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The probability of a given succession of (nonequilibrium) states of a spontaneously fluctuating thermo-
dynamic system is calculated, on the assumption that the macroscopic variables de6ning a state are Gaussian
random variables whose average behavior is given by the laws governing irreversible processes.

This probability can be expressed in terms of the dissipation function; the resulting relation, which is an
extension of Boltzmann s principle, shows the statistical significance of the dissipation function. From the
form of the relation, the principle of least dissipation of energy becomes evident by inspection.

I. INTRODUCTION

HE connection between the theory of irreversible
processes and the spontaneous Quctuations of

thermodynamic variables of equilibrium systems was
discussed in two earlier papers by one of us. ' There, the
Quctuation theory was brought in to prove a theorem
for irreversible processes, the reciprocal relations: the
symmetry of the matrix of coeKcients of the set of
linear equations relating thermodynamic "forces" and
"Quxes. "The connection was made by postulating that
the decay of a system from a given nonequilibrium
state produced by a spontaneous fluctuation obeys, oe
the average, the (empirical) law for the decay from the
same state back to equilibrium, when it has been pro-
duced by a constraint which is then suddenly removed.

The present paper will establish a further connection
between the two fields, along the lines suggested in
Sec. 5 of RRIP II. We add the following to the assump-
tions made there: that the (fluctuating) thermodynamic
variables be Gaussian random variables. We are then
in a position to calculate the probability that a system,
in undergoing spontaneous thermal fluctuation, passes
through a given set of thermodynamic states at given
instants. Two kinds of coeKcients will enter this prob-
ability expression: those (s,,) which give the entropy
of a given (nonequilibrium) state as a function of the
chosen set of thermodynamic variables, and those (E;;)
which give the rates of the irreversible processes, i.e.,
the rates of change of the thermodynamic variables of
state when the state itself is known.

The argument proceeds somewhat as follows: if we
are interested in only a single instant, the probability
of a given state F is given by Soltzmann's principle,

k log Prob(P) =S(F)+const, (1-1)
*Much of the work reported in this paper appears in more

detail in a dissertation by one of us (S.M.), presented to the
Faculty of the Graduate School of Yale University (1952) in
partial fulfillment of the requirements for the Ph.o. degree.

' L. Onsager, "Reciprocal Relations in Irreversible Processes, "
Phys. Rev. 87, 405 (1931);38, 2265 (1931).Henceforth referred
to as RRIP I and II.

which relates the probability of finding the system in
the state F to the entropy of F. If we are interested in
two instants widely separated in time, the probability
of given states at each instant is equal to the product
of the individual probabilities. A long time lapse
makes the states statistically independent. ' Hence the
joint probability of the succession is related to the sum
of the two entropies. But if the time lapse is not long,
the states will be statistically correlated. It is precisely
the laws for irreversible behavior which tell us the corre-
lations, by virtue of the postulate connecting these laws
with the average course of fluctuations.

These correlations, together with the means (equi-
librium values) of the fluctuating variables, are suf-
ficient to determine the joint probability for two
instants, by virtue only of the assumption that the
fluctuations are Gaussian processes. If we have the
correlations for all pairs of instants, the joint prob-
ability for any number of instants is determined.

If the thermodynamic variables are properly chosen
(see Sec. 2), they also turn out to be MarkoKan random
variables. This means that the statistics of the future of
the system do not depend on its past but only on its
present state. The "proper choice" of thermodynamic
variables actually implies limitations on the type of
systems for which our treatment is valid. The proof of
the reciprocal relations (RRIP I and II) was based on
the hypothesis of microscopic reversibility, which we
retain here. This excludes rotating systems (Coriolis
forces) and systems with external magnetic fields. The
assumption of Gaussian random variables is also re-
strictive: Our system must consist of many "suK-
ciently" independent particles, and equilibrium must be
stable at least for times of the order of laboratory
measuring times. This is also required in order that

2This statement is, of course, charged with meaning, and re-
quires elaborate precautions about ergodicity, etc. It may be said
to hold for system which 'forget" their initial states in a "reason-
ably" short time. It is, however, precisely the choice of time scale
that matters. In a suKciently long time, all physical systems
"forget."



i506 L. ONSAGER AN D S. MACHLUP

we can consider our systems as "aged"—left alone
long enough to have "forgotten" their initial states.

The mathematics, then, will involve the treatment of
stationary 5aussian MarkoG processes in a finite
number of variables, which is by now standard. ' What
we believe to be original, in this domain, is the intro-
duction of variational expressions of the type of Eq.
(4-7) into the description of statistical distributions.
The physics —the theory of thermodynamic Quctua-
tions, and the theory of irreversible processes —involves
the concepts dealt with in RRIP (see especially II, pp.
2265—2274, also the review article by Casimir4), using
the methodological foundation for fluctuation theory
given by Einstein. '

In RRIP, a dissipation function was defined, a quad-
ratic form in the "cruxes" which gives the rate of entropy
production for irreversible processes. The calculation
of the probability for a preassigned succession of ther-
modynamic states yields a statistical interpietation of
the dissipation function. '

As is well known, distribution in function space can
not be described by a density, but its projection upon
any finite number of dimensions can be so described. 7

Accordingly, it makes sense to ask for the probability
that a function —or a finite set of functions —assume
values within specified limits at an arbitrarily selected
finite set of successive instants. We shall arrive at a
description of the probability distribution for "fluctu-
ation paths" in terms of an atexi:iary futtctiotgl, such
that the maximum of this functional, for a given finite
set of specifications, determines the appropriate prob-
ability density in a space, whose dimensions correspond
to the separate specifications of fluctuating functions
at each selected instant.

2. IRREVERSIBLE PROCESSES

The irreversible processes we consider are of the type
treated in RRIP II:flows of matter, heat, and electricity
whose rates are linearly related to the corresponding
therrttodyrtarttic forces concentration —gradients, tem-
perature gradients emf's. The extension to systems with
chemical reactions and local relaxation eGects usually
involves simply a change of language. We are thinking

'See, for instance, M. C. Wang and G. E. Uhlenbeck, Revs.
Modern Phys. 17, 323 (1945}or J.E. Moyal, J. Roy. Statist. Soc.
811,150 (1949),for applications in physics. The recent appearance
of J.L. Doob, Stochastic Processes (J. Wiley and Sons, New York,
1953) makes unnecessary further reference to the mathematical
literature.

H. B. G. Casimir, Revs. Modern Phys. 17, 343 (1945).
5A. Einstein, Ann Physik 33, 1275 (1910},especially Sec. I,

"General Matters Relating to Boltzmann's Principle. "
In RRIP II, Sec. 5, a statistical interpretation is suggested in

terms of the joint probability for a pair of instants closely spaced
in time. An extension of this type of differential expression, using
Marko8 methods (Fokker-Planck equation), has recently been
made by ¹ Hashitsume, Progr. Theoret. Phys. 8, 461 (1952).

r A. N. KolrnogoroG, Fourtdatious of the Theory of Probabt'tity
(Chelsea Publishing Company, New York, 1950},Chap III, Sec.4,
proves that the set of all finite-dimensional distribution functions
uniquely determines the probability functions for all Sorel sets
in the inlnite-dimensional space.

of closed systems, systems displaced from equilibrium
and then "released" and allowed to return. But again,
the extension to open systems (and steady states) is

purely formal.
The thermodynamic state of a system will be defined

by a set of extensive variables n&, n2 n„, quantities
like volume, energy, mass of substance, electric charge.
We choose extensive variables because of the con-
ceptual diN. culties encountered in speaking of fluctua-
ations of intensive quantities. But defining thermo-
dynamic variables at all for a system not in equilibrium
requires some sophistication. The standard device is to
assume that the system is built up of small sub-systems,
each considered in "local equilibrium. " This fails far
from equilibrium and in systems undergoing such slow
relaxations that the concept of equilibrium itself is hard
to define. ' It should be recalled that the thermodynamic
functions (e.g. , entropy) can be empirically measured
only for states —or sets of sub-system states —which
are accessible by reversible manipulations.

One may formulate rules for choosing n variables for
which the theory here developed will be applicable:

(1) They must be macroscopic variables, i.e., thermo-
dynamically measurable, and must refer to sub-systems
containing a large number of molecules. This is always
necessary for thermodynamics.

(2) On a kinetic model, they must be algebraic sums
of molecular variables. Their fluctuations will then have
Gaussian distributions about the equilibrium values, by
virtue of a kind of Central Limit Theorem, The rule also
eliminates pathological variables (e.g. , nonadditive
functions of extensive variables).

(3) They must be even functions of those molecular
variables which are odd functions of the time, like
molecular velocities. This means that a reversal of the
sense of time will not change their values and is neces-
sary for the assumption of microscopic reversibility.

We shall assume that the thermodynamic functions are
completely determined by specification of the n's. Rule
(3) implies that the kinetic energy of the flows is negli-

gible, since this depends on velocity-type variables. The
case in which inertia (and hence kinetic energy) is
important —in which time derivatives of the 0. s enter
into the thermodynamic functions —will be treated in
a subsequent paper. '

Thus the entropy is a function of the n's:

S=S(nr . n„)=S(n).
Its maximum (equilibrium) value is denoted by Sp, and
the n.'s will be redefined to vanish for the equilibrium
state:

Sp= S(0, .0).
The tendency of the system to seek equilibrium is

measured by the therrrtodyrtarrtic forces,

X,= clS/cln;, (2-1)

P. W. Bridgman, Revs. Modern Phys. 22, 56 (1950}.' S. Machlup and L. Onsager, following paper /Phys. Rev. 91,
1512 (1953}.
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ZRci;=X;, i =1 e; (2-2)

"restoring forces, " which evidently vanish with the
n's."

The fluxes (of matter, heat, electricity) are measured
by the time derivatives of the n's. The essential physical
assumption about the irreversible processes is that they
are linear; i.e., that the cruxes depend linearly on the
forces that "cause" them:

forces,
X;= —Z;s;px;,

and the phenomenological laws (2-2) become

Z, (R..ri.+ .. .)=0.

3. FLUCTUATIONS

Stochastic Processes

(2-12)

(2-»)

or
Z;L;;X;=a;,

The deterministic Eqs. (2-2) are modified to include
fluctuations by the addition of a random force term,

where the matrices L and R are mutually reciprocal.
These equations express, for instance, Ohm's law for
electrical conduction, Fourier's law for heat conduc-
tion, Fick s law for diGusion, and the extension of these
laws to interacting fIows, e.g. , anisotropic conduction
(heat, electricity), thermoelectric effects, thermal dif-
fusion. For systems for which microscopic reversibility
holds (to which this work is confined), we have the
reciprocal relations

R,,=R,,[R=R,„), (2-4)

where the subscript tr means transpose.
The rate of production of entropy is

8=2;(8S/Ba;)ri;=Z;X, ri;, by Eq. (2-1) (2.5)

=Z;;R,;ri,ri, , by Eq. (2-2)

=Z;,I.;;X;X;,by Eq. (2-3).

The quadratic form in the Ruxes,

(2-6)

(2-7)

Prob. {n)a exp(S/k) a exp —
I 2Z,;s;;a;a; I

—. (2-11)
Ek

The thermodynamic forces then become linear restoring

"Why this particular de6nitionP It gives Eq. (2-5) the desired
form: the rate of dissipation is a sum of products of forces and
fluxes. Note that the X's are functions of state, i.e., of the a' s.

C (dn/dt, dn/dt) = -'2Z;;R;, ri,ri;, (2-8)

the dissipation function, acts as a potential for the
thermodynamic forces. Its specification -is therefore
equivalent to knowledge of the phenomenological equa-
tions. The corresponding function of the forces,

e(X, X) =-',z,,l.;;x;x;,
has a similar property, but it should be noticed that it
is a function of the state, whereas the numerically equal
C (dn/dt, dn/dt) is a function of its rate of change.

If we expand the entropy in a Taylor series about
equilibrium, we have

S=S()——2'Z;;s;;a;a;+higher terms. (2-10)

Neglect of the higher terms means the assumption that
fluctuations are Gaussian: for Boltzmann's principle
states that the logarithm of the Iprobability of a given
fluctuation is~roportional to its entropy, or

Z;R,;a; =X+~;,

and thereby become stochastic equations. For the
present, the only specification on the statistics of the
e's is that they have zero means. Another way of looking
at the equations is to call the rhs of (3-1) random forces
with means X;.

We shall be concerned with the path of the n's in
time under the "inhuence" of these random forces. Our
aim is to calculate the probability of "any path. " We
must, therefore, define a probability measure for paths.
For simplicity we consider first a single variable n, and
ask for the probability of a path a(t) over some finite
interval of f. To obtain a nonzero probability, we have
to phrase our question: Given a set of functions over the
given interval, what is the probability that the spon-
taneously Quctuating variable n is given by a function
of this set during the intervaled There is a diKculty in
specifying the functions: each function is specified by
an infinite number of coordinates. If we confine our-
selves to well-behaved functions and a finite interval,
a denumerable infinity will suffice, e.g. , the value of the
function at all rational points of t, or all the Fourier
coefficients. But the probability of an event which is
specified by an infinite number of specifications is
always zero, unless the set of specifications is "asymp-
totically trivial. " So we must confine ourselves to
specifying a finite number of coordinates.

As far as observation is concerned, this is quite suf-
ficient. For although we may obtain a "continuous
record" from a recording instrument, corresponding to
an infinite number of observations, every instrument
essentially takes a time average over a finite interval,
which may be short compared to the relaxation times
of the irreversible process, but is always long compared
to the mean collision times of the molecules. The essen-
tial point is that we must be free to choose which coor-
dinates to specify, i.e., at what instant to perform an
observation.

We shall use the following notation: for p instants(fp we write the cumulative distribution
function (c.d.f.)

(i) (2) a(P) )
Fnl .

I
—Prob. (a(ti) &a("),k= 1 p).

E t, t, t )
(3-2)
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Such functions must be additive set functions satisfying
the usual consistency relations for c.d.f.'s."

We define a stationary process as one whose c.d.f, is
invariant against an arbitrary shift of the time axis:

(n&') n(')
& f n

I «»ny r (3-3)t„) Et,+r

where

t nn). . .n(n) qf I

—
I
t) n &') An '», (3-4)

(t) t~)

q=p —Pt~.

The function f~ is a probability density function (p.d.f.)
and will henceforth be used with the tacit assumption
that it exists.

Any finite number of gates may be erected, specifying
the path to an arbitrary degree of precision in any finite
interval.

The conditional probability function for the (p+1)th
event given the previous p,

(n(n+&) n((). . .n(u) )
( t~) t) ~ ~ ~ t~ )

= Prob fn(t~)) =n&&+')
I
n(t&,) =n&'), k= 1 p) (3-5)

is defined by the relation:

(no). . .n(p+I) )
(tg t~))

pa(n) (n(u+&) go). . .g(n) )
(p-fold)

t~g t) ~ t„)

"See, for example, Harald Cramer, Mathematica/ Methods of
Statistics (Princeton University Press, Princeton, 1946).

Physically, this describes an aged system, a system that
has been left alone long enough that any initial condi-
tions have "worn oG," or "been forgotten. " In dealing
with fluctuations, we shall always make this assumption
of stationarity. This amounts to a strong form of the
statistical interpretation of equilibrium. Thus we con-
sider entropy creation as loss of information: a dissi-
pative system forgets its past.

Pictorially, a function P„ tells the probability that
the path n(t) lie below the "barriers" n&" .n&~) at the
corresponding instants t& t„.Alternatively, one will ask
for the probability that the path pass through narrow
"gates" of width Ao.('):

I (no)+t))gn(&). . .n(n)+t& gn(y) )
Z (—)'~.

I

w ' ' 'pp=o ~ ~ ~ ty

Intuitively: the system has a short memory.
For a Markoff process, Eqs. (3-6) and (3-7) give

(no) n(.)
~ (n(.) n(.-)))

~ ~ 0 ]
Et, t„i

In" $ f'n n ) fn'
xfiI I f) I If) I I

(3-g)
(ty& ty2) Et/ ty) & t])

For the physical systems considered, the last factor in
this product, the one-gate p.d.f., is known from the
entropy function by Boltzmann's principle, Eq. (2-11).
Thus, in view of the stationarity, all that is needed for
the distribution function for an arbitrary number of
gates is to evaluate the conditional p.d.f.,

. ( n(2) no))

Et+ r
(3-9)

which is independent of t: The p-gate problem reduces
to the two-gate problem.

All of the above can be extended without modification
to the case of several variables.

We shall want to know what form Eqs. (3-1) take
for a Markoff process. The result is that the random
force terms e; are purely random "functions"; i.e.,
values of the e; at diferent times are wholly uncorre-
lated.

(~(t).(t+r)) =O, r ~a.
Such quantities are, to be sure, mathematical freaks:
nowhere defined, not even square-integrable, but the
seeming difhculties arise only from our inappropriate
choice of differential notation, rather than a more
rigorous one using finite differences. Only the latter, of
course, are accessible to physical observation, since
successive measurements cannot be arbitrarily close in
time.

A Gaussian stochastic process is one whose p.d.f. is a
multivariate Gaussian distribution. We shall make the
assumption that fluctuations are Gaussian processes.
The physical basis for this lies in Rule 2 (Sec. 2) for
choosing the n variables: if molecular variables are
"sufficiently" independent (weakly coupled), algebraic
sums of them will behave as Gaussian random variables.
Mathematically, on the other hand, we know that a
Gaussian process will always be a good approximation,
in the following sense: There is a theorem (Khinchin-
Cramer theorem") which states that for every sto-
chastic (I.') process, there exists a Gaussian process

"A. Khinchin, Math. Ann. 109, 604 (1933).

We define a Markog process as one whose conditional
probabilities are independent of all but the immediately
preceding instant:

(n&~" n&" n'"') f'n&~+" n'"')
(3-7)

( t~) tg t„) « t~g t„)
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which is unitarily equivalent to it, meaning that all
first and second moments are equal for the two processes.

The Regression of Fluctuations

The postulate on which the proof of the reciprocal
relations theorem (RRIP II) was based may be stated:
the average regression of fluctuations from a given
nonequilibrium state will obey the same laws as the
corresponding irreversible processes. '

By the average regression of, say 0.;., from the state
0,

" is meant the conditional mean,

n n')
&n* t+rln' t)i = " In*fil ldn, (3-1o)

J a (t+r t)
of n; at time t+r gti)ee that the state n (the values of
all the n's) at time t was n'. The postulate asserts that
this quantity obeys the phenomenological la,ws (2-2.)

Intuitively, this states that, as far as the average
behavior is concerned, it does not matter whether a
state was the result of a spontaneous fluctuation or of
an imposed constraint. It may sound "obviously true. "
Callen and Greene, "for instance, do not even dignify it
by the term postulate. It is, however, very strong: for
a Gaussian process, it can be shown to be equivalent to
the Markoff assumption. We can see this intuitively
by stating the postulate: the system does not remember
how it got to the given state.

The essence of the proof is given by Doob. '4 It is
easily shown that the average regressions, together with
the one-gate distribution [known from Boltzmann's
principle, Eq. (2-11)], completely determine the sta-
tistics of a stationary Gaussian process. We have a
stationary Gaussian process whose average regressions
obey a system of linear differential equations of first
order with constant coefF)cients (2-13). Then the cova-
riance matrix A(r)—= (ni„(t)n(t+r)) has the "trans-
lation operator" property,

A(ri)A(r2) = A(ri+r2)~ (3-11)

which is a sufficient condition for the process to be
MarkoKan.

We now have an answer to the question "How do
you know you have taken enough variables (enough
measurements on the system) for it to be MarkofFian?"
(Example: a two-mesh RC circuit is MarkofF)an in the
two mesh charges, but not in any single variable. ) If
we accept the Gaussian assumption and the postulate
about the average regressions, then the condition that
the irreversible behavior of the system be given by equa-
tions of the form (2-2) is sufFicient for the Markoff
property. It is important to realize that this "prediction
property" of the phenomenological laws depends on the
assumption (Sec. 2) that enough n's havebeentaken to
determine the entropy completely.

' H. 3. Callen and R. F. Greene, Phys. Rev. 86, 702 (1952);
88, 1387 (1952).

'4 Reference 3, V Sec. 8.

4. GAUSSIAN MARKOFF PROCESS

Single Variable

We again consider a single variable n, obeying the
equation

En+sn= e (4-1)

(rhs purely random: n is MarkofF)an). We have for the
conditional p.d.f. :

(n(2) n(i) ) e
fil l=(2~) '-(1—e '") '*

(,ter
1 s [n"'—e &'n(')]'

Xex (4-2)p
2 l't (1—e '&')

(where y=s/R), as is verified by inspection: it gives
the right one-gate distribution (2-11, let r~~) and
the right average regression (n("e &'). The normaliza-
tion factor will henceforth be omitted to save writing.

This formula, together with Eq. (3-8), constitutes
the solution to the problem of finding the probability
of ariy path. The purpose of this paper is to put the
formula into a particularly interesting form.

I,et us divide the interval (t, t+r) into p small, equal
sub-intervals, i.e., introduce p —1 new gates at instants
ti t, t~ t+Ar, —— , t~——i ——t+7 = t+phr. Then we have

(n(9+1) n(i)
q

ti )
f (n(@+i) n(u) )

(p —1)-fold fil
t, )

(n(2) n(i) )
xf, (

idn(') dn("' (4-3)
(. t, t, j

~(k) )~(k—1) y(k) (4-4)

where?i=1 yd r and y(~) = e(t&) A—r/R. Supposing the
y's to have Gaussian distributions with mean zero and
variance o„', (4-3) becomes'

(n(g)+1) n(1) )
fii i J (p —1)-fold

t, )

X exp — [(n("+')—l(n("')'+
20y

+ (n(2) gn(i))2] dn(i). . .dn(n) (4 5)

"A. KolmogoroG, Math. Ann. 104, 415 (1931)."This is stronger than assuming 0. to be a Gaussian process and
is not necessary for the proof of t,'4-7).

This is the Chapman-KolmogoroB relation, "valid for
all MarkoG processes. Evidently there is no limit to the
number (p —1) of gates which are "integrated out. " It
can be made large enough (Ar small enough) so that
the stochastic differential equation (4-1) is well approxi-
mated by the stochastic difference equation
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Oi -11
f) I I

pp exp —— s—(n('))'
« tp —p& i k2

If the integrations are performed in succession, we ago. ) We want to prove that
arrive again at (4-2). We now notice that each inte-
gration may be replaced by taking the minimum with
respect to the corresponding variable in the exponent,
obtaining

(n(n+&) no) )
f)l

~

~ exp — L(n("+~)—pn(&))p+
t, i 2~„'

+ (n&') —l&n&'))'7 .

with respect to n&", n(»; (4-6)

what has been done is to replace an "average value"
by a "most probable value. "For Gaussian distributions
these are identical.

As p is increased, the sum in the exponent becomes
an integral. The value of the integral is specified by the
condition that the integral be a minimum subject to
given values of n at the end points. Reverting to dif-
ferential notation, (4-6) becomes

|'n(y+)) n(1) q

t, i

1 1 ( ~'"+'
~ exp ——-~ RLn(t)+yn(t)7'dt

~

4k E&~g

subject to n(t)) =n&", , n(t„+)) =n&"+') (4-7).
The direct verification of this formula —seeing that

it gives the correct average regression and one-gate
p.d.f.—is simpler and more general than the above
"synthetic" proof. To 6.nd the regressions we again
utilize the identity of means and modes of Gaussian
distributions. The regression from the value n(') will

therefore be given by the condition

(n(&) no)q
f)l =max)

where the variation is with respect to n('). As the
iritegrand in (4-7) is always positive or zero, so is the
integral. If it can take the value zero, this is its mini-

mum. But this is possible only if the integrand is
everywhere zero, i.e., the condition for a minimum is

Letting Z(n, n) =R[n—yn]', the Euler-Lagrange equa-
tion for an extreme value of the integral is

or

d 82 BZ
=0)

dt Bu Bn

a—y'a= 0,

(4-10)

(4-11)

whose solution is a superposition of the functions e &'

and e+&'. The initial condition at t= —~ eliminates the
exponentially falling solution, that at t=tp gives n(t)
=e"'e&', and the integral is

tg

RLn(t)+yn(t)7'«;„=-', s(n ' )',

Several Variables

The possibility of linearly transforming the o.'s so
as to diagonalize the two matrices s and R simultane-

ously, implies that the mathematics is no harder for
several variables. It can be shown (see dissertation,
footnote +) that in the diagonal representation the
random impulse functions p; [Eq. (3-9)7 must be un-

correlated, so that we are dealing with e independent
Marko8 processes. The extension of (4-7) to several
variables will point up the physical signi6cance of the
integrand Z.

For independent processes, the joint p.d.f. is simply
the product of the single-variable p.d.f.'s. Thus, in the
multivariable extension of (4-7), we shall have a sum
in the exponent. If the integrand is multiplied out, and
the integration performed on the cross term,

RLn(t)+vn(t)7=Re'+ (1/R)s'n'+ (d/«) (sn') (4-13)

(recall y= s/R), the sum can be written in terms of the
entropy and dissipation functions. For in the diagonal
representation, these are sums of squares:

S=Sp 2Z;s'n' Lsee (2-10)7, (4-14)

C (de/dt, de/dt) = ,'Z;R, nP Lsee (2-8)7-, (4-15)

subject to n( ~)=0, n(t&) =n"—) (4-12)

as was to be proved.

n+yn=0,

which is recognized as.the Eq. (2-13) for the average
regression. As the initial condition n(t)) = n& ) also

agrees, (4-7) gives the correct regression.
The one-gate distribution is obtained from the condi-

tional p.d.f. by taking t& = —po and n&" =0. (The aged
system certainly was at equilibrium some time long

Then

Z,R,Ln, +yn;7'=2C (de/dt, de/dt)+2%(X, X)
—2(d/dt)S(e), (4-17)

and the conditional p.d.f. (4-7) for several variables

(4-9) +(X, X)= ',Z, (1/R, )X-P = ,'Z;(1/Rf )s-PnP

Lsee (2-9)7. (4-16)
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becomes

(n(2) n(&) ) (n. (2) n.o) $

11(
~ exp ——-I 2C (dn/dt, dn/dt, )

4k&~

d
+2%(X, X)—2—S(n) dt

I

& min

subject to n(i)) = n('), n()'2) = n"'. (4-18)

In this form, the equation is no longer dependent on
the representation chosen, i.e., it is valid also for inter-
acting variables. It must be noticed that C is a function
of the 6's, while 4, explicitly~a function of the X's, is
therefore a function of the n's (of the state).

The joint two-gate p.d.f. has a similar appealing form

(n(') n(") (n(') n&'))
I=f-I If.( "')

tl i2

1
~ exp — —,'S (n('))+-'S (n('))

k

L2C(dn/u, d /nd~)+2+(X, X)jdg I

, ( t'"

ci & min

subject to n(t, ) = n(", n(t2) = n"'. (4-19)

The form also lends itself to the expression of the
p.d.f. for any number of gates. Using (4-18) in (3-8),
we simply add the integrals in the exponents.

(n(&) n() )
~f.-I "

I
"exp — -'S(n"')+-'S(n"')

( ("n
[2e(dn/dt, dn/dt)+2%'(X, X)jdt

I'iJ„
subject to n(t))=n") n()!2)=n"),n(t„)=n ~'.

(4-20)

It may be pointed out that the path which makes the
integrand a minimum has, in general, discontinuous
derivatives at each gate. The separate two-gate paths
are just strung end-to-end.

We can make (4-20) particularly simple by permitting
integration over an infinite time interval. We assert that

[24 (dn/dt, dn/dt)+2%'(X, X)ddt;„
= 2S(n(")+const (4-21)

subject to n( —~)=0=equilibrium, n()!,) = n(').

This can be checked directly by working it out (say, in

diagonal form). But it can also be seen as follows: the
Euler-Lagrange equations (4-10) for an extremum of
the integral have double the order of Eqs. (2-13), the
phenomenological laws. They are evidently satisied by
the solutions of (2-13), and by the mirror images of
these in time ( i r—eplacing i). The former are the
"average paths, " for which hold Eqs. (2-6) and (2-7).
But only the "mirror image" solutions can satisfy the
initial conditions of t= —~ nontrivially. For these

2C (dn/dt, dn/dt)+24(X, X)= —28, (4-22)

from which (4-21) follows. '~ From symmetry in past
and future a similar equation holds for the range of
integration (t~, no). If we substitute these into (4-20)
we obtain

(n(&) n() )
~f.l I

"exp ——-I L2C'(«/«, «/«)i„)

+2%'(X, X)jdi I, (4-23)
min-

subject to n(t)) = n('), n([,) = n('), , n(),„)= n(~)

A few disconnected remarks may elucidate the
physical content of this relation. To form the integrand
one must know the form of the dissipation function as
well as of the entropy function; the latter is needed in
order to give the thermodynamic forces X; as functions
of the state. The path whose probability it is desired to
evaluate may be specified as closely as desired, i.e., by
any number of gates. Accordingly, the auxiliary func-
tional (4-23) furnishes a complete description of the
probability distribution functional. Between gates the
path of integration is in a certain sense the "smoothest"
path. It is a superposition of decaying and growing
exponentials, as required by symmetry in past and
future.

The theorem which has been proved is seen to be
analogous to the Boltzmann principle. The latter tells
the probability of a state in terms of its entropy; this
theorem tells the probability of a temporal succession of
states in terms of the entropy and dissipation functions.

Incomplete Speci6cation in Some Gates

An important feature of the expression (4-23) is that
any variable can be "integrated out" simply by mini-
mizing the exponent with respect to it; i.e., by removing
the variable from the set of speci6cations on the
minimum of the integral. For the p.d.f. is Gaussian in
all the variables. We can thus invoke the equivalence of
means and modes and replace integration over one
variable (averaging with respect to it) by maximization
of the exponential with respect to it, i.e., taking the
minimum of the integral. Accordingly (4-23) is valid as

~7 This is worked out in Il, Sec. 3.
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it stands whether or robot the state is completely specified at
each iestaef. It therefore describes the statistics of sets
of variables which are not necessarily MarkoKan, but
which are sub-sets of MarkoKan sets for which the
coeKcients of the entropy and dissipation functions are
known.

the n's only, we have

8 C—(d n/dt, d rr/dt) = max . (4-25)

This variational principle is formally equivalent to the
phenomenological laws ((2-2), including the reciprocal
relations (2-4)j.

Principle of Least Dissipation

The principle of least dissipation (RRIP I), a gener-
alization of a similar principle in hydrodynamics due to
Rayleigh, " can be read by inspection from (4-18).
Given a state n, we ask for the most probable values of
the ci's (and thus for the most probable path of the n's

in time). Taking ts close to ti (ts —ti ——t),t=small) we

seek the state e&'& which will maximize the exponent.
The integral becomes a simple product:

11———2C (der/dt, dn/dt)+2%'(X, X)—2—S(n) At=max.
4k cQ

(4-24)

If we remember that the variation is with respect to

"Lord Rayleigh (J. W. Strutt), Phil. Mag. 26, 776 (1913).

Spectral Description

It may be useful to recall the connection between
this work and that of Callen and his co-workers in the
same 6eld. ' The systems treated are of the same type,
and the same physical assumptions are made for them.
But while this paper uses a temporal description of the
course of fluctuations, these other papers use a spectral
description. The two descriptions correspond to two
types of experiment: the temporal to taking successive
readings at close intervals, obtaining, for instance, a
trace on a moving tape; the spectral to recording by
means of a frequency analyzer. Where in the temporal
description we postulate linear relations between forces
and cruxes, dehned by the dissipation matrix R, the
spectral description has linear relations between their
Fourier transforms, defined by an admittance matrix.

"Footnote 13. See also H. Takasi, J. Phys. Soc. Japan 7, 439
(19S2).
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The results of the previous paper are extended to second-order systems, i.e., systems with inertia. Using a
generalized definition of the thermodynamic forces, reciprocal relations for the dissipative coeScients in the
equations describing irreversible processes are derived. A dissipation function can again be defined, and it
can again be used to express the probability functional for fluctuations.

1. g-TYPE VARIABLES
' "N the previous paper of the same principal title' the
~ - thermodynamic variables treated were limited to
those satisfying the hypothesis of microscopic reversi-

bility. The restriction was stated: on a kinetic model,
the thermodynamic variables must be algebraic sums
of (a large number of) molecular variables, and must be
ever functions;of those molecular variables which are
odd functions of time (like molecular velocities). Thus

* Much of the work reported in this paper appears in more detail
in a dissertation by one of us (S.M.), presented to the Faculty of
the Graduate School of Yale University (1952) in partial fulfill-
ment of the requirements for the Ph.D. degree.

i L. Onsager and S. Machlup, preceding paper )Phys. Rev. 91,
1505 (1953).

a reversal of the sense of time would not change the
values of these o, variables.

It was assumed that all thermodynamic functions
(speci6cally, the entropy 5) were given as functions of
the n variables, and that the irreversible processes were
"caused" by thermodynamic forces I,= ctS/Bn, If, .
however, the kinetic energy of the various flows (e.g. ,
magnetic energy of electric currents) contributes appre-
ciably to the entropy, other variables must be taken
into consideration: "velocity" variables, i.e., variables
which would change their sign if the sense of time were
reversed. Casimir' calls them P variables. He points

' H. B. G. Casimir, Revs. Modern Phys. 17, 343 (1945).


