulting
from this calculation shows a minimum of depth 30 Mev
at a nuclear radius of E.=1.0R,. If we include the
contribution of four plus five-body interactions, we find

only a slight shift in the minimum to a depth of 32 Mev
at a radius R=1.1R, It is of interest to note just
briefly here the primary reason for the smallness of the
effect of many-body interactions for e)3. As e in-

creases, the range of the many-body potentials de-
creases, and at the same time the Pauli exclusion
principle makes it more dificult for the e bodies to
approach close to one another.

For the kinetic energies of the nuclear particles, we
refer to a calculation of Lenz" in 1929. Point nucleons
obeying the Pauli exclusion principle have the usual
Fermi kinetic energy due to the filling of free particle
energy levels. The requirement that the wave function
vanish whenever any two nucleons approach within a
separation of r„ the hard core radius, of one another
increases the wave function curvature and, hence, the
kinetic energy above the Fermi value. With Lenz's
approximate result for this increase, we write for the
kinetic energy,

of depth 12-Mev at a radius R= 1.15R,. Since surface
and Coulomb efI'ects have been neglected in the calcu-
lations outlined above, the 12-Mev binding energy per
nucleon that we obtain is to be compared with the
volume binding energy term in the von Weizsacker
semiempirical formula. ' Feenberg's" analysis gives
approximately 14-Mev per nucleon for this.

Once it is established that the three-body force of
pseudoscalar theory used in this calculation can quali-
tatively explain nuclear saturation, and that an expan-
sion in e-body forces has meaning, it becomes desirable
to improve the quantitative value of our results with
more realistic wave functions. If the step-function
correlation form discussed above is applied literally in
the calculation of the kinetic energy, it yields an
infinitely large result because of its discontinuity at the
edge of the hard core. One can construct trial functions
that go to zero continuously at the core and can then
perform a variational calculation for the minimum
value of the kinetic plus potential energy. Jastrow"
has suggested a function in the form of a Slater determi-
nant for the A freeparticle states multiplied by
i~A(A —1) symmetric correlation terms, one for each
pair. The correlation term for each pair is identical in
form and is taken to fall smoothly to zero for inter-
particle separations r~&r, . The parameters that deter-
mine the shape of a correlation term then are varied
and the minimum energy found. Calculations of this
type have been carried through and yield reasonable
saturation as above. The correlation term corresponding
to the minimum energy is essentially constant for r) r„
indicating no marked tendency for nucleons to cluster
or to anticluster. This result suggests that many-body
repulsive forces may be of importance in harmonizing
the two different viewpoints of the meson theory, which

predicts strong internucleon interactions, and of the
shell theory, which is based on the independent particle
model. Further discussion on the calculations and
results is presented in the following sections.

III. POTENTIALS

The interaction potentials are derived from the
pseudoscalar meson theory in this section. The problem
of two interacting nucleons is analyzed, first in order to
illustrate the method of our calculations, and to show

clearly the approximations inherent in the work.
Ke write for the interaction term in the Hamiltonian

for nucleons and charge-symmetric pseudoscalar mesons
with pseudoscalar coupling,

f
EP=iGQ Pygmy y /dr, (2)

where Tr denotes the Fermi energy. If Eq. (1) is added
to the potential energy, there emerges finally an expres-
sion for the total energy per nucleon with a minimum

' F. J. Dyson, Phys. Rev. 73, 929 (1948).
'5 L. L. Foldy, Phys. Rev. 84, 168 (1951).
'6%'. Lenz, Z. Physik 56, 778 (1929).

a=1 4

where P and P=f*p4 are the quantized nucleon field

amplitudes; p, with o.= 1, 2, 3, are the amplitudes of

"Reference 1, Chap. VI.
' E. Feenberg, Revs. Modern Phys. 19, 239 (1947}."R. Jastrow (private cornrnunication}.
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bation theory in the limit of fixed delta-function sources,
for interparticle distances r&(Mp) &. The Feynman
diagrams of the processes considered for two-body

1. The direct result isinteractions appear in I'ig.

Fj:G. 1. Feynman diagrams for two-body interactions of order 1/
2- b«y —p I V (rr) I

T& (~)
(G'/4n }(p/3E}' (G'/4n. }'(p/3E}' and (D/47r}'(p/3E}3.

the meson field; and v- - are the usual two-by-two
isotopic spin (charge) matrices. We perform now the
canonical transformation introduced by Dyson" to a
new representation in which the velocity-independent
aspects of the nucleon motion are more readily identi-
fied. This transformation is discussed by Lepore" and
by Drell and Henley, ' in whose work it is explicitly
carried through in closed form. Keeping only the
leading terms in G/M, the effects of which will be
included in the calculations presented here, we write
for the eQ'ective interaction Hamiltonian,

H.n= (G'/2M) ~qPe|r

+(G/2M)
J

v'7 w) ' (+P )~r (3)

The first term of Eq. (3) is recognized as the scalar pair
term of Wentzel's theory, and the second one as the
usual gradient coupling term. These two terms are the
only ones that need be considered in order to derive
e-body interaction potentials of order X", X" '(p/M),
and }"(p/M), with X—= (G'/47r) (p/2M)

Kith the interaction Hamiltonian cast in this repre-
sentation, one can immediately apply adiabatic pertur-

V
pC

2.0

20 Iur
I

( G )'2~q cq
t

e'~'

COq

fG'l' 26 &i(p+q) .r
dpdq

i2M) 4(2m)'J & (o,(o,((o„+(u,)

~
G2 ~ ~ G ~

2 6 er(p+q)r

~l I

— I dp«(p 0
&2M) 42M j 4(27r)'~

+ — +
COp~& CO& Q)~ GOp M~ C0q M~

3}I (p/2M) (~g ~2) {0&
.e2+S»L1+3/ (pr)

+3/(pr)'je &"/r}—(3X'/pr'){(2/vr)E', (2pr)

where 5» ——(3/r')(e~ r) (0~ r) —e~ e2 is the tensor force
operator, &o,= (q'+p')&, and K~(x) is the Hankel func-
tion of the first kind, with imaginary argument. ' The
last term V4&' in Eq. (4) differs from the corresponding
term of order }I,'p/M in Levy's potential' (denoted as
V4&"). Whereas Levy's V4&'& was attractive and of
minor importance and indicated the convergence of his
procedure, the V4&'& in Eq. (4) is repulsive, of com-
parable magnitude with t/"4( ), which it largely cancels,
and indicates the danger in neglecting terms of higher
order' "in p/M. The terms in Eq. (4) appear in Fig. 2,
from which it is clear that the above expression for
t/'- ' y cannot fit known properties of the two-nucleon
system. lt remains, however, as shown by Levy that a
potential of the form

-2.0 .02

I.O

tel
t I

2.0 pr p-body
V2+V4& ', r) r„

-4.0 .06

-.IO

Fn. 2. The two-body interaction potential as expressed by
Eq. (4). The dotted curve in the inset represents the contribution
of the central part of V2 for the deuteron ground state.

20 J. V. Lepore, Phys. Rev. 88, 750 (1952)."S. D. Drell and E. M. Henley, Phys. Rev. 88, 1053 (1952).

is spectacularly successful in describing the low-energy
two-nucleon interaction. As a basis for further discus-
sion, we adopt here the attitude that only the leading
order terms in the pseudoscalar meson theory calcu-
lations are to be taken literally. We cannot give a
rigorous argument to support the validity of this
assumption, as we have no convergent procedure for
calculating the many higher-order graphs that con-
tribute. Thus, as shown by Levy in his paper, there are
radiative corrections to the lowest-order graphs in
I'ig. 1 that give large contributions. ~ Special classes

~ A. Klein, Bull. Am. Phys. Soc. 28, Xo. 3, 36 (1953).
M. Ruderman, Phys. Rev. 90, 183 (1953).
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Mp Mq Mp MIt;

Mq Mp Mq MI Ml Mp Mk Mq

(G'&'(»
~12~23~31

(2cVP (23rs j dpdqdk

X (P sinPrts) (q sinqr33) (k sinkrsi)

of these have been summed, '4 but the general problem
remains unsolved. However, this approach gives a two-
body potential, Eq. (5), that "works, " and it permits
us to derive many-body potentials consistent with it.

The leading term responsible for the three-body
interaction is of order X3, corresponding to the pair
term of Eq. (3) operating at each vertex. The diagram
for the process appears in Fig. 3. The. interaction
potential is obtained readily with the identical methods
as applied in the two-body case. It is, for interparticle
distances r12, r23, and r31,

( Gs
y

3 2 24
v'-b'd"=

I I

—
i dpdqdk

t.m) 8(2')'"
&i(P r12+q-r23+k r31)—

FIG. 3. Feynman diagram for the
three-body interaction resulting
from the pair. term operating at
each vertex.

and )tsar/M, which arise when a pair of mesons is
absorbed by a nucleon, one at a time, via the gradient
coupling term in Eq. (3), are calculated in a similar
manner. They are discussed in Appendix A and shown
not to affect our saturation considerations because of
their angular properties. It is, of course, not consistent
to introduce them here since we have neglected the
analogous term in the two-body analysis, V4(' in Eq.
(4), in order to fit the data on the low-energy 2-nucleon

system.
The general e-body interaction potential for e~& 5 has

been deduced directly as above and expressed as a sum
over the (33—1)!/2 possible perimeters of a E, function
of a perimeter divided by the product of the m legs
forming the perimeter. An argument extending this
result for all e is given in Appendix (8).The expression
obtained is

(o—i) /3 1~1(pi)t

Vo-body (3~/~) ( 2)t) o p (7)
l,11;2

X
Mp Mq —Mp M& Mp

Mq Mp Mq MZ Mq

MP Mp —MP Mq —
MIt;

The singularities introduced in the process of rational-
izing the energy denominators are simply and unam-

biguously handled by assigning small, numerically
ordered imaginary masses to the mesons: vis. ,
e3„~(P'+p'+is„)' We find. readily

()ty ' (24'
v' ™'=

I
—

I I

—
I
(rtsrssrst) '

&13) ( 3r )

with p, equal to p times the ith perimeter, and i, equal
to p times the nth leg of the ith perimeter. Thus, for
m=4, there are three possible perimeters, as illustrated
in Fig. 4 together with the corresponding graphs. Ke
notice that the even-body forces are attractive and the
odd ones are repulsive. "

Wentzel" has given a very elegant procedure for
obtaining the I-body interactions with the scalar pair
theory, in which he takes the limit of fixed sources but
makes no assumptions as to the magnitude of the
coupling parameter. For interparticle distance greater
than the radius of the Levy-j'astrowss repulsive core,
his results are of the same form as Eq. (7), but have

(2) Itic(r12+r23+r13) j
&~i P ~12~23~31

(k/ ) sin[k(r, +r,+r )jdk
Jo

(6)

rIf «« .«

l 2 5 4 ) 2 5 4

r rr
I 0 AV

I 2 5 4

Thus we see that the leading contribution to the
three-body interaction is repulsive, spin and charge
independent, and a function of the three interparticle
distances only. The three-body terms of order )'p/M

'4 Brueckner, Gell-Mann, and Goldberger, Phys. Rev. 90, 476
(j.953).

FIG. 4. The three distinct perimeters of a four-body configur-
ation and their corresponding Feynman graphs for interactions
via the pair term.

~5 This sign alternation has its formal origin in our calculations
in the fact that the n-body potential is obtained by nth-order
perturbation theory, with each of the (n —1) energy denominators
negative in sign."R.Jastrow, Phys. Rev. 79, 589 (1950); 81, 165 (1951).
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%~J 4J

FIG. 5. Schematic picture
of ulled energy levels for a
nucleus containing equal
numbers of protons and
neutrons, with one-half of
each having spin up and
spin down.

nucleon charge in isotopic spin space. 8(ri r~) is an
arbitrary symmetric function of the 2 nucleon position
coordinates. We introduce position correlations between
the A particles in order to satisfy the boundary condi-
tion that the wave function vanish whenever any two
nucleons approach within r,= 038/p of one another.
This boundary condition expresses the repulsive core
nature of the interaction potentials. We consider in
these calculations a special form of 8(ri. r~) that takes
into account pairwise correlations of the nucleons
only. "This form is

smaller effective coupling constants which reduce to
the results of Eq. (7) in the perturbation limit of his
calculations.

For want of a rigorous procedure, we accept the
semiphenomenological, semifield theoretic potentials
of Eqs. (4), (5), (6), and (7) as describing the inter-
actions of nucleons.

(V)= %*V%'dri dr~ 4'*%dri dr~, (8)
J

where 4' is the ground-state wave function for a nucleus
of mass number 2 and is taken to be a Slater determi-
nant of free-particle states satisfying periodic boundary
conditions" in a box of radius E=qE, and volume
v= (4n-/3)R', multiplied by a symmetric function of
the position coordinates of the A particles,

with

vi(1) "~i(A)
e(ri r~), (9)

(A ~): ~.(1) ~.(A)

(10)

x, (0;) is a two-row spinor fixing the jth spin state of
(1)

the jth particle. For spin up, it is
~ ~

and for spin
q0

down
~

~. v, (r,) is the analogous quantity fixing the
(0)
qi

"The eGect of various boundary conditions on the kinetic
energy has been studied by G. M. Volko6', Phys. Rev. 62, 126
(&942}.

IV. ENERGIES

In this section we apply the above model to a calcu-
lation of potential and kinetic energies as a function of
the density of nuclear matter. Our initial goal is to
establish that the three-body repulsion, Eq. (6), with
Levy's constants, is qualitatively sufhcient to prevent
collapse of nuclear matter to very high densities, and
that an expansion in e-body forces, as given by Eq. (7),
converges in the sense that, for normal nuclear densities,
all n-body interactions with e& 5 contribute negligibly.

To this end we calculate first the average value of
the potential operator,

A

0(ri" ")= Z f("), (»)
ig j=1

with r, ,=—tr;—r, ~. In order to attain the initial goal
specified at the beginning of this section, we choose
first for f(r;,) a simple step function,

1, r;;&r,
f(;;)=

0, r;;&r,.
(12)

A variational calculation of the nuclear energy based
on a two parameter trial form for f(r, ,) is presented
in Sec. V.

Three assumptions underlie our calculation of the
nuclear potential energy, Eq. (8), with the wave func-
tion expressed in Eqs. (9) to (12). Firstly, we neglect
nuclear surface eGects and calculate the "volume"
potential energy of the nucleons. Formally, this implies
treating the nucleus as a region of average particle
density A/v = (3/4') p'/q' extending over all space.
With this assumption the tensor interaction term in

Eq. (4) and the angle dependent three-body potentials
as deduced in Appendix A average to zero and do not
inQuence our results. Secondly, we neglect Coulomb
interactions between protons. The nucleus is then
treated as composed of A/2 protons and A/2 neutrons,
uniformly distributed, and equal numbers of each
having spin up and spin down. For A)&1, a negligible
error is introduced in the cases of those nuclei with
extra nucleons outside of the filled levels indicated in

Fig. 5. Thirdly, we neglect the inhuence of the corre-
lation function, Eqs. (11) and (12) on the orthogonality
properties of the free-particle states. In the absence of
a repulsive core (r,—&0), the free-particle states, Eq.
(10), are orthogonal in the nuclear "well. "For repulsive
cores of volume small in comparison with the average
volume per nucleon in nuclear matter we expect the
deviations of these states from orthogonality to be
unimportant. Corrections resulting from such deviations
are here neglected. An argument justifying their neglect
is presented in Appendix C wherein are also discussed
the analogous normalization corrections.

Two-Body Forces
For two-body interactions, Eq. (8) reduces in the

standard way, with the above approximations, to'
"See Rosenfeld's book, reference 3; Chap. XI.
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(Ai (A —2)! ~
(V'- ")=

~ I & "«,«2&,*(1)&;*(2)
&2 ) A!

where we introduce the notation

D(kMr) =3j &—(kMr)/kMr,

V '(1) 2 '(2) and change coordinates in accord with the stated
X &(12) j ( i2) (1 ) approximations,

2'(1) 2)(2)

The factor multiplying the integral expresses the num-
ber of interacting pairs among A nucleons times the
number of possible state assignments (permutations) of
the remaining (A —2) particles, for each interacting
pair, divided by the normalization constant appearing
in Eq. (9).

In order to carry out products of spin and isotopic
spin matrices in Eq. (13), we consider separately the
two relevant terms of Eqs. (4) and (5). In the case of
V4& ), which is a spin and charge independent signer
attraction, we obtain, ' "with neglect of 1((A,

Z 2 '*(1)» J*(2)[("(1)()r(2) —( r(1) 9 '(2)3
i, j=l

2)
—2jA2 2 p e

—((k; k() ~ (rr r-r))-
~r7

= (A/2)'(1 ——,'[3ji(kMr12)/(kM)12) j'), (14)

where j&(x) is a spherical Bessel function, and
kM=1.52)r/2) is the momentum of the highest filled

energy level for the free-particle states in the nuclear
well. The factor 4 multiplying the exchange density
term expresses the fact that, to leading order in A))1,
—, of the pairs are antisymmetric in their space coordi-
nates, and 8 are symmetric. This factor results directly
in the sum in Eq. (14), since states with different spin
and/or isotopic spin are mutually orthogonal, and
one-fourth of the nucleons are in each group of spin-up
protons, spin-down protons, spin-up neutrons, and
spin-down neutrons. For the central part of V2, we have

' dridr22() (r)2)f'(r)2) = 2) drw (r).
"»~c

(17)

(3Ayq (6)
(V' b' )= —

( [ )
—[X' —'Eo(2b)

(2))2 j ( j
——,

' t d*E (2 )D'( *)
Jt,

A graph of this expression for the two-body potential
energy appears in Fig. 6, where we have used Levy's

parameters G2/42r=10, and r,@=b=0.38. At normal
nuclear density ())=1), the exchange density term in
the Wigner interaction potential, V4' ', reduces the
contribution from the classical term by 19 percent.

t P. E./)(
Mev

l50—

5-B

Introducing dimensionless variables 2:=pr, (2= kM/)2,
and b= pr„and integrating the classical density term,
we obtain

Z 2 '*(1)V»*(2)(~i ~2)(~i ~2)
i, j=1

X [2,(1)(o;(2)—2;(1)(,(2)j

2)
—2(0 (9/4) p e i(ki kr') ~ (rr —rr))-—

~rf

= —(9/4) (A/~)'[3ji(kM~12)/(kM~12) j (1~)

The expression then for the potential energy of
nuclear matter resulting from two-body interactions is

(U'-"")= (3/8~)A () /g)2 ~ dr

!00—

50—

-50—

-IGO—

05
I

2- Bod

Ei(2)(r)
X —(6/2r))(2 [1——,'D'(kMr) j

pf

4h()r/2M) (e "'/r)D2 (kMr—), (16)

29 E. P. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); E.
Feenberg, Phys. Rev. 60, 204 (1941).

-i50—

-200

FIG. 6. Potential energy contributions, plotted as a function
of q, as calculated from Eq. (18) for two-body interactions (V4( )

and V2), from Eq. (21) for three-body interactions, from Eq. (26)
for four-body interactions, and from the corresponding expression
for Ave-body interactions.
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Three-Body Forces
For three-body interactions, Eq. (8) reduces to

~~ i (~-3)!
(P"3-body)

(3) 2!

glo

LO

A

!
I dridrsdrs tp, *(1)qo;*(2) 32k*(3)V (123) 04

,

dridr2«323 (r12, r23, r31)f'(ri2) f'(r23) f'(rsi)

= VJ~ dr] drl 223( 3i trr232r31)
(r12, r23, r31) )rc

r12d'r12 r13dr13
Jr.

r12+r13

X
a

r23dr23to (r12 r23 r31)) fIre, jr1 —,rlgj }

in accord with our stated approximations. Utilizing the
symmetry in the three-particle separations r12, r23, and
r31, we obtain, in dimensionless form

(V'-b "y)= (3Ap/4g') (24/x)X'

00 00 ~ 2b+y

X!' dg, ' dy dsX1(g+y+s)
ab Jb a )Ib I„~I}

~ {1 ,'D'(nx)+ ,'D(nx)D—(n—y)D(ns)}.— (21)

3 *(1) l"(2) ~'(3)

to;(1) p, (2) tp;(3) f'(r12)f'(r13)f'(r23), (19)

~k(1) ~t k(2) 3 k(3)

in analogy with Eq. (13). For Wigner-type three-body
interactions as in Eq. (6), the spin and isotopic spin
matrix products may be worked out directly, giving

t"(1) t"(2) p. (3)
A

2 l"*(1)3 *(2)3k*(3) ~ (1) l (2) t (3)
i, j,k=1

~ k(1) tpk(2) ~k(3)

= (A/tt)'(1 —D«'(k rkr)1—2«D'(kkrr23) «D'(kktr31)

+ (2/16)D(kkiri2)D(kkrr23)D(ksrrsi) }. (20)

The first four terms in Eq. (20) represent the classical
density and the double exchange density for the inter-
change of any two of the interacting trio. The last term
represents the two symmetric permutations of the three
nucleons among themselves, the factor 1'6 expressing
the relative probability that all three of them have the
same spin-isotopic spin quantum numbers, just as in
the discussion for two-body interactions. The integra-
tions in the above expressions are simplified by noting
that

0
0 0.38

F10. 7. The relative probability for n nucleons to be separated
by a distance x=pr, for n=2 through 7. These curves are calcu-
lated for normal nuclear density g= 1.

e
—atty —aat. . .e aat (22)—~ ~ ~

~

~1 (t2—1)'*

There results for the classical term

to co
p

a+a

dg l dy ! dsE1(g+y+ s)
"b ")fb, Ix —yj}

tdt e '"
(1 se—kt)

(P 1)& t'—
=0.121 (for b =0.38). (23)

The double exchange term reduces to

px+y
d~ I dy, l dpi(g+y+ 3)D'(nx)

~b b ) Ib, Ix —yj }

32r
D2(nx)F (x)dx D'(nx)Q(x)dx— ,

with

F(x)—=F (x+2b) —F (2x+2b),

Q (g)=F(gj2b) F(2g)+—(2b —x) (2/tr)E—o(2g),

F(g)= (2/lr) &o(y)dy.

At normal nuclear density, it subtracts away 42 percent
of the classical term. The triple exchange term can be
evaluated only by approximate numerical procedures"

toW. Magnus and F. Obberhettinger, Spccia/ Fttttctiotts of
3futhematica/ Physics (Chelsea, ¹wYork, 1949).

"A more detailed discussion is presented in K. Huang, Ph.D.
thesis, Massachusetts Institute of Technology, 1953 (unpub-
lished).

The following integral representation, "which decom-
poses a El function of a sum of arguments into a
product of factors of each argument, facilitates analysis
of the integrals in Eq. (21):

f~i(t31+132+ ' '+tta)
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= v" I dr„+1 dr~@*sIr dr1 ~ dr~%'*0'. (24)

For two nucleons, g"'(r12) is given in Eq. (14), multi-
plied there by (A/v)'. The expression for g"'(r12, r23, r31)
appears in Eq. (20), multiplied there by (A/v)'. The
corresponding g(") for higher n values are deduced from
Eq. (24) in precisely the same manner. The result for
n= 4 is given below, with a;, =—k~r;, ,

4

g&s'=1 —-' P D'(a;;)

and is found to equal 6 percent of the classical term for
g=i. Antisymmetrization of the wave function thus
reduces the three-body interaction energy by 36 percent
at normal nuclear density; correspondingly, the two-
body energy is reduced by 19 percent. The calculated
results for Eq. (21) are plotted in Fig. 6 as a function
of g.

Four- and Five-Body Forces

Increasing complexities enter into the calculations of
higher-body forces. Additional exchange density terms
appear and also the available integration volume for
interacting hard spheres becomes more dificult to
express and handle. The physical eGect of the additional
exchange terms resulting from the Pauli principle is to
decrease the relative probability of finding many
nucleons close to one another. We show this by calcu-
lating the probability distribution for n particles,

g'"'(r1" r )

three nucleons in an equilateral triangle of side r; for
n=4, they form an equilateral tetrahedron. For n&4,
there is no geometrical configuration with all r;;=r.
Figure 7 just indicates that the relative probability for
6nding nucleons close to one another decreases with
increasing 23. We see from Eq. (25) that g&'& reduces to
» in the limit of zero interparticle distances. All g(")
for n&4 vanish in this limit, in consequence of the
exclusion principle and of the fact that there are but
four spin and charge states for nucleons. YVe see from
Fig. 7 that, for n~&4 the eGective "Pauli repulsion" is
of greater "range" and importance than the repulsive
potential core."

There is an additional factor weighting against close
approach of n nucleons in the energy integrals. In
going from the 23 to the (23+1) body interactions, we
see by Eq. (7) that the singularity in the potential for
zero-particle separations increases by but one power of
r, whereas the additional nucleon introduces one more
volume element dr~r'dr into the integral. Thus, for
example, in the absence of a repulsive core, the two-
body energy diverges, whereas the energies for all n& 2
are Rnite.

On the basis of these observations we can make the
calculation of four- and 6ve-body interaction energies
tractable by neglecting the repulsive potential cores
and thereby vastly simplifying the integrals. Ke obtain
then for n= 4, by Eqs. (7)—(12), (25), and by symmetry
of the potential in the coordinates,

48' 3A4
I(V4- b'~3') = —X' dr1dr2drodr3

4 tv4~

+ (2/16) g D(a„)D(a;,)D(a„;)
i&2'(y=l

—(2/64) {D(a12)D(a23)D (a34)D(a4, )

+ D (a13)D (a33)D (a42) D (a21)

+ D (a13)D (a32)D (a24) D(a41) )

+ (1/16) {D'(a12)D'(a34)+D'(a13)D'(a24)

+D'(a13)D'(a23)).

In Fig. 7 we graph the probability. distributions
g&"'(r), for 23=2 through 23=7, with all arguments
r;,=r= x/I3. For I=3 this co—rre—sponds to arranging the

I~ 1k' (r12+ 23+r34+ 41)3
X (26)

Q r12r23r34r4i.

%'e can carry through the above integraIs analyticaHy
for the 6rst two terms in Eq. (25), corresponding to
the classical density and the double exchange density
describing the interchange of any pair. To do this, we
use Eq. (22) and note that (see Fig. 8) for integrands
that do not depend on r24,

00 F00 F00

~2v(22r)' ' r12dr12 r23dr23 r14dr14
"o Jo Jo

Fre. 8. Notation
for four-body inter-
action integrals.

li4

|sr ss+r ss p~&3+~14

X
J

dr, 3 r34dr33. (27)
)r~m —r2a) I ~13 ~l4 I

The resulting contribution to (V'-""3') of the first two

We wish to thank Dr. E. P. Gross for an illuminating discus-
sion on this point.
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terms of g'4), labeled U", is

81Ap t-" tdt (" t-"
U4'= —X" -- ~ dx dy I ds

2s-ri' &~ (t' —1)'&s &s &s

px+y pm+a

X J' dw due t*+'+'+""L1—-'D'(nx) 7

40

30

20

lO

il.O l,2 l.4 l.6 l.8
0 I 4 I I I ] I I I I I

272p 27(1—n')
= —X4 1+

27 rr
(1+u') & tanh —'I—

20! 0 (1+cr') l)

27 t' rr

+ (1+2n') tanh-'I
4Irs ( (1+rr') l

For g=1, the double exchange term subtracts 83.3
percent of the classical term. The third term in g(4&,

describing symmetric permutations of three interacting
nucleons, can be integrated after making exponential
fits to the D functions, "and it yields 21 percent of the
classical density term for g=1. The remaining, or
"quartet, " exchange terms present further difficulties,
in that some of them involve both diagonals r~3 and r24

of Fig. 8 simultaneously so that the reduction to Eq.
(27) cannot be completely effected. It has proved
possible to calculate these terms only approximately.
However, their contribution is small, " being about
3.4 percent of the classical term for g=1. The net
result of the exchange terms for four-body interactions
is a reduction of the classical term by 59 percent at g= 1.

The calculation of the five-body energy proceeds
along a parallel if more arduous path. The exchange
densities give a 76 percent reduction in this case for
8=1

The potential energies for up through m=5 body
interactions are presented in Figs. 6 and 9 as functions
of the nuclear radius. In analyzing these curves, we
observe the following: For q&1.5, corresponding to
nuclear densities of less than 30 percent of normal, the
potential energy is due entirely to two-body interac-
tions. At such densities it is relatively improbable to
have three (or more) nucleons in a cluster of perimeter

1/tj, so that the many-body interactions contribute
very little to the energy. In the region 1.3&q&1.5,
three-body forces become important also, On the basis
of two- and three-body forces alone, the potential
energy per nucleon has a minimum of —30 Mev at
q=i.0. When four- and five-body interactions are
included, the minimum alters but slightly to —32 Mev
at /=1. 1.

-IO—

-20—

-30—

-40

Pro. 9. Potential, kinetic, and total energy per nucleon as a
function of 7I. The potential energy includes up through five-body
interactions and is calculated for Gs/4s =10 and r, =0.38/p, . The
kinetic energy is obtained from Eq. (29) expressing the I'ermi
plus Lenz contributions. The total energy has a minimum of
depth 12 Mev per nucleon at q=1.1S. The dashed curve is the
total energy per nucleon calculated with G'/4s-=15 for the Va
interaction, and G'/4s=7. 5 for all other interactions. It has a
minimum of depth 2 Mev per nucleon at q= 1.15.

Our aim in this calculation of the four- and five-body
interaction energies has been only to demonstrate that
their effect is quite small at normal nuclear density.
We attach no significance to their numerical contri-
butions as we have found it necessary to approximate
in a relatively rough manner the "quartet" and "quin-
tet" exchange terms and to neglect the repulsive
potential cores. This neglect of the repulsive cores
overestimates both of their contributions, and in par-
ticular, overestimates the four-body contribution more,
as is evident from Fig. 7.

With regard to the higher-body forces, one can adopt
either of two attitudes. In that the basis for the po-
tentials used in these calculations is semiphenomeno-
logical, we can limit ourselves entirely to two- and
three-body forces. In that the basis is semifield theo-
retic, however, we can accept and investigate all
higher-body forces as appearing in Eq. (7). We have
already seen that the four- and five-body interactions
acct the energy minimum but slightly and indicate a
rapid convergence for the series of e-body interactions
for nuclear radii q&1. We can also see from Fig. 6 that
this series oscillates wildly for q&1. However, the
contributions of two- to A-body forces -can be summed

approximately for high densities (rf((1). Wentzel" has
deduced this directly with the meson scalar pair theory,
which gives potentials of the form Eq. (7). In his
calculation nucleons are treated as fixed sources uni-

formly distributed within an infinite nucleus. The



MAN Y —BOD Y FORCES AN D NUCLEAR SATURATION 1537

repulsive potential core is simulated in Wentzel's
calculation by a high-momentum cutoG for the meson
field, given by the reciprocal. Compton wavelength of
the nucleon. In that the nucleons are treated as static
sources, the Pauli principle does not operate. For a
nucleus in the collapsed state (si«1), however, it is
well known that the exchange density contributions to
the energy vanish. Thus we see by Eq. (15) that the
interaction energy for a (oi e&)(~& ~s) potential van-
ishes in the collapsed state. Whereas the exchange
density reductions we calculated for the two- and
three-body Wigner interactions were, respectively, 19
percent and 36 percent at g= 1, they are only 9.5 percent
and 15 percent at g= 0.5.

In Appendix 8, we outline a procedure for summing
up the energy contributions with potentials of the
form of Eq. (7) and with neglect of the Pauli exchange
terms. The point to be made here is that the energy is
positive and increasing with decreasing g, for q((1. We
can conclude that N)3 body forces given by Eq. (7)
are relatively unimportant at the potential energy
minimum deduced from consideration of two- and
three-body forces. For high nuclear densities, they
contribute significantly and operate so as to oppose
collapse. However, for moderately high density, i.e.,
q&1, both the Pauli exchange terms and the higher-
body forces are important. In this region we can only
accept the indication of our calculations including the
6ve-body forces that the potential energy curve is
monotonically rising with decreasing p.

Kinetic Energy

Having calculated the potential energy of the neu-
trons and protons in the nucleus, we come next to a
discussion of their kinetic energy. The sum of these
two quantities gives us then the total energy.

The well-known Fermi kinetic energy for a gas of A
noninteracting point nucleons (A/2 protons and A/2
neutrons) of mass M confined to a spherical box of
radius R is

Ts'=0.695A'"/MR'= 14.7A/ri' Mev. (28)

For the nuclear model under discussion here, the kinetic
energy is greater than the Fermi energy because of the
additional curvature introduced in the nucleon wave
functions by the repulsive core boundary condition.
This additional kinetic energy was calculated by Lenz"
who considered the problem of noninteracting hard
spheres. With the approximation of hard sphere radius
small in comparison with interparticle separation Lenz
obtained"

2.16b) ( 1 0.82)T=T,
~

1+ ~=14.7A~ +
~
M,v. (29)j (g' qs j

"An interpolation formula has been given by F. London,
Proc. Roy. Soc. (London) 153, 576 (1935),which is applicable for
arbitrary interparticle separations. Applied to our case it yields a
12 percent increase above Lenz's result.

Lenz s result, and in particular its density variation,
can be qualitatively understood as follows. The kinetic
energy for a point nucleon of wavelength X=R/rc is
2sr'ss'/MR'. For a nucleon of ra, dius r„ the wavelength
shortens to (R r—,)/ss, the numerator here representing
the available linear dimension after exclusion of the
interior of the nucleon. For a nucleus of A nucleons,
with- A' along a diameter, the wavelength reduces to
(R A&r,—)/I= (R/ss)(1 —b/ l)r, and the kinetic energy

.increases to Tz(1—b/rl) '=Tir(1+2b/rj). We remark
here that comparison of Eqs. (18) and (29) readily
shows that the nucleus would tend to collapse under
the inQuence of two-body forces alone. The coeKcient
of the leading rl

' term is negative with Gs/4sr= 10 and
b=0 38 I.f w.e add the kinetic energy of Lenz, Eq. (29)
to the potential energy, we obtain Fig. 9 for the total
nuclear energy as a function of q. The curve shows a
minimum at p= 1..15 corresponding to a binding energy
of 12 Mev per nucleon. The dotted curve indicated in
the same figure is calculated for an alternative choice
of the coupling constants which Jastrow'4 has found to
give an equally satisfactory account of low-energy
two-body interactions. We obtain the dotted curve
if we set G'/4sr=15e, where e=1 for the two-body
(or os) (~t ~s) interaction, and e=0.5 for all other
terms; b= 0.38 is used as a compromise between the two
triplet and singlet repulsive core radii proposed by
Jastrow. With these parameters the stable radius is
given by p=1.15, and the binding energy minimum
corresponds to 2 Mev per nucleon.

In summary, the qualitative deductions of this
section are twofold. A three-body repulsion of the form
in Eq. (6), as suggested by pseudoscalar meson theory,
prevents nuclear collapse and indicates nuclear satu-
ration properties in accord with experience. The expan-
sion in a series of many-body interactions rapidly con-
verges for normal nuclear densities. This convergence
is due chieAy to the Pauli exclusion principle, which
serves to inhibit close approach of many nucleons.

Finally, we note just brieQy that a system of nucleons
interacting through the potentials discussed in this
section is stable against lining up of the spins of the
particles. This is because the kinetic energy increases by
a factor of roughly four for the state in which all spins
are parallel, whereas the change in the potential energy
is considerably smaller since the dominating inter-
actions are Wigner potentials.

V. VARIATIONAL CALCULATION

In this section we present a brief account of a
variational calculation of the total energy based on
more realistic wave functions. With saturation and
convergence of the e-body expansion qualitatively
established on the basis of our previous calculations, it
is desirable to deduce more quantitatively signi6cant
numbers for the saturation radius and binding energy.

'4 R. Jastrow, Proceedings of the Third ANssgal Rochester Coe
ferercce {Interscience Publishers, Inc. , New York, 1953), p. 77.
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Aside from this, however, there is an additional problem
of considerable importance on which a variational
calculation can shed some light. This is the degree of
position correlation between the nucleons, as expressed
by f(«;,), which corresponds to the minimum value of
the total energy. The great success of the shell theory
based on the independent-particle model of the nucleus
argues against strong correlations. The results of this
calculation support this picture.

A two-parameter continuous trial form is introduced .

for the correlation function:

f («)=
(1—«,/«)L1+ae-('"' "'j, «)«. ;

(30)
0,

For three-body interactions, Eq. (21) is altered by

2.0—

I.8—

I.4—

l.2-

I.O—

0.8—

- I
'o*0,38
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5 6 T 8

FIG. 10. The square of the correlation function of Eq. (30)
plotted as a function of x=p~ for diferent sets of parameters u
and P. The individual curves are labeled by the corresponding
pair (P, a).

The parameters a and P are varied and the energy
minimum determined. The radial dependence of fz' is
shown in Fig. 10 for various values of (a, P). We see
for (u, P) = (2.5, 1) that there is a strong positive corre-
lation between pairs, whereas for a=o, the probability
of forming a pair is low. For parameters in the range
(a, P) = (1, 2) the correlation is weak; rtk, the nucleon
wave functions vanish at each other's core, but exhibit
no strong tendence to cluster with or to avoid their
neighbors, for r& r, .

The potential energies for two- and three-body
interactions have been calculated with Eq. (30). For
two-body interactions this amounts to recalculating
Eq. (16) with

00 r
dr—+, dry'(«).

&r &r.

These integrations are then carried through numeri-
cally.

For the kinetic energy we calculate directly

A
(' %*A;%dr, dr~

T—
235 f4 Wr~ dr~

=T« (A'/23—A) dr fr(«)d fz («)$1 4D'(kb—I«)], (31)

I'

consistent with the approximations explicitly stated in
the preceding section. The second term of Eq. (31)
represents the increase in kinetic energy due to the
position correlation of the nucleons.

The calculations with the trial form of Eq. (30)
indicate the existence of an energy minimum for
approximate parameter values a= 1, P = 2. The method
of calculation has been to determine the energy as a
function of g for various sets of (a, P). For a=1 and
P=2, the energy has a minimum at g=0.95 corre-
sponding to a binding energy of roughly 4 Mev per
nucleon. Though this result can be presented only in
numerical form, its physical implications are clear. The
two-body attractive forces favor strong position corre-
lation of nucleons, corresponding to large values of a
and small values of P as indicated in Fig. 10. However,
the three-body repulsive forces operate in the opposite
direction, since their positive contribution to the nuclear
energy decreases with smaller a and larger P. Also the
kinetic energy opposes strong positive correlation which
increases the wave function curvature. The kinetic
energy increase expressed by Eq. (31) varies roughly in
proportion to a'/tI. The compromise eGected by these
antipodal tendencies falls at a=1, P=2. The graph of
fz' in Fig. 10 shows that for this set of parameter
values no marked correlation of nucleon coordinates is
evident for r greater than the repulsive core radius. %'e

interpret this result as evidence in favor of the inde-

pendent particle model.

VI. CONCLUSION

To summarize, we have deduced many-body po-
tentials from the pseudoscalar meson theory with
pseudoscalar coupling. Guided by Levy's success in
fitting low-energy properties of the two-body system
and by his parameters, we have kept only the potentials
of leading order in an expansion in powers of
(G'/4s) (p/2M). It is quite possible that further develop-
ments in 6eld theory will show that the terms we have
studied are of lesser importance than others neglected
in our analysis or that there are diGerent effective
values of CP/4s. for the many-body potentials we have
studied. Indeed, %entzel's" calculations with the scalar
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pair theory predict a considerable reduction in the
strength of these terms. '4 At present, however, it is
impossible to say to what extent a complete covariant
calculation in the framework of the renormalization
program will remove the damping found by Wentzel.

However, if we accept the potentials in Eqs. (4), (5),
(6), and (7) as a semiphenomenological working basis
for our calculations, we 6nd that the many-body forces,
and in particular the three-body repulsion, provide a
satisfactory qualitative understanding of nuclear satu-
ration. The effect of the Pauli exclusion principle in
these calculations has been to reduce considerably the
contributions of n) 3 body Wigner forces for nuclei at
normal density.

In that the binding energies are obtained as relatively
small differences of larger potential and kinetic energy
contributions, their numerical values are to be under-
stood primarily as order of magnitude indications.
However, the resulting saturation radii are more accu-
rately determined in this work since the position of the
energy minimum is Axed to a large extent by the
minimum in the curve of the two- plus three-body
potential energies. This is because the kinetic energy is
a considerably smoother function of rI=E/E, than is
the potential energy. We can best illustrate this point
by comparing the step function calculation of Sec. IV
with the variational calculation of Sec. V. The con-
tinuous correlation form of Eq. (30) with a= 1, P=2
reduces the potential energy contribution by a factor of
roughly two in comparison with the step function
result. This potential reduction serves to decrease the
magnitude of the binding energy from 12 Mev to 4 Mev
per nucleon while altering g;„from 1.15 to 0.95.

The energy minimum for the variational calculation
is obtained with a trial form fr showing no marked
correlation of the nucleon coordinates. This result
suggests that many-body repulsive forces may aid in
harmonizing the shell theory and its underlying inde-
pendent particle model with the meson theory and its
prediction of strong internucleon interactions.

Further variational calculations are now in progress
with more flexible trial forms. Energies deduced by
such variational procedures must necessarily lie above
the true eigenvalue so that one can in this way establish
only an upper limit on the energy for a given choice of
effective coupling constants for the e-body interactions.
Better wave functions serve to lower the upper limit
and to bring it closer to the true value. "
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"Additional information which may be culled from these
calculations includes a minimal value for the ratio of the effective
coupling constant for the three-body interaction to the two-body
constant which is consistent with saturation.

FIG. 11.Feynman diagrams for three-body interactions.

APPENDIX A

We outline here the various contributions" to three-

body interactions of orders X'p/M and Vp/M. The
Feynman graphs of the processes are drawn in Fig. 11.

The potentials are deduced from Eq. (3) in the
adiabatic perturbation limit as discussed in Sec. III.
All possible permutations and time orderings of process

(a) contribute to the one pa, ir interaction of order
X'IJ/M. The result is

G4 2~2 ~3 r ~iP ~12+i/ ~ &13

&s.=- ' ' dp&q(os Vs)(trs Vs)
(2M)' (2w)s ~ co 're '

+symmetric terms in (1, 2) and (1, 3)

(tr2'rls) (trs'rls)
=)~'(g'/M) (~s.~s)

~

1+—
rlsrls ( pris]

( 1

X
~

1+
~

— +symmetric terms .
pr13) pr12 Ijrls

Two pair terms of the form illustrated by process (b)
contribute an interaction of order X'p/M which has the
form

~&P r12+ig r23+ik r31

X (V12' V28+Vls' V32+V21 ' Vls)
COp GO@ COjg

~ (6IJ /M) (1/Ir ) (V12 ' V23+Vls ' V32+ V21' Vls)

X (e ""»/pr&s) (e ""»/pr») (e ""»/Irrss).

Irreducible graphs of type c, a typical one of which
appears in the time ordered Fig. 11(c), contribute a

"Similar potentials together with Eq. P) for a= 3 and 4 have
been deduced independently by A. Klein (Phys. Rev. 90, 1101
(1953)j in the framework of the Tamm-Dancoff formalism.
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potential, of order X'p/3II, which we write in the form

Q6 3
&3.= — (~2 ~3)(~2 V23)(~3 V23)

(2&V) 4 (2n.)2

Using Eq. (22), we can manipulate C(") into the form

(3)()" t
" tdt

C (n) ( 1)n+1 (2+/~)
nt)3(n —l)Q (t2 1)~

~ik r23

X Idk
~

dqdp—
COI(; ~ &~GO& M& Mq

where

X t exp( —(f2+x„+(3t+(32+ +(3„)t},
~ (n)p

~i(I+a) ~ ~»~ik r23

+ dk ' dip
Mb LI ') M M (My+M2)

+symmetric terms

X (e ""'/tty23) (1/tt +12') ~ xKo'(x)dx

(6tt /tr 3E) (1/tt ) (%2' '23) (02 V23) (433 ' V23)

(3&=)4 I r&+2—r&+, I
.-

The integration limits are given by

r
px2 dx3

"(n)o "o "o

P X2 +X!!
P

/33-1 +Xtt

X II dSn, dory'''
I dQ~ 2

~o ~tv —x (
~ )Xn i-~n I

+It 0 (tty23)+1 (2)ty12)/tt i12

+symmetric terms.

Interactions V3, and V3~ average to zero in our
nuclear model. Interaction V3, reduces to two terms,
a tensor interaction which averages to zero plus a
(ty, tyo) (~ ~o) term which was evaluated with the
methods discussed in Sec. III and shown to give a
three-body repulsive energy amounting to less than
5 percent of Eq. (21).

APPENDIX B

In the limit of high nuclear density, all exchange
effects are negligible. The m-body probability density
function g'"' then reduces to unity, and the e-body
potential energy is given simply by the "classical
term, "

(Pn-body) ~ C(n)
g —4

C(")= (A/())" (1/n!) '

dr, dr„V" b~g f'(r;;), (8-1)
i&j

where we replace
I I by A "/n! for A —+~. The sum
I, n

of C(") from n=3 to ~ can be carried out, if we neglect
the repulsive core. (The two-body term is omitted
because it diverges in the absence of core.) With this
approximation we can then compare our result with
that indicated by Wentzel. " The identity of these
results then demonstrates the validity of V" ' ~ de-
duced in Eq. (7).

We have evaluated this sum directly by establishing
a recursion relation by means of term-by-term inte-
gration of Eq. (81). We indicate here a more elegant
procedure. "

'~ We wish to thank Mr. W. Frank for helpful discussions on
this method.

J tdxe *'(—G)" P(x t),

where F(x, t) =—e *' and Gt is an integral operator such
that for any function P(x, t),

with

Gt)3(x, t) =-,' J~ dyp(y, t)g (x, y),
0

L lg —y(

1 e—*' sinh(yt), x)y
'da= ——

t e "' sinh(xt), y) x.

We see that gt(x, y) is a Green's function satisfying

fd'/dx' P}g (x, y) =—!)(x—y),

gt(x, y) =gt(y, x),

gt(o y)=at(" y)=o.
(82)

By manipulation with Eq. (82), we can show that, for
the special form P(x, t) =e ", we have

1 d n

(Gt) nE(x, t)= e*'. —
n!.d(P)

" "r" (d l"
P (yGt) "F(x, t) = P —

I

—
I exp( —xz&)

n=on! &dzJ

= exp[ —(P+y) ~x I

With the help of Eq. (83), we obtain after a number
of elementary integrations,

Hence, if y is a constant, and if we set s=—P, we obtain
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where &=6K/2)'. Exactly the same expression may be
obtained by the method indicated by Wentzel. "

AppENDIx c
In this Appendix we discuss corrections to the

orthogonality and normalization of the free-particle
states introduced by the correlation function in Eqs.
(9) to (12). Our aim here is to justify the reduction of
Eq. (8) to Eqs. (13) and (19).

We develop here the argument for two-body inter-
actions only, the generalization for e-body potentials
being immediate.

We rewrite then Eq. (8) in the form for

X {(iai*(1)(pa2 (2)V(12)@pi(1)pp2(2) }
X{q-*(3)qp~(3)}

X{q *(A)(pp (A)}ID'(,;),
'4+7

where we have expanded the Slater determinants with
the following notations: ((2) is a set of integers (ni n~)
representing a permutation of (1, 2, , A), and
s( ) =—s ' '" A is the I,evi-Civita tensor density of rank
A, with the values &1 for even (odd) permutations of
the indices. We introduce the definition

|AyV=S V( j)-i
i+7' &zj

fA)
(V)=

i ~

~ dri dr~%~@
E2)

X "dr, . dry g g s( )s(P)
(~) (P)

(C1)

X i 2pip2(12)= Q' s' 's(P) drb dry
(a) (p) J

X{@*(3)(op (3)}.

X{(p ~*(A)q pg (A) }II'f'(r;;), (C2)

where P' represents sum over all permutations for
fixed ((2), n2, pi, p2) and II' represents a product of all
f'(r;,), excluding f'(r»). Equation (C1) is then written
in the form

dridr2 g {y i*(1)((r 2*(2)V(12)(ipi(1)(t)p2(2))f'(ri2)X i 2pip2(12)
fA) a«rprpr

&2&
dridr2 p {(i a,*(1)v a2*(2) yp, (1)()2p2 (2)}f'(r»)X...2pip2 (12)

+12plp2

(C3)

In terms of Eq. (C3) we formulate our problem as
follows. We wish to demonstrate that, accurate to terms
of order ((1/10) (k)bIr,)'=0 03/rP, X i .2pip2(12) is inde-
pendent of the particle coordinates and equal to +c for
a)=Pi, (22= P2, —c for ni ——P2, (22= Pi, 0 otherwise, where
c is some constant. Once this result is established, Eq.
(C3) reduces to Eq. (13) and our goal is achieved. This
result is evidently rigorously valid in the absence of a
repulsive core, since f(r, ,)b1 and

function is small, its maximum value being kJ)/Ir,
= 0.57/2), so that, therefore, (1/10) (k,br, ) (20.03/ .))2
Similarly, we observe, for k /k~/k, /0,

v
—

2~I dr dr dr pika rii+ikb ~ rr'n+ikc raif2(r, )f2(r )f2(r,)

t'
i 7 y&

—3 dr,dr .dr eika-ri7'+ikb r7'72+ikc ~ rpi

(1/v) dr p i (ka kb) r. i—-

With r„/0, and v,=—(42r/3)r, ', however, we write

X{U(r, ,)U(r, )+U(r;„)U(r, )

+U(r„,) U(r;,:)—U(r;,)U(r, „)U(r„;))

=3(v./v)'(1 —5/32). (C6)

f (r', )=-1-U(r', ), U(r';)—=

and note that

(1/v2) drdr& i(ka kb) ~ (r, ;—r, &—)f2(r—. )

0, r, ,&r„

Xaia2aia2(12) = Xaia2a2ai(12) COnStailt

A —1

r;;&r„
(C4) From Eqs. (C5) and (C6) we can immediately generalize

for all permutations of (n2 .nz) and (pb . pg) leaving
(ni, (22)= (8,, p2) or (p2, pi) that

= (').b (v,/v) j,(k.br—,)/k. ,r,
= l) ab —(v,/v) (1—(1/10)kab2ra2+ . ) (C5)

since in general the argument of the spherical Bessel

= (A —2) II (1—~(v./v) j

&
A —2 i 1].:(v./v)

X 1+i I- + . (C7)
2 I 4 1—(v,/v)
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The form of Eq. (C7) is understood as follows. The
erst term in the brackets is contributed by the "classi-
cal" term with n, =p, , for all 2 &~3. The factor (A —2)!
represents the number of possible permutations of the
A —2 particles in this set. The products of factors
IIL1—nz(v, /v)] just represents the excluded volume
effect calculated to first order in v,/v for each factor; v2s. ,

A

dr, dr II f'(r;, )
i&j=l

A.

=(1—(A —1)v,/v}
'

dr2 ~ dr~ II f2(r;,)
jg j=2

A—1

= II 51—~(v./v) 3.

The second term in the brackets in Eq. (C7) results

from an interchange among any of the
~ 2 ~

pairs)
that can be constructed such that n;=P;, a;=P;. Only
-', th of the possible pairs are not orthogonal in spin or
isotopic spin space and these contribute according to
Eq. (CS), with a plus sign because of the relation

~ ~ ~ Q$ ~ ~ ~ Qj 0 ~ Og 0 ~ ~ Q7 ~ ~ \ Ng' 0 ~

S L ~

In this same manner, one can explicitly calculate further
terms in Eq. (C7). As above, we find that to leading

order they are constants independent of the argument

r12 and the indices (n, p). The magnitude of the con-

stants is unimportant since (V) is expressed in Eq. (C3)
as a ratio.

It remains to be shown now that, for the class of
permutations with

~1 pl &2NP2 or &2 P2 &1+Pl (CS)

there results a negligibly small contribution to Eq. (C3).
This conclusion is readily established formally. We just
indicate the argument as follows. The second term in

Eq. (C7) expresses contributions of the
~ ~

=A'/2
A

pairs with n;=P;, n, =P,, for 3 ~&2&j.However for the
class of permutations in Eq. (CS), there are only
2(A —2) such pairs that can be formed; i.e., there are
2(A —2) ways in which to form pairs with nl ——Pl,
n2 t;,——n, =$2, or with n2 ——P2, nl ——P;, n, =Pl, for j&~3,

and with all other a„=pl'. Thus the contribution to X
of the pairs in the class of Eq. (CS) is small of order
1/A and can be neglected in Eq. (C3). The same con-
clusion follows directly for triple exchanges, in the class
of Eq. (CS), of form nl Pl, n——2 P;,——n;=P2, n2 ——P2, for

j&k ~&3 in comparison with the
~ ~

=A'/6 triple

exchanges of form (n, , ~2) = (Pl, P2), (u, , ~2, ~„)
= (p2, p„p,), which contribute to the next term in Eq.
(C7).

The same reasoning extends simply to the cases
corresponding to permutations described by

&1) &2p &n) +m =
ny my 1y 2 ~


