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The relativistic two-nucleon equation of Salpeter and Bethe is examined in the ladder approximation for
large binding energy, with an invariant interaction function. The binding energy is considered an adjustable
parameter and the coupling constant, g?/4m, is taken as the eigenvalue of the problem. As a starting point
for this study, the special case of two equal masses and binding energy equal to the total mass is considered.
It is found that in this case the equation may be simplified to a remarkable degree. For zero quantum mass,
a one-dimensional integral equation in momentum space is obtained, and solved, in closed form. The solu-
tions can also be displayed in closed form in configuration space. Solutions exist corresponding to this bind-
ing energy for all positive g2 Requiring normalizability on a space-like surface in configuration space elimi-
nates solutions for sufficiently small g% but a normalizable continuum remains. Arguments are presented to
show that this continuum is not due to the choice of binding energy, but is, in fact, characteristic of the in-
variant equation. It is shown that by introducing a high frequency cutoff into the particle propagators and
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then going to the limit of infinite cutoff, the remaining continuum is reduced to a single physically sensible

solution.

I. INTRODUCTION

HE relativistic two-nucleon equation of Salpeter
and Bethe,! which has been obtained field-theo-
retically by Gell-Mann and Low,? represents the first
completely covariant treatment of bound states in
quantum field theory. However, the only applications
which have been possible have been in the semirela-
tivistic or nonrelativistic regions; e.g., the mass correc-
tions to the hydrogen fine-structure;® the spectrum of
positronium;* and the partial renormalization of the
Dancoff equations.’ All of these applications have in-
volved the approximation of the SB equation by intro-
ducing an instantaneous interaction as the starting
point of a perturbation or iteration procedure. It is
therefore of considerable interest to study the properties
of this equation, and to seek methods of solving it when
the interaction is treated covariantly. In fact, it has
not previously been shown that solutions to the SB
equation exist if no nonrelativistic approximations are
made; furthermore, it has not been shown that all of
the relativistic solutions, if they exist, have nonzero
nonrelativistic limits.

We shall, in this paper, consider the question of
existence of solutions, but not the question of existence
of the nonrelativistic limits. We shall treat the inter-
action in a Lorentz-invariant fashion, but we approxi-
mate the equation by restricting ourselves to the so-
called “ladder” approximation; that is, we retain only
the first term in the expansion of the interaction in
powers of g2/4w, the coupling constant. Salpeter and
Bethe! have given qualitative arguments for the va-
lidity of this procedure when g?/4r is small; however,

* Part of this work was performed at Cornell University, and
forms part of the author’s doctoral thesis.
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we will not consider here the validity of the ladder
approximation, but only whether it admits solutions if
no nonrelativistic approximations are made within it.
We shall therefore not restrict ourselves to small values
of g?/4m, but shall imagine that the interaction is exactly
represented by the first term in its expansion.

The existence of solutions to the SB equation, in the
ladder approximation, is demonstrated by exhibiting
exact solutions for a special case. Treating the binding
energy as a fixed parameter and the coupling constant
as the eigenvalue of the problem, we consider the case
when the binding energy is equal to the total rest mass
of the two particles.® The equation may then be simpli-
fied to a remarkable degree and solved exactly. It is
found that solutions exist for all positive values of g?;
imposing the condition that the solutions be normaliz-
able on a space-like surface eliminates solutions for
values of g2 below a certain critical value, but leaves
a normalizable continuum of solutions belonging to
values of g2 larger than the critical value. The validity
of such a requirement is discussed with reference to the
lack of a direct physical interpretation of the solutions.

To show that this continuum does not arise from the
choice E=0, but rather is due to the high degree of
singularity of the kernel, the equation is solved also for
E=0 and an instantaneous interaction (which reduces
the degree of singularity). It is shown that a point
spectrum results.

It is then shown that the continuum may be reduced
to a point spectrum in an invariant fashion by intro-
ducing a high momentum cutoff for the relative mo-
menta and allowing the cutoff to become arbitrarily
large. Using this procedure, only one point in the spec-
trum appears; the solution corresponding to this value
of the coupling constant satisfies the suggested nor-
malizability condition.

6 It must be noted that this choice of binding energy implies a
system at rest, with zero rest mass; this can only be considered

physically if it is interpreted as the limiting case of a nonzero
rest mass system.
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SALPETER-BETHE TWO-NUCLEON EQUATION

In so far as is possible, the notation of reference 1 will
be used throughout. The time component of the four-
vector x will be denoted by %o, and is real. Three-
vectors will be represented in bold-face type; thus,
x= (%, X). Natural units (A=c¢=1) will be used
throughout.

II. PROPERTIES OF THE SALPETER-BETHE EQUATION

In center-of-mass coordinates, the SB equation for
bound states may be written, in the ladder approxima-
tion, as

2ig?
f S (r—a )V (@OTT (), (1)

2m)®

¥ (x)=

where V (x?) is the interaction function, assumed to de-
pend only on the proper distance between the particles
(x?=x0>—x?%). For a relativistic Yukawa interaction
involving quanta of mass «, this function is given by

1 - 1 s
V(x)=(27r)2 f o ?2—sz . @)

The quantity T' in Eq. (1) is a direct product of two
commuting Dirac matrices, describing the transforma-
tion properties of the interaction field (ie., I'=1,
Yuvu® Y5 rs®, Vsrystyu®v.ub, for scalar, vector, pseudo-
scalar, and pseudovector neutral fields, respectively).
The kernel S(x—x") is compounded from two Sr func-
tions;? it is given by

[ E+pot Ho(p) |[E—pot-Ho(— D)
S ()= f d"pe—w.z[(Efpo)z_ WI;][ (Ei PO)LW:: ]

Xﬁaﬂbg (3)

where H,(p)= a® p+B8mq, W= p*+m a and b refer
to the two particles (assumed distinguishable), and 2E
represents the total energy of the system. The Dirac
matrices labeled ¢ commute with those labeled &; ¥ is
a 16-component function, the matrix properties of
which will be discussed in detail below. The coordinate
x is the relative separation of the particles, and the
binding energy of the system is given by ez=2FE
—mq—my. We only consider the case when ep is
negative.

The kernel S(x—x«’) is strongly (quadratically)
divergent on the relative light cone, (x—2/)?=0. As has
been pointed out by Hayashi and Munukata,” in calcu-
lating the value of ¥(x) when 2?=0 from Eq. (1) the
divergence in S(x—=x") will coincide with the &,-like
divergence of V (x’?). These authors suggest that there
may be no solutions to the equation as a result of this
property; while this is not true, as we shall show, it

(17 SSZ) Hayashi and H. Munukata, Prog. Theoret. Phys. 7, 481
952).
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seems likely that the character of the equation may be
largely determined by this high degree of singularity.
It should be noted that if an instantaneous interaction
is used, the coincidence of divergences does not occur.

It is easily seen that the divergence in S(x) is inde-
pendent of the value of E, since it arises from large
momenta; hence, this divergence is unaltered when
E=0. For this reason, therefore, we shall consider E
to be a parameter which may equal zero, and shall take
g%/4m to be the eigenvalue of Eq. (1). Since one expects,
ultimately, to obtain a relation between E and g*/4m,
it is clearly of no mathematical importance which of
these two quantities is taken as the eigenvalue.

We shall show in the next section that it is possible
to simplify Eq. (1) to a remarkable degree when E=0.
As we have mentioned, the problem ceases to have any
clear physical meaning at this point in the energy scale,
but it seems reasonable to suppose that the mathe-
matical nature of the problem is not seriously altered
by this choice, due to the fact that the singular char-
acter of the kernel of the equation is independent of E.
In the latter part of the paper, we shall attempt to
determine to what extent the results are affected by
the choice E=0, and to what extent they may be con-
sidered characteristic of the general problem.

III. SOLUTIONS FOR E =0

Equation (1) may be transformed into momentum
space, yielding the equation

(Eﬁa_*_P#'Yua_ ma) (Eﬁb_ Pu’YMb—" mb)q” (?)

1
' (k), (4
(p—R)*—? ® @

=iNTr2

where we have put g?/4r=M\. We consider first the
matrix properties of ® and the mode of operation of the
~ matrices.

The function ® is a 16-component function having
the transformation properties of a product of two Dirac
free-particle spinors. If the components of &' are ar-
ranged as the elements of a 4X4 matrix, the rows of
which are numbered by the particle ¢ index, and the
columns by the particle b index, then the y matrices
operate as follows:®

'Yuaq)/E'YucI),: (5)
'y“b{)’sfb"y”"',
where v, is the usual 4X4 Dirac matrix, and v,* is the
transpose of v,. Ordinary matrix multiplication is im-
plied. It should be noted that in forming the scalar
quantity ®*®’, it is necessary to take the trace of the
matrix product.

8 L. de Broglie, Théorie Générale des Particules & Spin (Methode
de Fusion) (Gauthier-Villars. Paris, 1943).
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Using this representation of ', Eq. (4) becomes
(EB+puvu—ma)® (p) (EBT— puyut—m)

%
=i\'7 f mp@ (&)pt, (6)

where we have made use of the fact that I' can, in
general, be represented as papp with p defined according
to the transformation properties of the interaction.
The charge conjugate matrix 4 =+yys has the follow-
ing property:
Ayt=7,4. ()

Hence, if we define ®=3®'4, it is seen that ® satisfies

(Eﬁ“l‘Pu'Yu— maz)q> (P) (EB_' DuYu— mb)

N2 f >k ®(k)p, (8)

=N ) ——————p I'B
(p—By—r

and, with E=0,

(Puvs— ma)®(p) (puyut-ms)

dk
= —iNn2 f _———@—k)?—xﬁ(k)p' ®

We now put #m,=m;, and assume ® to be proportional
to the unit matrix. We obtain®

(=t ()=~ [ ——)—@Ue), (10)

- —‘K
where A=Np?(p?=1 for scalar and pseudoscalar inter-
action, 4 for vector and pseudovector interaction). It
is further seen that we may seek a solution to Eq. (10)
which is a function of the single variable % Such a solu-
tion, then, is a scalar under all Lorentz transformations
including p——p, and must correspond to a S state
of the system.!?

Equation (10) may be solved exactly when x=0;
hence we make this final step, and consider the inter-
action to take place by means of massless quanta. As
we will show, no essential generality is lost by this step.
For this case, the kernel of Eq. (10) is the Green’s
function for the d’Alembertian operator in momentum
space; thus, Eq. (10) can be converted into a differen-
tial equation in momentum space, directly.

It is desirable, however, to obtain this differential
equation somewhat differently; for the less direct
method will serve also to replace Eq. (10) by a one-
dimensional integral equation. We assume that the
function ®(p?) may be written (the justification for

9 Equation (10) has been studied by Dr. S. F. Edwards [Phys.
Rev. 90, 284 (1953)] to whom the author is grateful for several
useful discussions.

1 Since no principal quantum member appears in the problem,
it is not certain that ®(?) describes the only 1S state.
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this assumption will be provided below):

B(p)= f f dadyg (s, 9) (F—aFy+id (1)

where € is a positive infinitesimal constant, and the
integration is over some region 7 in the xy plane. Sub-
stituting this expression into Eq. (10), with k=0, and
expressing all momenta and masses in units of m, we
obtain, with s= p?% and suppressing the ie,

s(s—1) f f dadyg (s, 9) (s—a-1+5)"2

xl—y—s)
[ [astyg(e, ) 7Y
T 21—y

(12)

after the four-dimensional integration is carried out.
When the logarithm in Eq. (12) is expressed as a double
integral, we obtain

s(s—1) f f dxdyg (x, y) (s— &+ y)~

=\ j(: adz J; °<>dt f L g(x, y)dxdy ({—x"Hv)2,  (13a)
r

s(s— 1)<I>(s)=)\f8dszdt<b(t). (13b)

Rearranging the order of integration, we obtain

s(s—1)B(s) =)\ f () dihs f sty (14)

s

The kernel of this integral equation is just the Green’s
function for d2/ds®; hence, the differential equation
mentioned above is

dz
(—i-—[s(s— 1)®(s) ]+ (s)=0. (15)
82

We may now replace ®(#) under the integrals in Eq.
(14) by a second derivative; integration by parts then
removes the integrals and yields the boundary condi-
tions auxiliary to Eq. (15). These conditions are

lim{sLs (s— 1) (s) I'+s2(5)} =0,
litg[s(s— 1)®(s)1=0

(16a)
(16b)

Equation (15) is recognizable as the hypergeometric
equation; a solution satisfying conditions (16) is
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given by

®(s)= {lt“ A=ty =(1—[s+ie])>%dt (17a)

0
=B(a, 2—a)F (14a, 2—a; 2; s+1ie),
[s+ie]<1

Y-t

(17b)

—S—1€

1{1‘(1+a)r(2a—1)
a T'(a—1)
XF(14a, a; 2a; [s+ie]™)
| T@—a)l(1-2)
T'(—a)
XF(2—a, 1—a; 2—2a; [s+ic] ) |,

(—s—ie)*?

(17¢)

. where B(m, n) is the beta function, I'(#) the gamma
function, F the hypergeometric function, and « is
related to A by a(1—a)=A\. It is sufficient to restrict
Re(a)<3% to obtain all the solutions.

In order to show that ®(s), as defined by Egs. (17),
actually satisfies Eq. (10) with k=0, it is only necessary
to show that this function may be expressed in the
form (11). Using the formula,

|s+ie|>1,

(v£ie) "= I:B (m, n)]—lf ™t (x-l-y:i:ie)_”“”dy;

(m, n>0), (18)

valid for all real », which may be obtained from the
definition of the beta function,”? and putting m=q,
n=_2—a, we obtain from Eq. (17a):

(_ 1)«—2

) 1
— d fdt a——lt?w—Z l_t —a
B(a,z—a)fo ¥, drrei=D
X (st+y—t1+ie) 2

which is of the required form.

Since all solutions of Eq. (10) must satisfy Eq. (15),
any solutions not of the form (19) must also be hyper-
geometric functions. If we use well-known integral
representations, the most general solution to Eq. (15)
may be written down; with the help of formula (18),
it is possible to show that no other solutions to Eq.
(10) exist.

We have shown, therefore, that the SB equation has
solutions belonging to E=0 for all positive values of the
coupling constant ; thus, for any coupling constant, the
point E=0 is apparently contained in the 1S energy
spectrum, with no constants of the motion to prevent
the system from falling into this state. This, of course,
contradicts the physical fact that the lowest 1S state

U E. T. Whittaker and G. N. Watson, Modern Analysis (Cam-
bridge University Press, Cambridge, 1950).

2 The author is grateful to Dr. N. Austern and Dr. S. Butler
for bringing this useful device to his attention.

&(s)=
(19)
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of positronium lies far above E=0, and it contradicts
the results of the nonrelativistic limit of the SB equa-
tion obtained by Salpeter.?

It therefore appears that additional regularity con-
ditions must be imposed on the solutions in order to
select the physically significant ones. Such conditions
can only be obtained from the connection of the solu-
tions to the laws of conservation of charge and energy,
since it is only from this connection that the full
physical meaning of the solutions can be understood.
Unfortunately, this connection has not yet been ob-
tained for the relativistic two-body problem. In the
next section we consider imposing the requirement of
space-like normalizability on the solutions, but since
the interpretation of ®(p?) is incomplete, it must be
recognized that there is no real reason to expect this
requirement to be sufficient.

We shall find, in fact, that requiring ® to be normaliz-
able as a probability amplitude does exclude values of
A below a certain critical value, but leaves a normaliz-
able continuum of solutions belonging to values of A
above this critical value.

IV. NORMALIZATION OF THE WAVE FUNCTION

The integrals which arise in carrying out the nor-
malization of the wave function are more easily per-
formed in configuration space. Furthermore, the func-
tions themselves are perhaps more easily understood
in this space, and for this reason, we shall first obtain
the Fourier transform of the function defined by Egs.
an.

It is very difficult to obtain these transforms directly,
and an easier method exists. If we use the relation,®

f e = (pP—mi+ie)d'p=m"Ho® (mR),  (20)

where H,®is the Hankel function of zero order,
second kind, and where R= (x2—z¢)? (positive real if
x>0, negative imaginary if ¥2<0) we may establish
the behavior of the Fourier transform of Eq. (19) for
very large imaginary R; that is, Fourier transform of
®(s) decreases exponentially in the space-like region.
This, of course, is a condition we should have to impose
in any event on a bound state solution, but it is im-
portant to note that the condition is actually satisfied
by the solution ®(s).

The Fourier transform, ¥(x), of ®(p) satisfies the
following differential equation, which is obtained by
transforming Eq. (9). We exhibit the equation for k50
to establish the role played by the quantum rest mass.

9— O
(—- i'y,‘——m)\lf (x) (——i’y,,——l—m)
0%, 0,

29\

=~ HL® (R)pY (W,

(21)

13 J. Schwinger, Phys. Rev. 76, 790 (1949).
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where the arrows imply that the differential operators
operate from the left. For xkR<1 the interaction term
reduces to 4A\R~2; hence it is clear that x only affects
the solutions at distances large compared to x'. The
behavior of the solutions near R=0 is therefore inde-
pendent of .

Putting k=0, and taking ¥ to be a scalar function
of R, we obtain

& [3d a
+- —~—|—1+—)‘II(R)=0,
RdR R

(22)

dR?
where we have again expressed all instances in units
of m~1. This equation is solved by

¥ (R)=RZA(R), (23)

where Z, is any Bessel function, and where #= (1—4\)}
=1—2a. The condition that ¥(R) must be exponen-
tially encreasing in the space-like region implies that

¥ (R)=R-H,® (R) (24)

be the unique solutions.

It should be noted that the behavior of ¥(R) for
very large |R| is virtually independent of #, apart
from a phase factor. All of the solutions decay ex-
ponentially in the space-like region, and oscillate with
slowly decreasing amplitude in the time-like region.
However, near R=0, ¥(R) depends quite strongly on
n; the behavior is like R—" for %30, and like
R1InR for n=0. For » imaginary A\>%), ¥(R) oscil-
lates with infinite amplitude and frequency at R=0.

The wave function ¥ is defined from field theory as
the matrix element of two annihilation operators; as
such, it is tentatively suggested that ¥ have the in-
terpretation of probability amplitude whenever the
two measurements which are involved commute. This
is equivalent to the suggestion that the quantity

N= f T*(0, D) (0, ) (25)

should represent the normalization of the wave func-
tion on the surface {=0, since on this surface the two
measurements never interfere.!®

The integral (25) is performed in Appendix A. The
result is finite for #<3}, corresponding to A>%; on
the basis of this normalization condition, then, we are

4 E. Jahnke and F. Emde, Tables of Functions (Dover Publica-
tions, New York, 1945). One may reasonably ask why, when Eq.
(22) is so easily solved, the momentum-space treatment is at all
necessary. The answer lies in the lack of a definitive set of bound-
ary conditions [such as Eqs. (16)], which are extremely difficult
to obtain in coordinate space.

15 It is tacitly assumed in the field-theoretic derivation of the
SB equation (reference 2) that the quantity N is finite. However,
it has not been shown that this assumption is essential to the
derivation. It is also to be noted that although N is defined by
Eq. (25) in a noncovariant way, the result of normalizing over
any arbitrary space-like surface can be shown to be finite if N
is finite, and infinite otherwise.
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led to reject all solutions corresponding to A smaller
than this quantity as being nonphysical. This is equiva-
lent to the statement that if the coupling is sufficiently
weak, it is not possible to obtain a binding this strong
without the collapse of the system.

In this connection, a characteristic radius of the state
may also be calculated; we define this quantity by

(ry=N-1 f w0, )|t T(©, OFr.  (26)

The integral is also carried out in Appendix A, the re-

sult being
(ry=4nz1cot(nm), n<};

27)
=0, 1>n>1.

Thus, the requirement of normalizability does not
suffice to reduce the continuous spectrum completely.
We shall first examine the source of this difficulty in
the next section; subsequently, we shall consider a
procedure which does have the effect of reducing the
continuum.

V. SOURCE OF THE CONTINUUM

We have shown that for the special case E=0, the
SB equation has solutions, in the ladder approximation,
for all values of the coupling constant. Considerations
of normalizability do not suffice to reduce this con-
tinuum to a point spectrum, and in any case, such con-
siderations are on an unsure basis, due to the lack of
physical interpretation for the solutions. It is therefore
of some importance to attempt to isolate the mathe-
matical properties of the SB equation which are re-
sponsible for this continuum; that is, we shall attempt
to find out to what extent the continuum results from
the choice E=0, and to what extent it results from the
high singularity of the kernel of the equation.

It has been suggested that the nature of the spectrum
may be largely determined by the fact that, in coordi-
nate space, the singularity of the interaction on the
relative light cone may coincide with the singularity
in the function S(x—x’), defined by Eq. (3). If this is
so, the nature of the spectrum should be altered if the
interaction is taken to be instantaneous, for in that
case, the two singularities can never coincide. We are
therefore led to examine the equation [see Eq. (10)]:

ak

(= YU (P, po) = — ida f L)

the solution of which describes a 1S state of a system
for which E=0 and the interaction is of the instantane-
ous Coulomb type. If we define a new function,

(28)

()= f ¥ (%, po)dpo, (29)



SALPETER-BETHE TWO-NUCLEON EQUATION

we obtain at once the following three-dimensional
equation

2 N2 N dpo 31, 1 (k2
$(p)=—irr f_ P f Pk )

¥ (K%). (30)

At
- f oh
(p*+m2)? (p—k)

This equation may be solved by a method suggested
by the work of Rubinowicz;!® the solution is obtained
in Appendix B. It is shown there that the only solution
of Eq. (30) corresponds to 4wA=1; that solution is
given by

v(p)=[(p*+m)—mP/[p*(p*+mD) . (31)

This example serves to demonstrate that it is ex-
tremely plausible to suppose that the continuum actu-
ally does arise from the coincidence of the two singu-
larities in question; and if this is the case, it may be
expected that the continuum will arise for any value
of E, as long as no noncovariant approximations are
made.

In the next section we shall examine the effect on the
spectrum of reducing the singularity of the function
S(x) in a covariant way. We shall find that this pro-
cedure enables us to reduce the continuous spectrum
to a single physically acceptable solution.

VI. REDUCTION OF THE CONTINUUM

The program to be carried out in this section is the
following. We will introduce a factor into Eq. (1) which
cuts off the contribution of momenta large compared to
some cutoff parameter, say ©. We will then solve the
problem for E=«=0 again, and afterwards allow Q to
become arbitrarily large. We will then examine the
resulting spectrum.

If we introduce an invariant cutoff factor, C(p?—9),
into Eq. (1), this factor will appear in the integrand of
Eq. (3), and multiplying the integral on the right-
hand side of Eq. (4), and finally, it will appear in Eq.
(14) as follows:

s(s—1)P%(s) , .
=xc<s—sz)l f B0 ()dit-s f <I>9(t)dt1. 32)

8

The superscript on the function ® is used to indicate
that ®¢ differs from ® in that the former depends on Q.
We require of the function C(s—) that it have the

property
C(s—Q)=1,

C(s—Q)=0,

s

3
s> (33)

In order to construct a problem which may be solved,
we shall take C(s—Q) to be a step function. It seems
likely that the form of the cutoff should be unimportant

16 A. Rubinowicz, Prace Mat.-Fiz. 47, 41 (1949).
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in the limit, and the results do not appear to depend
on the sharpness of the cutoff, provided it is sufficiently
sharp. Consequently, we write for C(s—Q):
1, s<9;

(34)
0, s>Q.

C(s—2)=0(Q—s)= {

Consider now the function £(s) which is defined as
the solution of

s Q
s(s—-1)2(3)=)\f t£(t)dt+)\sf £@)dt, s<Q;

. (35)
=) f (), >0,
0
It is clear that ®%(s) is related to £(s) by
P%(s)=0(Q—s)&(s), (36)

and therefore we need only solve Eq. (35).

The function #(s) satisfies the differential equation
(15) for s<Q, but the boundary condition (16b) now
applies at s=Q rather than at s= . Thus, £(s) must
satisfy

F@/E@)=—(20-1)/2@Q-1), 37)
as the new boundary condition. Furthermore, for s<Q,
£(s)=®(s) as defined by Egs. (17) ; and if @>>1, we have

1(T(1+a)T 2a—1)
tQ)=—y—————
a T'(a—1)
T'2—a)l'(1—2a)
T'(—a)

1
=-{C, (a)Q_“_1+C2 (a)Q"‘_z} .
o

(~@)=

(—)
(38)

The definitions of Ci(e) and Cs(a) are apparent. The
condition (37) then makes a a function of ©, as follows
(for &>>1):

(Ol+ 1)C1 (a)ﬂ’“‘"l—- (a — 2)C2 (a)Q‘”_z

=2, (39
Ci(@) o 14+Co ()22
or
Ci(e) I'(2e) a
=(—1)2 =Q2el . 40
Ca(e) =1 T'(2—2a) a—1 (#0)

The only solution of this equation which is independent
of @ is a=3%; hence we conclude that the only solution
which is insensitive to the cut-off procedure is the one
forA=1, ie., the least divergent (in configuration space,
on the relative light cone) of all the solutions.

VII. CONCLUSIONS

We may summarize this work as follows. The SB
equation has been considered in the ladder approxima-
tion for a relativistic Coulomb interaction, with the
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following results. Exact solutions have been found
corresponding to the binding energy equal to the total
mass, (E=0), for all positive values of the coupling
constant. It is suggested that the existence of a con-
tinuous spectrum in the coupling constant is due to the
possibility of coincidence of the singularities of the
interaction and the particle propagators; to make this
suggestion plausible, the SB equation is also considered
for E=0 with an instantaneous interaction, which re-
moves the possibility of coincidence of the singularities.
It is shown that a single-point spectrum results.

It is further shown that if the singularity of the par-
ticle propagators is reduced by the introduction of an
invariant high momentum cutoff, a single-point spec-
trum results even with the relativistic Coulomb inter-
action; this spectrum does not approach a continuum
in the limit as the cut-off parameter becomes infinite.

Finally, it is shown that the requirement that the
solutions be normalizable on a space-like surface does
not suffice to reduce the continuum to a point spectrum;
but the solution remaining after the cut-off procedure
is carried out is normalizable on a space-like surface.

It has not been conclusively shown, of course, that
if Eq. (1) were solved for E>0, a continuous spectrum
in A would result; however, the evidence does seem to
suggest that the character of the spectrum is deter-
mined by the high degree of singularity of the kernel
of the equation, and these singularities are independent
of E.

This result is of immediate importance if variational
procedures are to be used to determine the energy spec-
trum. For example, we have shown that any analysis
which is designed to obtain the lowest-lying 1S energy
level will give E=0 as the result, unless extra condi-
tions are imposed which are not already contained in
the SB equation. Such a condition has been suggested
in this paper; namely, that the solution must be
“stable” under the cut-off procedure. It is admittedly
very unsatisfactory to introduce such an ad hoc pro-
cedure into the problem; but the fact that this pro-
cedure selects the solution which is least divergent on
the light cone suggests, perhaps, that the procedure
might be replaced by an additional boundary condition
on the light cone. However, any such condition must
come directly from the theory when the complete
physical interpretation of the solutions is available from
the conservation laws.

An attempt has been made, which is not reported
here, to obtain approximate solutions for small E
(large binding energy) using the solutions for E=0 as
the starting point of an iteration or perturbation pro-
cedure. These methods yield expansions of the wave
function in powers of E; but if one may draw an analogy
to the Dirac one-particle equation for the hydrogen
atom [Eq. (30) suggests that such an analogy may be
useful], an expansion of the wave function in powers
of E will not be valid near the light cone. Since the
eigenvalue problem seems to depend critically on the
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behavior at small proper distances, it seems plausible
to suppose that any method yielding an expansion in
powers of E will not be useful in obtaining the spectrum.

The equations describing higher angular momentum
states for E=0 may be obtained from Eq. (9) as fol-
lows. Since Eq. (9) is invariant under Lorentz trans-
formations, one must seek solutions also having that
property; thus, one may require that the 4X4 matrix
®(p) transform like a scalar, pseudoscalar, vector, etc.,
corresponding to 1S, 3P, 35, etc.

I should like to thank Professor E. E. Salpeter for
many valuable discussions, and Dr. S. F. Edwards for
suggestions which proved extremely helpful. I am
grateful to Professor J. R. Oppenheimer and to the
faculty of the Institute for Advanced Study for their
suggestions and kind hospitality.

APPENDIX
A. Normalization Integrals

We wish to calculate the integral defined by Eq.
(25), which is

N= fd'"’r“an(”(ir)H,,<2)(—ir)

16
- f K.2(r)dr.
]

This integration may be performed with the help of
the following integral representation:'’

(A1)

1 p= x 7 dx
ko= [ e~ (G5 [k = @2
2J, 2 x x
Let u=7?/x, and insert (A2) into (Al):
8 r*du ©
N=- f —e K, (u) f dre 1%
STy U 0
32\t ;>
= (—) f wtdue K ,(u). (A3)
™ 0

We now make use of the following integral representa-
tion for K, (u):

0

" f e oomhe(sinhi)tnds,  (Ad)
0

e

K,(4)=—u
I(n+3)2"
which gives

©

8 o
N =————‘———————f dit(sinhz)?» f un}
2mHT (n+3) Yo 0

e (14cosh t)d,u

(AS)

17 G, N. Watson, Bessel Functions (Macmillan and Company,
New York, 1944).
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The inner integral may be found in tables of Laplace
transforms ;'8 the result is

8 p*  (sinhy)
N= f .
27t4J,  (14coshs)nt?

(A6)

The transformation coshi=2x41 transforms this in-
tegral into the standard beta-function integral, giving

© 4n—}% 4
N=4 f 7 =4T 3+n)TE—n)= il (A7)
0 .

x+1 cosnm

The integral is clearly finite only if Re(n)<3.
The integral for the radius of the state may also be
performed. It is defined by

(ry=N-1 f BrH O (ir)rH,® (—ir)

4 cosnm

= f rdrK ;2 (r).
0

™

(A8)

Using the integral representation of Eq. (A2), we obtain

2 cosnm ® du @
(n= ; f —e K ,(u) f rdr exp(—17*/2u)
0 0

T u
2 cosnm
- f dueK (1), (A9)
w2 Jy

This integral is also to be found in tables of Laplace
transforms. The result is

{r)= (4n/x) cot(nm). (A10)

B. Solution for Instantaneous Interaction

The equation which is to be solved [Eq. (30) of the
text] is

1
(D2 () = A f Ph— R B

We use a method suggested by Rubinowicz’ momentum-
space treatment of the Dirac equation for the hydrogen
atom.! Carrying out the integration over angles in
Eq. (1), we obtain (with m=1)

© kb 1 dx
()W () =) f famany [
0P t—x
® Pk
=2\ f Sa B0, (B2)
0o ?

where t= (p*>+k?)/2pk, and where we have written p
for | p|. Qo is the zero-order Legendre function of the

18 W. Magnus and F. Oberhettinger, Special Functions of Mathe-
matical Physics (Chelsea Publishing Company, New York, 1949).
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second kind. We use the following integral representa-
tion of that function:”

p2+ k2 0
0 =T 3 1
Q( " ) (o) f Ti(sp)T5(sk)ds,  (B3)

which gives
A+ =207 [ Ti(sp)ds
0
: f BakTy(sk)y(E). (B4)

We then assume that ¢ (p) may be written

V(@)= f @) T3 (p)ad, (BS)

which is equivalent to assuming that ¢ (p) has a Fourier
transform. If we insert (B5) into (B4), we obtain

(1+p2)%f f(x)]g(px)xdx=21r)\f Ji(sp)ds

X f °c’kdkf 1(sk)- fw f@)Ty(kx)xdx. (B6)

Because of the Hankel inversion theorem, we may write

f "Rk f )Tk dn=1G),  (BT)

which yields

A+ [ ef@Tiniz=2e [ f@)T30s (B9)

0
We now make use of the following two integral for-
mulas:!®

£

f et Ty (pt)dt= I:(1—}—p2)§‘—-‘1:|%p—%(1+1,2)—§’

0

" i (BY9)
[ )= 2L =10
0
which enables us to write
1 p* dt ®©
2\i__ —t ], _ —t ],
= [ ene/ [ e, ®10
or
) dt )
[ enn [ s
0 0
=41r)\f e“]%(pt)dtf Jy(xp)f(x)dx. (B11)
0 0
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Multiply both sides of Eq. (B11) by pdp and integrate
over p,

fo w""iit‘t j; dePJ 162 fo wxf(x)]%(px)dx

=4\ j; we—tdt j; wpdpj%(pt) j; " S@)Ty(px)dx. (B12)

If we use the Hankel inversion formula once more, we

obtain
® di ® dt
[ e=s0=am [ S0,
o ¢ 0 ¢
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or
4mh=1. (B13)
This solution is evidently given by
V)= [ o)
0
=LA+ -11p71 04277, (B14)

and apart from possible degenerate solutions also be-
longing to 4mA=1, is the only solution having a Fourier
transform.
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The equation for the interaction representation transformation operator is put into integyal form and
the Fredholm theory of integral equations is used to give an explicit expression for the solution. No extension
of the circle of convergence of the S matrix seems possible in the general case.

INTRODUCTION

HE Fredholm theory of linear integral equations
has recently been used by Salam and Matthews!
to study the convergence of the .S-matrix expansion for
the scattering of an electron in an external time
dependant electromagnetic field. The Fredholm solution
is expressed as the ratio of two infinite series, both of
which have an infinite radius of convergence in terms
of the coupling constant, provided that the square of
the kernel of the equation is integrable. Salam and
Matthews deduce that in general the iterative expansion
of the S matrix is convergent, when the quantum
fluctuations of the electromagnetic field are ignored.
The Fredholm solution of an integral equation (with
a suitably bounded kernel) is identical with the iterative
solution in the region in which the latter converges, and
if the iterative solution has a finite radius of convergence
the Fredholm method gives a continuation of the
solution outside this radius of convergence. It seems
reasonable to enquire to what extent the Fredholm
method can be used to extend the convergence of the
S matrix when both the electron and the photon fields
are quantized and no external electromagnetic field is
present. In view of the good reasons for believing that

1TA. Salam and P. T. Matthews, Phys. Rev. 90, 690 (1953).
The author is grateful for being able to see the typescript of this

paper.

the iterative solution has zero radius of convergence in
terms of the coupling constant,? any extension would be
of considerable value.

It is necessary to write the equation giving the
interaction representation transformation operator .S(f)
in integral form, and to apply the Fredholm method to
this equation. As the integral equation has a g-number
kernel it is immediately obvious that the usual theory
of the convergence of the Fredholm solution® need not
be valid. However, it is possible to give an explicit
expression for the Fredholm solution. This expression
shows that the integral equation method actually has
no advantage in the general S-matrix case; and it is
easy to see that this fact is closely related to the unitary
character of the matrix .S(¢). It seems to be impossible
to derive any benefit from using the integral-equation
method once the quantum fluctuations of the electro-
magnetic field are included.

THE INTEGRAL EQUATION
The operator S (/) satisfies the differential equation

1hdS(1)/dt=NHr ()S (1),

?F. J. Dyson, Phys. Rev. 85, 631 (1952); C. A. Hurst, Proc.
Cambridge Phil. Soc. 48, 625 (1952); W. Thirring, Helv. Phys.
Acta 26, 33 (1953); A. Petermann, Arch. Sci. 6, 5 (1953).

$E. T. Whittaker and G. N. Watson, Modern Analysis (Cam-
bridge University Press, Cambridge, 1940), 4th edition, Chap. XI.



