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A derivation of a closed formula for the energy levels of odd-odd nuclei is described, and the plausibility

of the Nordheim rule is discussed.
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INTRODUCTION

~~~DD-EVEN nuclei probably constitute the simplest

group of nuclei with which the ideas of the shell

model can be checked. The reason for this is that the
energies involved in exciting the even-even core are
believed to be bigger than the separation between
adjacent single-particle levels, so that it might be a
good approximation to assume that the core remains
in its lowest state of total angular momentum zero for
the ground states of odd-even nuclei, as well as for
their first few excited states.

There is some hope that the situation in odd-odd
nuclei is not much more complex than in the odd-even
ones. The interaction between a proton and a neutron
in nonequivalent orbits is expected to be considerably
smaller than the one between two equivalent particles,
and may, therefore, be of the order of the separation
between single-particle levels or even smaller. Accepting
the current interpretation of the odd-even level struc-
ture, one is tempted to assume that a state of an odd-odd
nucleus is characterized by the angular momenta and
parities of the separate proton and neutron groups in
addition, of course, to the total angular momentum and
parity. One also naturally assigns to the proton and
neutron groups those spins and parities as are observed
in close-lying odd-even nuclei.

Under these assumptions it was found by Nordheim'
that the following empirical rules apply to the spin J
of the ground states of odd-odd nuclei:

J= lj „j„lif / +j„+—l +j is even,

lj „j„l&J&j,+j i—f /„+j,+I„+j is odd,

where (—1) ' and j are, respectively, the parity and spin
of the proton and neutron groups (indices p and rt).

The present work is an attempt to explain Nord-
heim's rule by adopting the single-particle model for
each of the "subgroups" of neutrons and protons, and
assuming further that the interaction between the odd
proton and the odd neutron, which is considered as a
perturbation on the central field in which they move,
is given by the expression:

V= (a+ha„

trojan(r„r„)—

That a perturbation which depends on the relative
coordinates only will probably not yield Nordheim's
rule is evident from Racah's results on the energy levels
of two nucleons in the jj coupling. ' It is clear that
Nordheim's rule would result for a potential of the type
tr„ troV(lr„—rol) without too severe limitations on

V(x). It is, however, still interesting to see how much
spin dependent force we should introduce, and whether
the different character of the two rules, namely the
definite answer of one of them and the rather vague
answer of the other, can be understood.

NOTATION

We shall Gnd it very convenient to use a notation
introduced by Wigner' which exhibits most clearly the
symmetry properties of the diferent coefficients in-
volved in the addition of angular momenta. For con-
venience we also reproduce here, without proof, some
of the relations between these coefficients. 4

The vector-addition coefFicient is denoted by

l
~

(js js jsl

~tsar tts tss~

It is related to the usual Clebsch-Gordan coeKcient' by
the relation:

)j& j, ps' (—1)ts-t~+»

! (jsjsjs —
t sl jst ~jst s) (2)

Et & t s t s) (2js+1)&

To prevent confusion we shall call this coefficient a
%'igner coefficient. A signer coefficient vanishes unless

j,+js+js——0. (This equation should be understood
as meaning that the three numbers j&, j2, and j3 satisfy
the triangular inequalities, and that in addition

tta+tss+tts=0 )
The symmetry properties of the %igner coefficients

are given by:

(A js js) (jI jt 2

(ttl tss tss) (tsar tsl ttniJ

2 G. Racah, Phys. Rev. 62, 438 (1942).' E. P. Wigner, "On the Matrices which Reduce the Kronecker
Products of Representations of Simply-Reducible Groups"
(unpublished). I am indebted to Professor Wigner for making a
copy of his manuscript available to me.

4 See also: Biedenharn, Blatt, and Rose, Revs. Modern Phys.
24, 249 (1952).

5 E. U. Condon and G. H. Shortley, Theory of Atomic Spectre
(Cambridge University Press, Cambridge, 1951).

1479



A. DE —SHAL I T

( Jl J2 j8 ) (jl j2 j31
I
= (—1)7'+72+73I

I (4)
131 I32 P8 J I~1 ~2 W&

jl k2 3 ll k2 /gj
(10b)

kl j2 k8

The orthogonality relations take the forms: jl j2 j3

0 t, l,
=(—1)'"'""I(2J+1)(2J+1)& -*'

(jl J2 j8& (jl J2 J8)

Eql q2 q8j (ql' ' J
)&8(4, j,)8(4, j,). (11)

P2 P3 The following relations are satisfied by combinations

(ga) of Racah and Wigner coefficients:

where 3 is +1 or (—1)7'1 7'2+7'3 according to whether p(—1)7'1+7'2+7'3+11+12+13+»+»+»+3(2&+1)

(0, l, 21) is an even or odd permutation of (1, 2, 3).
Also: jl k ll j2 k /2 j3 k l3

X
~2 k3 j2 13 kl j8 /1 k2 jl

(jl J2 j8) (Jl J2 J8 l
(».+1)I

1Ã1 P2 P3 Ill 122 l38 ~

=&(~8, u3')&(J3, j8'), (5b)

where the summation convention is applied to double

Greek indices.
The Racah coefficients will be denoted by

Lyl P2 P8) (yl y2 —@83

jl j2 j3 ( ll j2 4l (jl l2 4
&&(24+1) (12)

ll l2 l8 4/1 7t32 $8) (Pl g2 $8)

jl j2 j3 jl j2 j8
I

—( 1)17+121-13+31+12+13

ll 4 4 &~1 ~2 ~8&

jl j2 j3

ll l2 l3
(6)

(jl 4 4 )(ll J2, 4)(ll 4
&&I II II I, (»)

E7tll X2 7%8) ( Xl P2 $8) ($1 g2 @33

They are related to Racah's W2 by the relation

, —( 1)7'1+11+72+32.~(jlJ2 l2ll ~ jll3)
l2 l8 I

A Racah coeS.cient vanishes unless:

11+12+18——07 11—12+18——07 )1+12—18= 07

—11+j2+13=0.

The symmetry properties of the Racah coefricients are

jll j12 j13 j21 j22 j23
=Z(—1)"(2j+1)

7 j23 j33 j j12 j j32

j11 j12 j13

( jll j12 jl3) (j 21 J22 j231 (J31 J32 j33)

Egll X12 X18I EA21 f22 $28) ($81 f32 f33)

(jll j21 j81 ) (j12 j22 j32) (j18 j23 j88 )
(All X21 X31 J (X12 X22 X32 3 (X13 X23 X33)

jl j2 j3

ll l2 l3

jk jl jec

lp l) l

ll ll j
lj. j, l„l'

j31 j32 j33

j jll j21
j21 j22 j28 . (14)

~ j31 j32 j33i

jl j2 j8 jl' j2 j3
Z(2 j8+1)(2l8+ 1)

73 ll 12 l8 ll l2 l3

(14) defines 7vVigner's nine- j symbol, which is also
where (k l272) is any permutation of (1, 2, 3). The
orthogonality relation for the Racah coefficients is fr,

. t 6 It t f hcoe cient. t is easy to see rom t e symmetry proper-
ties of the Wigner coefFicients that the interchange of
any two rows or two columns in a Schwinger coefFicient
multiples it by the factor

=~(1, l ') (9)

jl j2 j8 jl ~1 j3

j2 ~2

j2 j3
, (10a)

In addition they satisfy the following relations:

Q ( 1)73+7'3'+&3(2l +1)

(—1)711+712+713+721+722+723+731+732+733

OUTLINE OF THE COMPUTATION

We shall assume that in the zeroth-order approxi-
mation the particles are moving in a central held with
no interaction between them. The central field, ac-

' J. Schwinger, Nuclear Development Associates Report NYO-
3071 (unpublished).
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cording to this approach, takes care of the major part
of the mutual interaction between the nucleons, the
remaining part of the interaction being treated as a
small perturbation. Limiting our considerations to two
particles in the jj-coupling scheme (liji) and (4js), the
degenerate states of the configuration j&j2 will be split
by the perturbation, and the first-order correction to the
energy of a state with a total angular momentum J will
be given by

E(j ij 2, J)= f (j ij 2JM) Vp(j,j 2JM)dr. (15)

We shall take as our wave function for the state
(jijs, JM):

0 (jij2JM) = (—1)"—'~M(2J+1)'

I'j j2
xl IA(J) i)A(J»2) ( 6)

For particles in equivalent states (ji——j2) this gives
antisymmetric states for even J and symmetric ones
for odd J, etc. No 7"dependence is assumed, so that this
wave function is good only for two distinct particles
such as,a proton and a neutron, provided they are not
considered as two diferent states of the same entity,
i.e., provided the Pauli principle should not be applied
to them. This assumption is probably good for the
heavier odd-odd nuclei.

Introducing the notation

o)=1, o in)= ', (o, —io-„), —

tr+i 2 (+~+2+w) ~

and expanding V(l ri —rs l) in Legendre polynomials of
the angle ~ between r~ and r~.

V(l r,—r, l) =P vs(lrtl, l rsl)Ps(cosa)), (17)

we find that the first-order correction to the energy
of the state (jij,, JM) due to a perturbation
Erl 'IT2 'V(l ri —r2

l ) can be written in the form

E(j ij 2J) =E.f.i(jij2J)P~(nifi222~2), (1g)
where

f 2= (2k+1) (jij2JM j
iri'") ir2'"'P&(cosa))

l j,j2JM),
(19)

Fs 1/(2k+ 1),t Rt'(—2—2)lt)E2'(222l2) t)2 (rt, rs) dr, dr2, (20)

E(wl)/r being the radial part of the single-particle wave
function 1t (22lj2)2).

The integrals f„& can be evaluated exactly since they
do not involve any unknown parameters of the central
field. This is most easily done by the tensor-operator
algebra developed by Racah, ' and in fact the explicit
expression for fs& was given by Racah as early as 1942.
Ke shall here follow a slightly diferent way which is

more convenient for the summations involved in the
special case of delta forces. '

Following Racah we decompose P&(cosc) by the
addition theorem for spherical harmonics,

Ps(cosa)) =g„(—1)"C„'2)(1)C „'")(2),

C.'") (2) = L42r/(2k+1)]'*V. ")(|),tp;),

and get for (19) the expression:

f„2——Q (2k+ 1)(jij,JM
l o, t") (1)C„t") (1)

K, P

o, t")(2)C „t')(2)lg,jsJM). (—1)r+". (21)

Since both 0.("& and C('& are reduced tensor operators,
their product can be reduced into a sum of tensor
operators of orders r(l k 22

l
&~
—r &~k+22) which are given

by
)rmk r q

2', '")= (—1)"+"+'(2+1):I ( )C, t&) (22)—p)

If we use (5), we obtain

f„), (—1)"——+'(2k+1)
x(jrjsJMl P, (—1)"Ttt" T2'")

l jijsJM), (23)

where A 8 stands for the scalar product of the tensor
operators A and B.

The matrix elements for the scalar product of tensor
operators were given by Racah, ' and in the present
notation one obtains

j, j.J
f &

—( 1)ii+is+&p( 1)s+&+r(2k+1)
r j2 ill r

x (jill2'i'"'ll jr) (jsll &2'"'ll js) (24)
By definition,

(—»' "(sVII&"lls'~'j')
I

( j
gpss')

= (slj p l
T &")

l sVj 'Is') = (—1)"+"+ (2r+1)'*

)nk ry
xl l (stj p l

~ &")C„t')
f

s'1'j'p, '). (25)
Ey s —p)

If we transform the last matrix element from the (sljp)
scheme to the (s)tt, l)tti) scheme, and remember that both
ir'") and Ct") are tensor operators with respect to s and
1, respectively, we find that

(sfjll2'"'lls'~'j') = L(2r+ 1) (2j+1)(2j'+1)1'*

x (sll""'ll")(illct»lli') ~ f j .. (26)

We may note here that due to the symmetry properties
of the Schwinger coefficient the diagonal matrix ele-
ments of 2't' vanish unless k+n+r is even.

7 Compare also similar calculations by: M. H. L. Pryce, Proc.
Phys. Soc. (London) A65, 773 (1952); D. Kurath, Phys. Rev. 87,
218 (1952); B. Feld and L. Marks (private communication);
L Talmi, Phys. Rev. 90, 1001 (1953).



A. DE —SHALI T

From (26) we obtain for (19) the expression

f„&=(—1)"+'~~(2j&+1)(2j2+1)(2k+1)

x (»Il~&"&II») (s,ll. &-~fls,) (t, lie&»lit, )

x (t flc"'ilt )2(—1)'+"+'

jl j2
X

j2 jl

-~kr--~ k ~-

» sq t& j& «» s2 l2 j». (27)

» $1 l1 j1+ &$2 12

The sum over r can be performed yielding a relatively
simple expression. Since, however, we are interested in
the values of the energies for delta interaction, we shall
find it easier to evaluate the sum over k first. We also
notice that e can assume only two values (since s=-,'):
0 and 1; for n=0 the summation over k and r reduces
to a very simple expression. It is therefore very con-
venient to sum over n too and obtain the value of
E(j&j2, J) for n=1 by subtracting the contribution of
m=0.

To proceed with the calculation we note that for

I (I rl r2I ) ~(r1 r2)h(cosa —1).l 2,
(28)"(I"I, I"I) =(2k+1),",

so that Pp=Fp for every k. (tllC&»lit) was computed by
Racah'

~t tkg
(tile"'llt) = (—»'(2t+»

I

Eo o 0]
It is also easy to see that (silo ~"&Ils) = [2(2++1)]'*.

If we combine all these results we obtain (expressing
E in units of Fo)

2 Z E-(i~i~J)
n=0, 1

= P (—1)n+~~~+~+'~+"(2j,+1)(2j,+1)
n, k, r

X (2tq+1) (2l2+1) (2m+1) (2k+1) (2r+1)
Pt, t, k~ ~t, t, kq j, j, JI

xl
(0 0 0) Lo 0 0) j2 j& r I

ekr 'ekr
X» s& t& j& » s2 tp jp ~= P (—1)&''+'&+ +"+"

nrkIk2
1 ' 1

j1& ' S2 ~2 j2

X (2j&+1)(2j2+1)(2t&+1)(2l2+1) (2e+1)
, ', Ji

X (2r+ 1) (—1)"(2k/+ 1)
j2 j& r I

The sums over k1 and k2 can be carried out separately
by using the following relation which is easy to verify:

ekr
(mkry tr j j'y

~(2r+1)I II I'» j '
p) Ep c c')

I P

(30)
t'e s s') ~k l l'

& (s l jq (s' l' j'~

(y o o'~ &~ X V) &o X i) (o' X' a'2

The sum over e can then be carried out by applying
directly the orthogonality relations of the Wigner coef-
ficients, and the sum over r results immediately by the
use of the relations involving the Racah coefIicients.

The final expression is

2 2 E-(i ~i 2J)

(—1)"+"+'+'(2j&+1)(2j2+1) (2t&+ 1)(2l2+ 1)

II . I

(i~ i~ J ) (ii
((Xg R2 A2 All EQ2 Dl Rl n2 j

xl
(s1 tl ji q (» 4 jl
E~, 0 —~,) (e, 0 —n, )

($2 .t2 j, y t s2 l, j2
xl

(n~ 0 —o.~P En2 0 —o.2j

Since both n1 and n2 can have only the values &-,' and
since

(-,' l j q' 1

(-', 0 ——,') 2(2l+1)
we get

E„(j,j2J)=-,'(2 j&+1)(2j2+1)

This expression can be further simplified by means of
the relation

(i~j2 Ji'
((2j +1)+(—1)"+'

-,'—1) 4J(J+1)
' (ji j2

X(2j~+1)) I I . (33)
(nk, r) tt, t, kq

si ti ji «(—1)"'
(y 0 p& EO 0 0 )

~ Sl ~1 jl~

s k2r
(n k2 r) t t2 ta k2q

x(2k2+1)I II I'» t2 j2' (29)
(~ o p) Eo o o ) .s2 l2 j2,

Noting that

'Ok r'

s l j .= (—. 1)"+'+'+'[2(2k+1)] '*.

, sl j ~

s 1
8(k, r),

(34)
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we get, for v=0,

Es(j&jsJ)= —,'(2j +1)(2js+1)
~

TABLE I.
~ (j~s. j2——,

'
~ j~js j0) ~'. The Clebsch-Gordan coeflicient

is minus or plus the square root of the entry in the table according
to whether this entry is, or is not, preceded by an asterisk.

[(2j,+1)+(—1)~i+~2+~(2j's+ 1)]s '

4J (J+1)

and therefore

(35a)

j2+ji 1/2 3/2

J=0 1/2 1/2 0
3/2 0 *1/4
5/2 0 0
7/2 6 0
9/2 0 0

5/2

0
0

1/6
0
0

7/2

0
0
0

*1/8
0

9/2

0
0
0
0

1/10

(jr js
&r(jrjsJ)= s(2ir+1)(2is+1) I,

I (2jr+1)+ (—1)"+'~~(2js+1)]'
X

4J'(J+1)
J=2

—(1+2(—1)"+'s+~) . (35b)
J=3

The last two formulas obtain an especially simple form
when j&——j2 and l&=l2'.

1/2 0
3/2 0
5/2 1/2
7/2 1/2
9/2 0

0 1/2
9/20 1/5
1/5 ~4/45

*1/12 ~i/6
"1/3 1/33

1/2 1/2 1/2 0
3/2 1/2 *1/20 *3/10
5/2 0 *3/10 1/70
7/2 0 0 3/14
9/2 0 0 0

1/2 0 1/2 1/2
3/2 1/2 1/4 *1/14
5/2 1/2 *1/14 *4/21
7/2 0 *9/28 1/42
9/2 0 0 5/21

0
0

3/14
*1/168
+1/6

0
~9/28

1/42
25/168
*5/462

1/2
*1/12
gi/6
3/88
3/22

0
0
0

+1/6
1/330

0
0

5/21
*5/462
*4/33

0
*1/3
1/33
3/22

12/385

for even J,
(36a)X

L1+ (2j+1)'lJ(J+1)] for odd J.

1/2 0
3/2 0
5/2 0
7/2 1/2
9/2 1/2

J=S 1/2 0
3/2 0
5/2 0
7/2 0
9/2 1/2

0
0

5/12
1/6

0
0

25/63
5/42

*4/39

0 0
0 3/7

3/7 1/7
5/28 *15/154

~1/11 *12/77

1/2
5/28

*15/154
*81/616
81/2002

0
5/12
5/42

*75/728
~3/26

1/2
*1/11

*12/77
81/2002
81/385

1/2
1/6

*4/39
*3/26
3/65

for even J,
(36b)X

$I.+(2j+1)'/J(J+1)] for odd J.

J=6 1/2 0
3/2 0
5/2 0
7/2 0
9/2 0

0
0
0
0

0

0
25/66

7/66

0
0

25/66
25/264
~7/66

0
9/22
7/66

~7/66
*16/165

For equivalent nucleons only even- J states are
allowed, (because of the Pauli principle) and one sees
that a potential of the type L3+e& es]b(r& —rs) yields
no interaction in these states corresponding to the fact
that 3+er es vanishes for states symmetric in the
coordinates (and therefore antisymmetric in the spins);
whereas, 8(r&—rs) vanishes for states antisymmetric in
the coordinates. For similar reasons, one can see that
for these states the signer force and the Majorana
force L~r(1 —er es) for particles of the same charge]
give the same results for the energy levels in the delta
limit.

HORDHEIM'S RULE

1/2 0
3/2 0
5/2 0
7/2 0
9/2 0

1/2 0
3/2 0
5/2 0
7/2 0
9/2 0

J=9 1/2
3/2
5/2
7/2
9/2

0
0

0

0
0
0
0

105/286

0
0
0

1225/3432
35/429

0
0
0
0

49/143

0
0

105/286
35/429

*784/7293

0
0
0

49/143
49/715

0
0
0
0

3969/12155

On the basis of the analysis of P transitions in even-2
nuclei, Nordheim has deduced the empirical rule for the
spins of the ground states of odd-odd nuclei. ' When the
states of the two odd nucleons are l&j& and l2j2, this rule
can be stated with the help of the Nordheim number
E=/&+j &+4+j & in the following way:

For even 1V, J=
~ jr—js~; for odd E, J)

~ j&—js)
and is usually of the order of j&+js.

We shall now proceed to investigate our results in
order to see whether they oGer any way of explaining
these regu1arities. It should be emphasized that we do
not know as yet any reason to believe that the delta
forces give best description of the interactions between
nucleons in a nucleus, although they might represent
not too bad an approximation.

For pure Wigner forces one gets a dependence of the
energy levels on the j's of the interacting particles only



A. DE —SHALI T

&/2 &/2

5/2

Js2

VR 7/2

V2 9/2

FIG. 1. Energy levels of odd-odd nuclei for a potential L(1—n)+coo& o'27b(r& —r&). Left column —odd Nordheim numbers; right
column —even Nordheim numbers. In each figure the right half corresponds to a=+1 and the left half to e= —1.n varies from- 0 to 1.
The energy scale is arbitrary.
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(in the jj coupling) and not on their l's. This result
is strictly valid for the case of delta interactions, as can
be seen from the results of the previous section, but also
in other ranges and forms of the potential the depend-
ence on the I's enters only through the usually weak
dependence of the FI, on the I's.' We, therefore conclude
that Nordheim's rule probably cannot be explained on
the basis of the Wigner forces alone. A potential which
evidently might give results in accordance with Nord-
heim's rule is [a+ho& e2]8(ri —r2). The energy levels
for this potential can be deduced from the results of
the previous section. For this purpose we calculated the
Clebsch-Gordan coefficients which are involved in the
determination of the energy levels. These are given in
Table I. In Fig. 1 we have plotted these energy levels
for a potential of the form [(1—u)+Eel'IJi IFgj5(r& —r2)
with O~&o, ~&1 and a=&1.

The similarity between the graphs so obtained for
different j s is striking, and it is immediately evident
that the configurations in question can be divided into
two classes according to whether the Nordheim number
is odd or even. For &=+1 and starting from n= 0 (pure
Wigner forces) we find that for even 1V, J=

~ ji —j2~
always remains the lowest state even as o, increases,
and that it is an isolated lowest state, i.e., all the other
states are clustered at relatively high excitations. For
odd 1V, J=

~ ji—j, ~

is still the lowest state for n=0,
but it rises very steeply with o. , and even for small
values of n, J=ji+j2 becomes the lowest state. The
state J=ji+ j2, however, is no longer isolated as was
the state J=

~ ji—ju ~

for even X, and is relatively close
to jl+ j2 2 and ji+ j2—4, etc. Thus a weak con-
figuration interaction or a transition to a potential of a
finite range could bring one of these close-lying states
below J=ji+j2. We thus see that this simple model
can explain Nordheim's rule and its decomposition into
"strong" and "weak" rules. It goes a little bit beyond
the nriginal formulation of the rule, in as much as it
predicts that in the "weak" case the ground state will

have an even or odd spin according to whether ji+ j2
is even or odd.

The spins of very few odd-odd nuclei have been
measured directly and the spin assignment for most
of them is usually made on the basis of P-decay analysis.
This analysis, however, is less reliable in the case of
odd-odd nuclei than in the case of odd-even nuclei.

Thus, if an odd-odd nucleus with odd neutron in j„
and an odd proton in j„and total angular momentum

J; undergoes a P decay to the state Jr of the configura-
tion j„'in the daughter nucleus, the matrix element for
an allowed transition will be reduced by a factor'

(2j„+1)(2J~+1)
~
W(j Jj Jr, j„1)~',

compared to that of the corresponding single-particle
transition. This factor may be quite small and may
make an allowed transition look like a first-forbidden
one. Also the order of the transition I is determined by
the inequalities:

,-(—1) „
max(l j~—july I J'—~~I) ~~ Jr&min(j„+ j„,J,+ gf),

so that if one observes for instance the "unique for-
bidden" shape one knows only that max(~ j„—j~~,

~
J,—Jr~)=2, and one cannot make a definite state-

ment about
~
J;—Jr~ without some assumption about

j„and j„,unless J~=O.
Even if one adopts the order of levels for the odd

particles from the shell model, an ambiguity arises from
an e6ect similar to that of the pairing energy. It is very
probable that the situation in nuclear spectroscopy is
such that the energy difference between two adjacent
single-particle states (computed for a central field which
takes into account most of the mutual interactions of
the particles) is small compared to the "extra" inter-
action between the particles (which is considered as a
perturbation upon the central-field approximation).
Thus, if the order of levels for the single particles is
j„j„'j„""j„j„'j„"~, it does not necessarily mean
that the ground state of the configuration (j„j„)is
lower than that of (j „j„')or (j „'j~) or even (j „'j~'),
and the assignment of the right configurations for the
states of the odd-odd nuclei is not always unique, even
if the total spin and parity are known. In principle, the
measurements of transition probabilities involving these
states could determine their configuration, but so far
it has been impossible to get a good enough agreement
between calculated and experimental values for tran-
sition probabilities even in the "simpler" cases of odd-
even nuclei. It seems that the only practical way of
obtaining more information concerning the configura-
tion of a certain state in odd-odd nuclei is the measure-
ment of its magnetic moment and eventually its quad-
rupole moment. This would also enable a check of the
refinement proposed here for the Nordheim rule.

'Henry Brysk, Phys. Rev. 90, 365 (1953); A. de-Shalit and
M. Goldhaber (unpublished).


