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When observed isotope shifts in the electronic spectra of the
heavy elements have been corrected for electronic structure, the
resulting shifts give new insight into nuclear structure. In com-
parison with the shifts predicted for constant density spherical
nuclei, the reduced observed shifts are anomalous (1) in magnitude,
being on the average too small by a factor 0.5, (2) In trend with
neutron number, showing an oscillation in magnitude, and (3) in

the staggering of shifts between even and odd isotopes. The
present work shows that the anomaly in magnitude largely disap-
pears when account is taken of the compressibility and polariza-
bility of nuclear matter, as a result of which the nuclear radius is
found to vary less rapidly with change in neutron number than
is predicted by the average A~ law. The analysis of experimental
data also suggests that nuclear particle density variations are

slightly greater than indicated by earlier theoretical estimates.
Likewise, the oscillatory trend in isotope shifts ceases to appear
anomalous when associated with the regular progression in nuclear
shapes as derived from configuration theory, from the analysis of
quadrupole moments and the first excited states of even-even
nuclei, and from other sources. The general size of the amplitude
and the nodal positions of the shift variation are consistent with
expectations. Finally, the even-odd staggering in isotope shifts is
reasonably to be connected with the staggering to be expected in
the progression of nuclear deformations through odd and even
isotopes. Thus the over-all pattern of isotope shifts appears to fiit

together with present ideas and to provide new specific informa-
tion on nuclear structure.

with a nucleus of finite mass differs from that of an atom
with a nucleus of infinite mass by the addition of the
term for the kinetic energy of the nucleus,

I. INTRODUCTION

HE atomic electron provides a useful and sensitive
probe for the investigation of certain nuclear

properties. In addition to the measurement of nuclear
magnetic dipole and electric quadrupole moments,
atomic spectra yield other information concerning the
differences in the electronic interaction among the
isotopes of a given element. The resulting displace-
ments in the line spectra are appropriately called
isotope shifts.

There are two general effects which give rise to
atomic isotope shifts: the finite nuclear mass, and the
deviation of the electron-nuclear potential from that
of the 1/r Coulomb law for a point charge. The latter
effect, with which this paper is primarily concerned, is
referred to broadly as the field effect and arises from
the spatial extension of the nuclear charge distribution.

In Sec. II we consider the field effects for spherical,
incompressible nuclei, and present the anomalies which
exist. In Secs. III and IV we show how most of the
anomalies can be removed in terms of nuclear deforma-
bility and compressibility.

The theory of the mass effect has been described by
Hughes and Eckart' and others. ' In a coordinate system
where the center of mass of an atom is at rest, the
momentum of the nucleus must be equal in magnitude
and opposite in direction to the resultant momentum of
the electrons. The expression for the energy of an atom

1 ) q' 1 1
I 2 P' I

= 2 &''+—2 P' »
2M& ' ) 2M ' 2M'~t

For computational purposes it has been convenient to
subdivide the mass effect into the "normal" effect, due
to the 6rst term on the right of Eq. (1), and the
"specific" effect, due to the second term on the right of
Eq. (1).The contribution of normal mass effect to the
energy levels can be determined by replacing the elec-
tronic mass m by the reduced mass p in the Hamil-
tonian. The resulting energy levels are displaced by a
factor tt/trt with respect to the levels of an atom with an
infinite nucleus. This is the only mass effect present in
hydrogen and one electron ions. The specific mass effect
requires the evaluation of the expectation value of the
last term in Eq. (1) and depends upon the particular
electron configuration.

The nuclear mass effects decrease with increasing
atomic weight and are seldom observed in the spectra
of heavy elements. The nuclear field effects, on the
other hand, are small among the light elements and
dominate among the heavy elements.

II. FIELD EFFECTS FOR SPHERICAL,
INCOMPRESSIBLE NUCLEI

A. The Nuclear Volume Effect* Now at the University of California Radiation Laboratory,
Livermore, California.

/On leave of absence to Los Alamos Scientiilc Laboratory,
Los Alamos, New Mexico.

f Now at Indiana University, Bloomington, Indiana.' D. S. Hughes and C, Eckart, Phys. Rev. 36, 694 (1930).' J. H. Bartlett, Jr., and J. J. Gibbons, Jr., Phys. Rev. 44, 53
(1933);J. P. Vinti, Phys. Rev. 56, 1120 (1939).

Racah, ' and Rosenthal and Breit4 investigated the
effect of the extended proton distribution in the nucleus.

' G. Racah, Xuovo cimento 8, 178 (1931).
4 J. K. Rosenthal and G. Breit, Phys. Rev. 41, 459 (1932);

G. Breit, Phys. Rev. 42, 348 (1932).
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IG. 1. Schematic representation of energy level displacements.
The transition is assumed to involve the change of valence electron
from a p state to an s state. The p-state levels for different isotopes
are normalized to the same energy. Then the s states for a point
nucleus lie also approximately at the same energy. The actual s
states lie at progressively higher energies for heavier isotopes.
Typically, an odd-X isotope level lies closer to its lower even-E
neighbor than to its upper even-E neighbor (even-odd staggering).
The energy scale is distorted. In the inset is shown the appearance
on a photographic plate of the isotope shift splitting,

V(r) = —Ze'/a, r &a,

hE =Ba'&/2p (2p+ 1),

(4)

(5)

where
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and She is the energy shift between two isotopes dif-
fering in nuclear radius by 5u.

(b) The charge is distributed uniformly throughout
the nuclear sphere.

turbation energy hE, and isotope shift to mean the
diRerence in b,E between two isotopes of the same
element (SEE}.Figure 1 gives a schematic indication
of the energy shifts involved.

Two extreme models which might bracket the nuclear
proton distribution may be considered (see Fig. 2):

(a) The charge is distributed over the surface of the
nucleus. This model is called by Breit the "top slice. "

The probability density of an s electron in the neigh-
borhood of a point charge as obtained from the Dirac
equation is given by

Ze' 3 1(rq'--+-( —I,
a 2 3Eaj

(7)

2(p+ 1)
P(r) = p(o)

Lf'(2~+ 1)3'

2Zr
(2)

38u'&
AE=--

2p(2p+ 1)(20+3)
where p= (1—Z'n')&, f(0) is the nonrelativistic
Schrodinger wave function at r =0, and eH is the Bohr
radius. The pi electron wave function becomes infinite
at r=0 like the s~ wave function, but with smaller
amplitude; the wave functions for all other electrons
are zero at the origin. The principal eRects of nuclear
structure therefore appear in the energy levels of the s
electrons.

If one considers a spherical nucleus of radius u, the
electron potential energy is some function eV(r) for
r &a, and —Ze'/r for r) a. The first-order perturbation
of the electronic energy is given by

(2p+1)(2p+3) a

a a+Ba

l

a o~Ba
j I

i

l

I

I

l

I/

Ze
DE=4me P(r) V(r)+ r'dr. —

0 r
(3)

Because the deviation from the unperturbed 1/r
potential is large inside the nucleus, the first-order per-
turbation theory is not sufficiently accurate in deter-
mining the energy shifts. Rosenthal and Breit4 have
subjected. the perturbation treatment to analysis and
have found that a factor as small as 0.5 may be required

The sum of these perturbation energies over all s elec-
trons in the atom would give the erst-order displace-
ment of the energy level of the atom, but this total
displacement is not directly observable. AE for an s
valence electron gives the displacement in the energy
of a photon emitted during the transition of the electron
from a p state to an s state, for example. What is
generally observed is the difference (shift) in AE
between the lines of two diRerent isotopes. An exception
occurs in the case of x-ray spectra where hE is very
large and the lines may be calculated accurately. We
shall use the term d.isplacement to mean the per-

MODEL A

FIG. 2. Schematic diagram of electron potential energy. Model
A, charge in shell on outside of nucleus ("top slice"); Model 8,
charge uniformly distributed through nucleus. The displacement,
AE, is due to the difference between the actual potential (heavy
line) and the 1/r potential (light line). The isotope shift, bhE, is
due to the difference in the potentials between isotopes of radius
a and a+ha.
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to correct the results predicted by the first-order cal-
culations in some cases. Broch' has investigated the
shifts by a treatment which avoids perturbation theory,
and in the simple case where V(r) =0, r(a, he shows
that a factor k=2p'/(p+1) is needed to correct the
6rst order results. Crawford and Schawlow' inves-
tigated the perturbation theory in the case of thallium
(Z=81) for both nuclear models. Using Rosenthal and
Breit wave functions for the top slice model and a power
series solution for the case of uniform charge density,
they found that the first-order calculations must be
corrected by factors of 0.74 and 0.75. Broch's correction
factor for the zero potential model is 0.72. The prox-
imity of the correction factors for such diGerent nuclear
models is striking and indicates that Broch's factor k
is probably sufficiently good to use generally.

B. Comparison with Experiment

Crawford and Schawlow' have compared in detail the
experimental results in the isoelectronic sequence Hg II,
Tl III, and Pb IV with the theory of the volume eGect.
They included the correction to the 6rst-order per-
turbation theory and the contribution of the p electrons.
They also took into account the contributions of the

inner s electrons. An s valence electron partially shields
the inner electrons (and in particular, the inner s
electrons) while a p valence electron effectively does not.
The eGect of shielding on an s electron is to reduce its
probability density at the nucleus and so to reduce AE.
Thus AE changes for the inner electrons during a transi-
tion and they do contribute to the isotope shift, but
with opposite sign than for the valence electron.
Crawford and Schawlow found that the inner electrons
reduced the shifts by about 20 percent.

The value of P(0) was obtained from the semi-em-
pirical formula of Fermi and Segre, ~

(10)

where Z; is the eGective nuclear charge in the inner
region of the orbit and may be set equal to Z, Zo is the
eGective nuclear charge in the outer regions, rso is the
eGective quantum number, and cr- is the quantum defect,
Rp =s—0 . Tile formula was originally derived for
alkali metals but has been found to be valid more
generally. In a few cases among the heavy elements
there are isotopes whose magnetic moments have been
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FlG. 3. Comparison of theoretical curve with experimental isotope shifts. The points are taken from Brix and Kopfermann (reference
9) with the exception of the values for Ba and the shift between Ce" and Ce"' which were supplied by Dr. O. H. Arrive in a kind
private communication; the cerium datum has not yet been published by Dr. Arrive. The points are plotted in units of the shifts pre-
dicted by the normal volume eGect, assuming a=1.40X10 "A& cm. The limits of error indicated (which were generously supplied by
Dr. Arrive) refer only to the error in the spectroscopic measurements and do not include the theoretical uncertainties in the wave function
normalization. Points are labeled by the Z value of the element concerned, and are plotted at the average N value of the isotopes
measured. The shifts all refer to isotopes di8ering by two or four in neutron number. Open circles denote even-even nuclei, closed circles,
odd-even nuclei. The theoretical curve is the curve of Fig. 5 increased by 0.5, rather than by 1.0, in order to give the best fit to the
data. The correction to the volume eGect for nuclear compressibility (Sec. IV) may account for the small average relative value ( 0.5)
of the experimental isotope shifts. The predicted peak near neutron number 90 is especially well verified. A somewhat broader peak is
predicted just below 140 neutrons.

5 K. K. Broch, Arch. Math. Naturvidenskab 48, 25 (1945).' M. F. Crawford and A. L. Schawlow, Phys. Rev. 76, 1310 (1949).' K. Fermi and K. Segre, Z. Physik 82, 729 (1933).
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measured by induction methods, and the hyperfine
structure splittings have been observed spectroscopi-
cally. The hfs splittings are proportional to the nuclear
magnetic moment and to P'(0) for an s electron, while
the value of the magnetic moment obtained from the
induction method is.independent of the electronic wave
functions. The values of P(0) obtained in this manner
are in good agreement with the values given by the
Fermi-Segre formula.

On the basis of uniform charge distribution Crawford
and Schawlow found that the observed shifts in the
even isotopes of the three elements were very nearly
half the values that would be expected from the em-
pirical formula' for the nuclear radius, a= 1.5)&10 "A&

cm. The top slice model leads to a greater discrepancy.
Brix and Kopfermann' and Humbach" have analyzed

the experimental data from a large number of elements
in a manner similar to that of Crawford and Schawlow.
The ratio of the experimental value of the shifts to
that predicted by a uniform charge distribution and
a= 1.4X 10 "A '

cm is shown in Fig. 3. (The theoretical
curve in Fig. 3 is discussed in the next section. ) The
ratios are plotted as a function of the neutron number
and are given in all cases for 6S=bA=2. Brix and
Kopfermann state that the theoretical values used are
probably good to at least 20 percent.

It can be seen from Fig. 3 that the experimental
shifts are on the- average about half the values pre-
dicted by the volume eRect, and that there are also con-
siderable variations in the ratios with very large isotope
shifts observed in the vicinity of the rare earths.

Schawlow and Townes" have investigated data from
x-ray spectra where the energy displacement from the
point nucleus AE can be observed instead of the dif-
ferential shift between. isotopes SAN. The data are
consistent with a nuclear charge distribution which is
either uniform or slightly more concentrated toward the
surface, and a nuclear radius given by the empirical
formula. This suggests that the small value of the
observed isotope shifts is a diRerential eRect.

For those elements which have both even and odd
isotopes it is observed that the centers of gravity of the
energy levels of the odd isotopes are not spaced midway
between the levels of the even isotopes, but are rather
usually lower than midway (see Fig. 1).

The isotope shift anomalies, then, are these: (1) The
observed shifts are on the average smaller by a factor
of one-half than is predicted by the volume eRect,
using a nuclear radius given by a=1.4)&10 "A' cm;
(2) the shifts vary with the neutron number in a more
or less regular manner which appears to be associated
with the magic numbers; (3) the energy levels of the

8 See, for example, H. A. Bethe, Elementary XNclear Theory
(John Wiley and Sons, Inc. , New York, . 1947), p. 8.

'P. Brix and H. Kopfermann, Z. Physik 126, 344 (1949);
Festschr. Akad. Wiss. Gottingen, Math. -Physik. Kl. 17 (1951);
Phys. Rev. 85, 1050 (1952).

"Walter Humbach, Z. Physik 133, 589 (1952).
"A. L. Schawlow and C. H. Townes, Science 115, 284 (1952).

odd isotopes are not located midway between the
levels of the even isotopes, but are staggered.

C. Nuclear Polarization

Breit, Arfken, and Clendenin" have investigated the
possible polarization of the nucleus by the atomic
electrons. The polarization acts in the direction to
increase the binding of the electrons and is thus contrary
in sense to the volume eRect. Only the monopole eRect
should be large enough to contribute appreciably to the
isotope shifts.

The polarization of the nucleus may be interpreted in
terms of admixtures to the nuclear ground state of low-
lying excited levels, in such a way as to give greater
concentration of protons toward the center of the
nucleus where the electron probability density is
greatest. The size of the eRect 'depends upon the
number and spacing of the low-lying excited levels of
the nucleus, and might thus be expected to be greater
for odd nuclei than for even ones. The authors were
looking for an eRect half as great as the volume eRect
in order to account for even-odd staggering. Reasonable
approximations appeared to give no more than 20
percent of the needed one-half and rather extreme
departures from the central field approximations for an
individual nucleon seemed necessary to account for the
observed effect.

While the polarization may account in some part for
the even-odd staggering, it probably is not important
in explaining the small average value of the even shifts.
The consistency of the data from x-ray spectra with the
predictions of the volume effect indicates that the
energy displacement AE is due mainly to that eRect
and that the anomalies in the even shifts may come
mainly from differential eRects.

D. Non-Coulomb Forces

Havens, Rainwater, and Rabi" have reported the
observation of an electron-neutron interaction of
V=5300~1.000 electron volts, assuming a square well
of the classical electron radius r, =2.8&10 " cm. An
estimate of the eRect of this interaction can be obtained
by assuming the additional neutrons of a heavior iso-
tope are found primarily near the surface of the nucleus.
The ratio of the contribution from this source with that
predicted by the volume eRect is then given by'4

=0.0122 (2p+ 1)(2p+ 3)—.
Z

For zinc (A 64, Z=30), which is low in weight for
field eRect, the ratio is about 0.024; it decreases with
increasing atomic weight. Even this is probably an

"Breit, Arfken, and Clendenin, Phys. Rev. 78, 390 (1950);
Phys. Rev. 77, 569 (1950).

'3 Havens, Rainwater, 'and Rabi, Phys. Rev. 82, 345 (1951).' L. Wilets and L. C. Bradley III, Phys. Rev. 82, 285 (1951).
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The constant volume assumption relates the parameters
«and a appearing in Eqs. (12) and (13):

« ——aI 1+-,'n'+ (2/35)n'i-'*. (14)

Introducing the notation m= minimum nuclear radius,
M= maximum nuclear radius, one obtains for the
charge density averaged over all angles in the region
m&r&M:

prolate: p(r) =po(1—L(r—m)/(M —m) jl); (15a)

oblate: p(r) =poL(3E—r)/(M —m)]&. (15b)

OO l- Ial & I+ lgi

FIG. 4. Average charge density for deformed nucleus. Dashed
curve: hypothetical uniform density for spherical nucleus of-
radius u0. Curve (a}:charge density averaged over all angles for
prolate distorted nucleus with maximum radius a0(i+n), 0.&0.
Curve (b): charge density averaged over all angles for oblate
distorted nucleus with maximum r'adius a0(1—0,/2), o. &0.

It is these expressions which are plotted in Fig. 4.
The perturbing energy of interest is tFi.e difference

between the electron potential energy in the Geld of a
deformed nucleus and in the field of a spherical nucleus
of the same charge and volume. Calling this perturba-
tion d V, we have, for the case of prolate deformation,overestimate, since as Foldy" has pointed out, the

reported value of- the electron-neutron interaction can be
understood almost alone on the basis of the magnetic
moment of the neutron. Thus the effects might be
expected to cancel for an even number of neutrons and
to be given equal weight (equal probability of spin
orientation) in determining the center of gravity of the
hyperfine structure of an odd isotope.

r&m,
Z8 3 3

L («/u) 1j+ («/a) n'; (16a)
a 2 10

m&r&a,
Ze' 4 (r—m)'" m

aU, —— 3+4—
a' 35 (N —m)"' r

(16b)
III. THE NUCLEAR DISTORTION EFFECT

A. Theory a&r&M,
Ze' 3 1(ry' u

~v, =~v, —
a 2 2&a& r

' (16c)

and for oblate deformation,

r&m,
Z8 3 3

-I:(«/~)' —1j+—(«/~)'n'; (17a)
Q 2 10

m&r&a,
Z8 3 1/r) 8

u 22Eu) r' (17b)Avo= Avo+

a&r&M,
12)R(8)= apI 1+nP (cos28)$,

The effect of nuclear distortion on the average
nuclear charge distribution seen by an s electron is
shown in Fig. 4. The charge distribution is extended
radially and the energy displacement, AE, is increased
for either prolate or oblate deformation. The effect on
AE is small, but the differential effect measured by the
isotope shift may be quite large, since the nuclear
deformation may change by a large fraction of itself

, from one isotope to another, while the nuclear volume
does not"

Restricting consideration to cylindrically symmetric
ellipsoidal deformations, we write for the nuclear
radius

po(r) = ZeI 4)ra'/3$ ', r&R(8);
uo(~) = o r) R(8).

(13)

'5 I . L. Foldy, Phys. Rev. 87, 693 {1952).
"prix and Kopfermann have noted the importance of nuclear

deformations in a discussion of the isotope shifts of Sm {reference
9}.Shell structure effects from another point of view have been
considered by G. Breit, Phys. Rev. 86, 254 (1952}.

where n may be )0 (prolate) or &0 (oblate). Because
we deal only with s electrons, there is no loss of
generality in choosing the ellipsoid axis along the Z axis.
In order to isolate the distortion effect from other
effects, it is assumed in the present section that the
nucleus has a constant volume, (4/3)ma', and a uniform
charge density,

Ze' 4 (M—r)@'
t

M)
a' 35 (M—m)"'( r &

ZV, = (17c)

The electronic energy displacement to Grst order is
the diagonal matrix element of DV for an s electron, the
same for either prolate or oblate deformation. If we
define the electron density in the vicinity of the nucleus

by
=Br'& '/4nZe'.

(see Sect. II-A), the extra energy displacement due to
nuclear deformation is given by

3 Q 2
AE =Ba'I' 1+—(2p+3)n+—

10 2p+ 1 21
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If 0.25 is taken to be an upper limit to n, this ratio is
less than 0.06. To the accuracy of the n' term in Eq.
(19), the ratio of the isotope shift due to deformation
to the shift due to the normal volume eGect is

S. b(AE). 3 t'b(n') q=—(2,+3)~
~S„~(~E)„10 E W ), (21)

Since the coefFicient of n within the bracket of equation
(19) is of the order of 0.5, the fractional error of Eq.
(21) due to the neglect of higher orders in n is approxi-
mately ~~n (with the sign of n). As stated in Sec. II-A,
corrections to the first-order perturbation energy are
insensitive to the shape of the potential within the
nucleus. Therefore the ratio S /S„, calculated using the
zero-order electron wave function, should remain. very
nearly the same if higher-order corrections to the per-
turbation theory are applied.

One can quickly estimate from Eq. (21) on the basis
of known quadrupole moments that the nuclear dis-
tortion eA'ect is substantial. Setting Z=62, 3=150,
8(n')=0.005. and hZ=2, one finds S /S„=0.54. It
should be stressed that the n appearing throughout the
above derivation is the intrinsic nuclear deformation, 17

not the deformation measurable from quadrupole
moments. Hence the e8ect is expected in even-even as
well as odd-even nuclei,

In order to predict actual values of isotope shifts
expected from the distortion effect, it is required to
know the magnitudes of nuclear distortions. There are
several sources of information to which we may turn.

(1) Theory

The equilibrium shape of the nucleus may be calcu-
lated theoretically if the configuration of nucleons
outside closed shells is known. In the static approxi-
mation (surface motion treated classically), the defor-
mation parameter n is given by" '

T j,(j,+1)—3m'
n=

4j'(j~+ 1)
(22)

where 7.' is an interaction energy parameter which is
the order of the kinetic energy of the extra nucleons,
and C' is the coefFicient in the surface potential energy,
V, = (1/2)C'n', which is around 160 Mev for the heavy
elements. The coefficient on the right side of Eq. (22)

The ratio of this displacement to that of the normal
volume e6ect is, to order n',

~E. t(2t+3)
n .

53.5 (I+1)(2I+3)

ZA ~ I(2I—1)
(23)

where Q,b, is in barns. This formula assumes that the
nuclear spin is directed along the nuclear axis, and that
the total spin vector is strongly coupled to the axis."
For this. reason it gives a lower limit to the intrinsic
nuclear distortion. Other orientations of the spin, or
weak coupling of spin to axis, would yield smaller
measured quadrupole moments than are assumed in
Eq. (23), and hence lead to an underestimate of a. In
addition to the few elements mentioned abave with
known quadrupole moments for pairs of isotopes, there
are measured quadrupole moments for single isotopes
which contribute information useful for isotope shifts
in an indirect way by suggesting that the nuclear
deformation varies in a regular way among the ele-
ments, reaching minima at the. magic numbers and
maxima between the magic numbers.

(3) Energy of the First Excited State of Ence Evert XNcle-i

The strong coupling approximation of the collective
model of the nucleus" yields a simple approximate rela-
tion" " between the nuclear deformation and the
energy of the first excited state of even-even nuclei:

has approximately the value 0.12 for the heavy ele-
ments, varying only slowly with mass number. The ns;
are the projections of the vectors j; along the axis of
the deformed nucleus. There is some evidence" that
deformations calculated in this way are t'oo large, due
to an overestimate of the magnitude of the particle-to-
surface interaction, to a breakdown of the idea that the
j, are quantized along the nuclear axis, or to the
approximations employed —considering the I'2 defor-
mation only and working only to first order in n. The
more serious practical difFiculty preventing an accurate
theoretical determination of the nuclear deformation is
our ignorance of the detailed nucleon configurations.
This is especially true of those nuclei where one expects
large deformations and hence large contributions to the
isotope shift. It is necessary therefore in our present
state of knowledge of nuclear structure, to turn to
empirical evidences of the nonspherical shape of the
nucleus.

(2) Quadrgpole Morlertts

These are generally not measured to high accuracy,
so that the differences B(n') are rather rough. For
A&75, quadrupole moments are known for pairs of
isotopes of the following elements: 49In'"'"' 51Sb'"'

I127,129 Sm147, 149 68Eu151,153 71Lu176,177 and 75m el 85,187
y 71

Values of n may be computed from measured quad-
rupole moments by the formula"

"A. Bohr and B.R. Mottelson, Phys. Rev. 89, 316 (1953).
' J. Rainwater, Phys. Rev. 79, 432 (1950).
"A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.

26, No. 14 (1952).

n= ~0.4~-5«Z;1&2,

~ K. W. Ford, Phys. Rev. 90, 29 (1953).
~' A. Bohr, Phys. Rev. 81, .134 (1951).

(24)
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where E~ is in Mev. This simple formula is shown in
reference 20 to overestimate the nuclear distortion by
a substantial amount, even if all of the parameters of
the theory are correct. The error of the formula
depends on the detailed nucleon configurations, and can
therefore not be estimated with any accuracy.

Our procedure therefore is to normalize Eq. (24) with
a single arbitrary parameter to yield agreement with
deforrnations calculated from quadrupole moments in
the vicinity of the rare earth elements. The factor of
reduction required is 1.7 for a or 3 for o.'. This means
of arriving at values of the nuclear deformation is
theoretically more tenuous than the more direct evi-
dence of quadrupole moments, but has several ad-
vantages: (a) the data on the first excited states of
even-even nuclei in the region 50&vV&126 are more
extensive and more accurate than the quadrupole
moment data; (b) most of the measured isotope shifts
are for even-even nuclei; and (c) the isotope shifts and
the excited states of even-even nuclei both measure the
intrinsic nuclear deformation, independent of spin
orientation and independent of possible mixing of states
of prolate and oblate deformation.

(4) Electric Quadrupole Transition Rates in
@~em-S~em XNcrez

Bohr and Mottelson" have given an approximate
formula relating the transition rate from first excited
state to ground state in even-even nuclei to the intrinsic
nuclear deformation. For the few cases of measured

transition rate, mostly in the rare earth group, good
agreement of calculated deformations is obtained with
the trend of values obtained from quadrupole moments,
but with deformations obtained from E2 transitions
being somewhat smaller than those obtained from
quadrupole moments. This is consistent with the
approximation employed in their formula, which

assumes that the surface vibrational part of the wave
function is identical in initial and final states. This
approximation should lead to an overestimate of the
value of the matrix element.

Two other eGects can be mentioned which may yield
information on nuclear distortions.

(5) The Eegllaritiesin Level Spacing of Single I'article-
Type Energy Levels in the Odd Even Nucle-P'

The single particle energy level positions depend on
the nuclear distortion, " and the regularities observed

in energy level spacings may reAect regularities in the
nuclear deformations.

(6) Alpha Decay

The nuclear deformation may enhance alpha decay
rate"" because of the decreased Coulomb barrier over

part of the nuclear surface. In some cases it may also

~~ M. Goldhaber and R. D. Hill, Revs. Modern Phys. 24, 179
(1952).

2' D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).
'4 J. J. Devaney, Ph.D. dissertation, Massachus|;tts Institute

of Technology, 1950 (unpublished),
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contribute to a non-overlap of the initial and 6nal wave
functions and thereby inhibit alpha decay.

Neither of the effects (5) and (6) has been analyzed
in sufhcient detail to yield useful quantitative informa-
tion on nuclear deformations. Only the effects (2) and

(3), and to some extent (4), are based on sufficient
experimental data and adequate theoretical grounds to
permit a prediction of isotope shifts expected from the
nuclear di tortion effect.

Figure 5, based on quadrupole moments and on the
energies of the first excited states of even-even nuclei,
gives the predicted differential isotope shifts caused by
nuclear deformation in units of the shift due to the
ordinary volume effect. Points are shown where data
exist for two or more isotopes of the same element. The
trend of the curve is inQuenced also by the data on
single isotopes, e.g., the value of N = 96 where the curve
crosses the horizontal axis. Several special features of
the theoretical curve may be noted. Discontinuities
appear at the magic numbers, where the predicted
shift changes sign. Between magic numbers, the shift
also changes sign, but continuously. The positive peak
expected between X=82 and 126 is higher and nar-
rower than the negative valley in the same shell.
Quadrupole moment points were given special weight
in drawing the curve. The Pb isotopes were given very
little weight because the strong coupling approximation,
on which the points due to the even-even nuclei are
based, is not expected to be valid in the near vicinity
of a double closed shell. Because of the dependence of
nuclear deformation on both E and Z, the shifts are
not expected to lie accurately along a single curve as a
function of S only. The data on which the theoretical
curve is based are inadequate for a more detailed pre-
diction, however. The curve should be regarded as a
mean prediction along the line of stable elements.

B. Comparison with Experiment

Figure 3 gives the experimental isotope shifts in units
of the shift expected from the ordinary volume effect.
If only the volume effect plus the distortion effect were
effective for isotope shifts, the curve of Fig. 5, increased

by one unit, should lie along the experimental points.
In fact, such a curve lies too high. In order to fit the
data reasonably well, it is required to add to the curve
of Fig. 2 a value of only 0.5. The theoretical curve,
arbitrarily modihed in this way, is given in Fig. 3, and
is seen to fit the data rather well, both in shape and in

magnitude.
It should be stressed that two arbitrary param-

eters have gone into the theoretical curve of Fig. 3.
The first of these was the normalization of the distor-
tions computed from the energies of the first excited
states of even-even nuclei to the distortions computed
from quadrupole moments in the rare earth elements.
This normalization was required by inadequate knowl-

edge of the detailed nucleon configurations and was in

0.8

0.4

00 IO

FIG. 6. Nuclear distortions in simple shell of j=9/2 particles.
Plotted vertically is the quantity

j(j+1)—3m,'-2

4j(j+1)
which in the static approximation is proportional to the square
of the nuclear deformation, n~. Plotted horizontally is the number
of nucleons (of a given type) in the shell. The value of n2 for n =odd
is less than the average value of n' for the neighboring n=even
points. This may afford an explanation of the observed even-odd
staggering.

"O. H. Arrive, Ph.D. dissertation, University of Copenhagen,
1951 (Kobenhavn Nordisk Bogtrykkeri, 1951).

"Manning, Anderson, and Watson, Phys. Rev. 78, 417 (1950);
K. Murakawa and S. Suwa, J. Phys. Soc. Japan 5, 382 (1950);
F. Geiger, Phys. Rev. 79, 212 (1950); Brix, von Buttlar, Houter-
mans, and Kopfermann, Z. Physik 133, 192 (1952).

the expected direction —to decrease the distortion found
from the even-even nuclei. The second parameter was
the shift of the theoretical curve downward everywhere

by 0.5. This is equivalent to assuming that all effects
other than the volume effect and the distortion effect
give a net contribution to the isotope shift half as great
as the volume effect and in the opposite direction. It
will be shown in Part IV that it may be reasonable to
attribute such an effect largely to the 6nite compressi-
bility of nuclear matter and the consequent variations
of nuclear density among the isotopes of a single ele-
ment. Note that in the theoretical curve of Fig. 3 all of
the vuriatioms of the isotope shifts away from a mean
value are attributed to the distortion effect only.

C. Even-Odd .Staggering

The nuclear distortion effect may afford also an
explanation of the even-odd staggering observed experi-
mentally. There is slight, but by no means conclusive
evidence, from the first excited states of even-even

nuclei that the even-even nuclei are somewhat more
deformed than the odd-even nuclei. Such an effect, in

any case, is expected theoretically. Figure 6 shows the
square of the nuclear deformation (to arbitrary scale)
vs number of nucleons in a simple shell of j=9/2
particles, calculated according to Eq. (22). If one con-
siders a given element with Z even, then the horizontal
scale in Fig. 6 represents the number of neutrons in

different isotopes of the element. The n' of odd-even

isotopes is seen to be less than the average value of n'

for the neighboring even-even isotopes, which leads to
an even-odd staggering in the direction usually ob-
served. A similar result holds for more complicated
shells, involving particles in more than one subshell.

Examples of observed even-odd staggering in Ba"
and in Pb" and the possible connection of the staggering

Even
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with nuclear deformation are illustrated in Fig. 7. Each
of these elements possesses an isotope with closed
neutron shell. Pb has in addition a closed proton shell,
and Ba may have a closed proton subshell (g»,). The
deformations, ~o. ~, shown in the figure are calculated
from the observed isotope shifts assuming (a) that the
shift due to the volume effect alone is half of that for an
incompressible nucleus with 8=1.4&(10 "A'* cm, and
(b) that the deformations for the isotopes with closed
neutron shells are negligibly small. The plotted defor-
mations are therefore only qualitatively correct. (In
addition, the observed shifts in Ba are subject to con-
siderable uncertainty" because of their small value. )
To be noted are: (1) The occurrence together of large
anomalies in the isotope shift and large even-odd stag-
gering is in agreement with theory. (2) The nuclear
deformation effect may reasonably account for much of
the observed even-odd staggering, even in the extreme
case of barium. There is room, however, for an addi-
tional small effect caused by nuclear polarization. " It
may incidentally be remarked that the large observed
anomaly in Ba speaks against a closed proton subshell
for all of the Ba isotopes.
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FIG. 7. Nuclear deformations calculated from observed isotope
shifts. The energy levels are plotted in units of the energy dif-
ference predicted for incompressible nuclei with standard radius
1.4-10 13A& cm and differing by one neutron. To the left of each
diagram are the Presumed levels in the absence of deformation
(half of the standard theoretical value), and to the right are the
observed levels, normalized to leave unchanged the level of the
nucleus with closed neutron shell. Values of the nuclear deforma-
tion plotted below the diagrams are calculated assuming that all
of the changes from the left half to the right half of the diagrams
are due to the nuclear distortion effect.

IV. FIELD EFFECTS IN THE COMPRESSIBLE
NUCLEAR MODEL

In the previous sections we have, for simplicity,
discussed the isotope shifts which would follow from
nuclei of sharply defined boundaries enclosing uniform
charge density. In the present section we shall retain

the fiction of sharply defined nuclear surface, but
subject to this constraint we shall refine our description
of the charge distribution. Discarding the assumption
of constant mass and charge densities within nuclei,
and restricting our discussion initially to spherical
nuclei, we shall (1) examine more closely the effect of
adding one or more neutrons upon the potential in
which the atomic electrons are bound; and so (2)
ascertain the isotope shifts to be expected when con-
sideration is given to current estimates of nuclear com-
pressibility and polarizability.

A. Neutron and Proton Densities

The Coulomb repulsion augments the proton density
near the nuclear surface relative to the central density;
a similar but less pronounced displacement occurs for
the neutrons. Wigner, '~ Feenberg, "and Swiatecki" have
computed these particle densities by somewhat different
procedures derived from the principle that, for a chosen
nuclear radius, the equilibrium neutron and proton
densities, m„and n~, are given by the variational
statement,

b e(n„, N~)d(volume) =0,

in which the energy density «(n„, n„) is to be integrated
over the nuclear volume. The analytically simple ex-
pression for the energy density used by Swiatecki
results in particle densities (see Fig. 8) which ascend
with monotonically increasing slope toward the nuclear
surface, where the densities are truncated to zero value.
A similar truncation is used by Feenberg, but in his
work the boundary condition is imposed that the par-
ticle densities shall intercept the surface at zero slope.
The latter method approaches somewhat more closely
what is perhaps the actual situation for a heavy
nucleus; namely, each particle density rises initially to
a maximum, and then falls continuously to reach a
negligible value slightly beyond the apparent radius.
No satisfactory treatment of particle densities closely
resembling this "actuality" exists at present in a form
to yield reliable estimates of the small differential
effects pertinent to the prediction of isotope shifts. We
therefore shall obtain an order of magnitude estimate
of how isotope shifts depend on nuclear compressibility,
following Feenberg in the treatment of particle den-
sities. The result of this treatment is that the addition
of two neutrons increases the nuclear radius by a sub-
stantially smaller amount than the increase predicted
by the. average 2 & law.

The particle densities, which are assumed to vary
but slightly from the mean values, n& and n&, may be
written

nir(r) = nz[1+v~(x)]; N~(r) = n~L1+v~(x)]. (26)

E. Wigner, Bicentennial Symposium, Vniversity of Pennsyl-
vania, 1940 (unpublished)."E.Feenberg, Phys. Rev. 59, 593 (1941)."W. J. Swiatecki, Proc. Phys. Soc. (London) A63, 1208 (1950).



ISOTOPE SH IFT ANOMALIES 1497

Here the deviations n~(x) and e~(x) are functions of the
relative radius x= r/R and may be expanded in terms
of the Qat-edge polynomials" of Feenberg:

t~(x) = a~vr(x)+b~vs(x),
21

vg (x)= aper(x)+b~vs(x),

n

fto

Oo
1

OO

(c)

where the coeKcients of expansion are to be determined
from (25). In this section we conform to Feenberg's
notation, denoting the nuclear radius as R.

B. Isotope Shift

The evaluation of the isotope shift predicted for a
nonuniform charge density is simpli6ed by employing
an alternate form of Eq. (3) that is an integration of
the nuclear charge density, p(r) =en'(r), which deter-
mintes V(r), over the effective potential due to the
s electron. Then, for a quite general nuclear charge
distribution, the erst-order perturbation from the field
of the finite nucleus is given by

AE= $4rrB/2p(2p+1)Z] re (r)ro&+odr (28).

with

3BR'~
AE= [1+C.ar +Cbbr ], (29)

2p(2p+1) (2p+3)
1

C,= (2p+3) ~ wr(x)x'&+'dx

Cb= (2p+3) vo(x)x'&+'dx.
"0

Equation (29) reduces to Eq. (8), as it must, when

tlat (x) goes to zero. The isotope shift is now given by

3BE" 5R
b(AE) = [1+C.ap+Cbbp5

(2p+ 1)(2p+3) E

C, Cg
+ bar + bbr—, (30—)

2p 2p

where, as before, the operator 8 signifies the diRerence
in the operand values for two isotopes. The term in (30)
containing 8R as a factor is, as we shall see, the dominant

~ As shown in reference 28, the two lowest-order polynomials
(above the constant) which are orthonormal in the interval 0 to 1
for the weight factor xo and which meet the condition do(x)/Ifx= 0
for x=o and 1, are e1(x)=6.1675(1—3.75x'+2.5x'} and e2(x)
= 11.028(1—13.7879x'+ 24.1819x'—11.2424x'}.

In deriving this expression we have assumed the
asymptotic formula (2) to be valid out to a value of r
for which the proton density, Np(r), has fallen to a
negligible value. The error introduced by this assump-
tion in both AE and SAN is less than 0.3 percent for
heavy nuclei.

Upon specializing this formula to the present case,
with tb& (r) defined by Eqs. (13), (26), and (2/), we have

Fro. 8. Proton densities in the nuclear interior, in units of
No ——3A/gxR', plotted for three different models. (a) A rough
estimate of the density variation is easily obtained by the method
of Swiatecki (reference 29). (b) A somewha't more refined calcu-
lation by Feenberg (reference 28) adjusts the density to zero slope
at the nuclear surface. (c) A self-consistent treatment of the
density variation through the nuclear surface would presumably
lead to such a curve as here plotted. In contrast with this estimate,
however, is the result deduced by Gombas from a statistical
theory of the nucleus (reference 36).

term, representing the contributio~ to the isotope shift
both from the change in average charge density and
from the change in surface position. The other two
terms give the eRect of the relative redistribution of
the protons. We now turn to the evaluation of the
quantities within the brace of Eq. (30).

E,=1.2Z'A ' (32)

and the compressibility coefficient may be written

0"=&A (33)

The factor E is poorly known, but order of magnitude
estimates suggest" a value near 100 mc' or 150 mc'.
Present information" on nuclear radii is not adequate
to 6x precisely the average dependence on A, but if we
accept the conventional estimate that E varies as A&,

then it would follow that Eo varies as A ~', where m is
a number near unity to be found below. Eo is to be
interpreted physically -as the radius which the nucleus
would take in the absence of Coulomb forces. It then
follows (ignoring the A dependence of m) that

1 BE
ng—

E BX 3A

4E,

Eo"+E,

1 BR

E BZ 3A
3' E. Feenberg, Phys.
"See, for example, J.

Nuclear Physics (John
p. 15.

(34)
4E,

Eo +E l 2Z)-
Rev. 59, 149 (1941).
M. Blatt and V. F. Weisskopf, Theoretical
Wiley and Sons, Inc. , New York, 1952),

C. Relative Isotopi". Radii

Just as, by Eq. (25), the particle distributions are
determined which minimize the energy for a fixed
radius, so the radius itself is chosen to minimize the
total energy. When the potential and kinetic eRects of
the nuclear surface are ignored, the equilibrium radius
is readily found" to have the value

&=~o (1+E./Eo"). (31)

The total Coulomb energy is, in units of mc'=0. 511
Mev, adequately given for our purposes by the -ex-

pression
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Yet the last equality of this chain must, on the average,
be satisfied in order to accord with empirical estimates
on the average trend of nuclear radii with mass number.
This requirement provides a determination of the index
m appearing in Eqs. (34). We put

1 dR 1 BEdS 1 BEdZ
+

R dA R OS' R BZdA
(36)

with dZ/dA and dX/dA = 1—(dZ/dA) found from the
charge-to-mass stability curve" of the nuclides:

of which the former provides the value of oR/R required
in Eq. (30).

The dependence of nuclear radius on particle number
here displayed for the compressible nucleus contrasts
with the dependence in the incompressible nucleus:

1 BR 1 BR 1 dR 1
(35)

RBX R BZ E dA. 3A

the radial derivatives given by Eqs. (34) are listed in
Table I, for two different values of the compressibility
coeNcient Eo".

D. Evaluation of Particle Densities

The evaluation of the expansion coefficients of Eqs.
(27) from Eq. (25) then is carried out by a procedure
closely resembling Feenberg's. " Intermediate to this
task is the calculation of partial derivatives of the
standard nucleus energy, Es(R, 1V, Z), employing the
relations (34) and the energy formula

Es/mes= 2A+ L96
~
X—Z

~

+38 (1V—Z)'/A j (38)

in which the coefficient of the quadratic term has been
chosen to 'accord with the same term in the semi-em-
pirical mass formula. " The resulting expansion coef-
ficients for the neutron and proton densities are listed
in Table II, along with the densities near the surface
of neutrons and protons, relative to their densities in
the nuclear center.

Zg ——A (1.981+0.01496A ') '.

It then follows that

(37)
E. Relevance of Nuclear Compressibility

to Isotope Shifts
3A dR 4E, t' 3 Z dZ )

Es"+E, & 2 A dA)

TABLE I. The relative differential coefhcients for the nuclear
radius R as given by the compressible model for two different
values of the compressibility coeKcient. Also listed are the
Coulomb energy E, in units of mc2, without correction for the
small inQuence of nonuniform charge density; the index m of the
relation R0 ——r0A /'; and the slope dZ/dA from Eq. (37). In an
incompressible nuclear model both relative differential ratios are
unity.

R dA

from which m is computed. The resultant'4 values of

)5(AE) q
BR'&

8X );„, & (2p+ 1) (2p+ 3)A
(39)

and the relative size of the isotope shifts in the two
models is given by

Having the particle densities we can now compare
the isotope shifts predicted' by the compressible and the
incompressible nuclear model. For the latter, the isotope
shift for two nuclides differing by one in mass number
is given by (30) to be

Ec

(a) Eo"=100Am'
3A BR

dZ/dA
R BZ

3A BR

R 8N

(8(AE) q (5(AE

&mv );„...,
24 50
44 100
62 150
80 200
97 250

179.8 5 000 0.953
489.1 10 000 0.936
854.2 15 000 0.928

1296.9 20 000 0.927
1773.8 25 000 0.928

(b) Eo" =50Amc2

0.430 1.248
0.394 1.386
0.367 1.495
0.346 1.597
0.329 1.688

0.814
0.750
0.713
0.684
0.663

24 50
44 100
62 150
80 200
97 250

179.8 2 500
489.1 5 000
854.2 7 500

1296.9 10 000
1773.8 12 500

0.908 0.430
0.878 0.394
0.864 0.367
0.863 0.346
0.865 0.329

1.479 0.640
1.737 0.522
1.939 0.455
2.126 0.404
2.290 0.368

"See, e.g, , E. Fermi, Nuclear Physics (Notes by Orear, Rosen-
feld, and Schluter) (University of Chicago Press, Chicago, 1950).

'4 We note that a simple attempt to introduce surface effects
into our theory is of dubious value. If one makes the arbitrary
assumption that the e8ects of the nuclear surface on the kinetic
and potential energies of the system may be separated out of the
nuclear Hamiltonian, the term proportional to A& in the semi-
empirical mass formula (reference 33) may be chosen to represent
the energy shift involved. Carrying through as before (reference
31) the calculation of how the actual radius is related to the

1 bE C, bu„Cb 8b„
=3A [1+C,up+. Csbp j +——+— . (40)

RKV 2p KV 2p RV

The evaluation of y outlined in Table III makes it
evident that the terms involving a„, b~ and their
derivatives are small and largely canceling in effect,
so that the ratio y is available in good approximation

standard radius R0, one &ds
R=RpL1+(E 2E )/(Ep +6E )j (A)

with E, and E0" as above, and E,=26A& in units of mc. For
nuclei to be stable against fission it is required L¹Bohr and J. A.
Wheeler, Phys. Rev. S6, 426 (1939)j that E,&2E„and accord-
ingly by (A) the actual radius is less than the "standard radius, "
R0, the contraction by surface tension dominating the expansive
Coulomb repulsion. The latter alone was considered in obtaining
Eq. (31). On the other hand, the di6'erential ratios derived from
(A) have signs and magnitudes similar to the ratios given by (34),
as derived from (31).In the present paper we have evaluated the
simpler expressions (34) to obtain the differential coefficients
required in (25) and (30).
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TABLE II. Expansion coe%cients for particle densities, and ratios of (density at surface) to (density at center) for protons and neutrons
in the compressible nuclear model. Also listed are values (in units mc =0.511 Mev) of AE, the difference in energy between the com-
pressible and incompressible models, a bilinear function of a~, bI, aN, and b~, which is minimized to determine these coefricients.

(a) Rp" = 100Amcm
tJN 4r ng (R)/ng (0) ng (R)/n~(0)

24
44
62
80
97

24
44
62
80
97

50
100
150
200
250

50
100
150
200
250

—0.01785—0,02833—0.03502—0.04046—0.04457

—0.02075—0.03370—0.04188—0.04835—0.05310

0.00274
0.00519
0.00714
0.00887
0.01030

0.00282
0.00548
0.00764
0.00959
0.01121

—0.00977—0.01612—0.02000—0.02322—0.02551

(b) Ep" =50Amc2

—0.01312—0.02263—0.02874—0.03376—0.03743

0.00079
0.00186
0.00277
0.00363
0.00434

0.00088
0.00221
0.00342
0.00461
0.00563

—0.601—2.618—5.684—10.014—15,140

—0.695—3.096—6.758—11.897—17.935

1.1217
1.1925
1.2355
1.2699
1.2948

1.1479
1.2446
1.3044
1.3505
1.3825

1.0716
1.1160
1.1414
1.1617
1.1752

1.1000
1.1738
1.2203
1.2577
1.2838

in the simple form
3A 5R

7—
E 51V

(41)

The values of y listed in Table III for two possible
values of the compressibility reveal how directly the
magnitude of the predicted isotope shift depends upon
the assumed value of the compressibility coefficient.
The trend of y with A in Table III would be altered to
yield more nearly constant values of p in a theory in
which surface effects were properly included, for the
effective surface tension is relatively more important in
light nuclei. As cited earlier" and as emphasized by
Humbach, " the magnitudes of observed isotope shifts
are about one-half the values predicted for an incom-
pressible nucleus. In view of the present results, it seems
likely that a major part, and perhaps all, of this dis-

crepancy depends upon the neglect of nuclear com-
pressibility.

A reduction in the nuclear radius would of course also
reduce the isotope shifts predicted by Eqs. (6), (9), or
(30). Recent studies of radiations from the ti-mesonic
atom suggest" that the nuclear radius has been over-
estimated; however, similar studies by Schawlow and
Townes" on radiations from inner electron transitions
have confirmed the radius estimates employed in the
present paper and seem more reliable as a guide for our
analysis of the isotope shifts in electronic spectra. This
information on x-ray levels also casts doubt on the
reality of the Gaussian particle density distribution for
heavy elements derived' by Gombas in a detailed
statistical treatment of the nucleus.

)Vote added in proof:—Recent observations (to be
published) by Hofstadter, Fechter, Mcintyre and
analyses (to be published) by Schiff of nuclear scatter-
ing of fast electrons suggest, however, a proton dis-
tribution peaked in the nuclear center, in qualitative
agreement with the results of Gombas.

'5 L. N. Cooper and E. M. Henley, Bull. Am. Phys. Soc. 28,
Xo. 3, 56 (1953)."P.Gombas, Acta Phys. Acad. Sci. Hung. 2, 223 (1952).

TABLE III. Calculation of the ratio, p, of isotope shifts predicted
according to Eq. (40) by the compressible and by the incom-
pressible nuclear models. The perturbation coefIicients, C, and Cq,
are defined in Eq. (29); and the isotopic variations of the expan-
sion coefFicients are defined by such statements as

sap/sN=ap(Z, A+1) —ap(Z, A).

Ca

'(a) Rp" = 100Amc2

bag
CI 104—

BN

bb~ 3A bR
104—

BN R BN

24 50
44 100
62 150
80 200
97 250

—0.7087 0.213—0.6917 0.200—0.6659 0.181—0.6256 0.154—0.5684 0.120

1.543
1.243
0.978
0.809
0.676

—0.058 0.814—0.095 0.750—0.098 0.713—0.097 0.684—0.092 0.663

0.816
0.751
0.713
0.683
0.660

(b) Rp" =50Amc~

24 50 —0.7087
44 100 —0.6917
62 150 —0.6659
80 200 —0.6256
97 250 —0.5684

I

0.213
0.200
0.181
0.154
0.120

1.710
1.389
1.095
0;899
0.748

—0.057 0.640—0.097 0.522—0.103 0.455—0.104 0.404—0.099 0.368

0.640
0.519
0.449
0.395
0.357

The value of Ep" required to reduce y to 0.5 is
smaller by a factor of 1.5 or 2 than the values of Ep"
estimated" with the help of the virial theorem, which,
however, are only order-of-magnitude estimates, uncer-
tain by a factor of this size. If we have employed a value
for the nuclear radius which is 10 or 15 percent too
large, then Feenberg's values for Ep" are more nearly
consistent with the values required by the present
analysis of isotope shifts. We should emphasize, more-
over, that the artificial method of handling the nuclear
surface which we have here adopted renders our treat-
ment of the variations in nuclear radii and particle
densities so crude that we can expect nothing better
than order-of-magnitude estimates of nuclear compres-
sibility to follow at present from our examination of
isotope shifts. The present work does, nevertheless,

suggest that the compressibility coefficient E&" is

smaller than heretofore assumed, and indicates that
when a self-consistent treatment of nuclear particle
densities is available, the study of isotope shifts will
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provide one of the most direct and precise methods of
measuring nuclear compressibility.

F. Aspherical Nuclei

In aspherical nuclei of deformation n (see Part III)
the proton density variation from the average density
is enhanced by the approximate factor (1+a) along the
principal axis of distortion. This aspherical variation
gives a negligible displacement in the mern value of
predicted isotope shifts. The amplitude of the periodic
variation in the ratio of predicted shifts to shifts pre-
dicted by the simple volume eRect, discussed in Part
III, will be augmented by roughly (1+3( ~

n
~
)A~). As the

average value of the magnitude of intrinsic deformation,

( ~
n

~ )A„, is of the order of 0.1, the correction to the ampli-
tude of periodic variation is likewise unimportant.

V. CONCLUSION

In Part II we have noted that when the observed
isotope shifts have been adjusted for electronic screening
and compared with the isotope shifts predicted for
constant density nuclei, after these have been corrected
for the deficiency of first-order perturbation theory,
three anomalies appear: (1) The average magnitudes
of the observed shifts are about one-half the size of the
predicted shifts; (2) the observed shifts show a some-
what periodic variation about the predicted shifts, and
(3) the shifts between even and odd isotopes are by
staggered rather than by equal steps.

In Part III the regular progression of nuclear defor-
mations was reviewed, as deduced mainly from indi-
vidual particle configuration theory, from observed
quadrupole moments, and from the analysis of the
first excited states of even-even nuclei. The dependence

of isotope shift on nuclear shape was also derived, and
the result was then at hand that the estimated pro-
gression of nuclear shapes apparently accounts for the
regular Quctuations in size of isotope shifts, both as to
the amplitude of the Quctuation and in the location of
the nodal points. On this basis a prediction, as yet
untested, is also made of isotope shift behavior beyond
82Pb (Fig 3).

An examination of how nuclear shapes should change
between odd and even isotopes likewise provides a
reasonable explanation of the observed even-odd stag-
gering of isotope shifts.

In Part IV the inQuence of nuclear compressibility
and polarizability on the size of isotope shifts was inves-
tigated and found to alter predictions in a direction to
account for the apparent discrepancy in average size of
the isotope shifts. The analysis and comparison with
experiment suggests that earlier estimates of nuclear
compressibility have been too small, although the
present treatment is inadequate to provide a reliable
measure of the compressibility. A reduction in nuclear
radius would also reduce the predicted isotope shift
magnitudes but would conQict with x-ray measurements
of the inner electron energy levels.

It therefore appears that the general pattern of
isotope shifts is consistent with present ideas of nuclear
structure, and provides an important source of specific
information on the sizes, shapes, and charge distribu-
tions of nuclei.
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