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A derivation of a closed formula for the energy levels of odd-odd nuclei is described, and the plausibility

of the Nordheim rule is discussed.

INTRODUCTION

DD-EVEN nuclei probably constitute the simplest
group of nuclei with which the ideas of the shell
model can be checked. The reason for this is that the
energies involved in exciting the even-even core are
believed to be bigger than the separation between
adjacent single-particle levels, so that it might be a
good approximation to assume that the core remains
in its lowest state of total angular momentum zero for
the ground states of odd-even nuclei, as well as for
their first few excited states.

There is some hope that the situation in odd-odd
nuclei is not much more complex than in the odd-even
ones. The interaction between a proton and a neutron
in nonequivalent orbits is expected to be considerably
smaller than the one between two equivalent particles,
and may, therefore, be of the order of the separation
between single-particle levels or even smaller. Accepting
the current interpretation of the odd-even level struc-
ture, one is tempted to assume that a state of an odd-odd
nucleus is characterized by the angular momenta and
parities of the separate proton and neutron groups in
addition, of course, to the total angular momentum and
parity. One also naturally assigns to the proton and
neutron groups those spins and parities as are observed
in close-lying odd-even nuclei.

Under these assumptions it was found by Nordheim?
that the following empirical rules apply to the spin J
of the ground states of odd-odd nuclei:

J=jp—jnl if Lyt jptlatjn is even,
| 7o— dol TS Jotgn if Lt jotlat ja is 0dd,

where (—1)?and j are, respectively, the parity and spin
of the proton and neutron groups (indices p and »).

The present work is an attempt to explain Nord-
heim’s rule by adopting the single-particle model for
each of the “subgroups” of neutrons and protons, and
assuming further that the interaction between the odd
proton and the odd neutron, which is considered as a
perturbation on the central field in which they move,
is given by the expression:

V=[a+b0, 0, 6(r,—1,).

* This work was assisted by the joint program of the U. S.
Office of Naval Research and the U. S. Atomic Energy Com-
mission.

1L. W. Nordheim, Phys. Rev. 78, 294 (1950).

That a perturbation which depends on the relative
coordinates only will probably not yield Nordheim’s
rule is evident from Racah’s results on the energy levels
of two nucleons in the j; coupling.? It is clear that
Nordheim’s rule would result for a potential of the type
0.0,V (|r,—1,]) without too severe limitations on
V (). It is, however, still interesting to see how much
spin dependent force we should introduce, and whether
the different character of the two rules, namely the
definite answer of one of them and the rather vague
answer of the other, can be understood.

NOTATION

We shall find it very convenient to use a notation
introduced by Wigner? which exhibits most clearly the
symmetry properties of the different coefficients in-
volved in the addition of angular momenta. For con-
venience we also reproduce here, without proof, some
of the relations between these coefficients.*

The vector-addition coefficient is denoted by

(jl 72 ]3)
M1 M2 M3 .

It is related to the usual Clebsch-Gordan coefficient® by
the relation:

(]‘1 j2 ]3) (..1)7'2—]'1-’-#3
M1 M2 M3 (275+1)2

To prevent confusion we shall call this coefficient a
Wigner coefficient. A Wigner coefficient vanishes unless
J1+32+3:=0. (This equation should be understood
as meaning that the three numbers ji, 72, and js satisfy
the triangular inequalities, and that in addition
pitpetps=0.) .

The symmetry properties of the Wigner_coefficients
are given by:

(]1 J2 ]3) (]k Ji ]m)
My M2 p3 M K1 Mm

2 G. Racah, Phys. Rev. 62, 438 (1942).

3 E. P. Wigner, “On the Matrices which Reduce the Kronecker
Products of Representations of Simply-Reducible Groups”
(unpublished). I am indebted to Professor Wigner for making a
copy of his manuscript available to me.

4See also: Biedenharn, Blatt, and Rose, Revs. Modern Phys.
24, 249 (1952).

8 E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, Cambridge, 1951).
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where € is +1 or (—1)7+2+i according to whether
(k, 1, m) is an even or odd permutation of (1,2, 3).
Also:

( J1 J2 I3 )=(— 1)i1+i2+7’3<]1 J2 ]3)‘ (4)
—W1 —M2 M3 M1 M2 M3 '

The orthogonality relations take the forms:
. J1 J2 Js Ji Je Js
o2
73 M1 2 M3 K1 M2 M3

= (s, 10 s, ), (52)

) Ji J2 s\ (1 G2 35
aistn(7 ) (Y
M1 M2 M3 M1 M2 M3

=6(P'3, #3,)5<j37 jS/); (Sb)

where the summation convention is applied to double
Greek indices.
The Racah coefficients will be denoted by

{jl J ]'sl' ©

hily I
They are related to Racah’s W? by the relation
J1jed N .
{ L 3,= (= Diticbintla . W (1 Lly; fabs).  (7)
I Iy 13

A Racah coefficient vanishes unless:

hit3et3:=0, lLi—l43:=0,
—li+js+1;=0.

The symmetry properties of the Racah coefficients are

it k—1=0,

{jl Jo ]'s} {jk Ji jm] \lk I Jm

l1 lz l3

L b In l ®

Je Jt Im

where (klm) is any permutation of (1,2,3). The
orthogonality relation for the Racah coefficients is

{jl D ]3H]1 J2 Js }

2741) (2 41)
2.2t 1) 2 L Ll

i3
=63, 15). (9)

In addition they satisfy the following relations:

X (— 1)k 2l 1)

) {jl Js js}{jl h js'}_‘ﬁ J2 Js

= ], (10a)
Ll I3

J2le U3 Iy U 74
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5= (— 1) ivkiztisHletlrHlstrbatkstk (254 1)
k

S [
lz ks j2 l3 kl js ll kz jl

Jrke Ja) (b ke by
= . H , }, (10b) .
oL ki g2 ksl LRy 1z kg
Ju J2 Js L . . .
[ i @) Qe DT
0 I, I3

X8(le, 730 (ls, 72).  (11)

The following relations are satisfied by combinations
of Racah and Wigner coefficients:

(]1 i ]3)(11 - )=Z<—1)f«'s+ls+m+M

w1 pe m3/ \N1 Az —us ls

7172 7 li g2 1 g1 ls 1
v><(213+1){ L 3}(‘ 3)( e ), (12)
I Iy I3V \Ny p2 A3/ \p1 Az —N;

{]1 Je ]3](]1 J2 Ja)=<_1)h+mla+h+h+x3
I lo Ig) Npy po us

j1 lz l'; 11 ].2‘» ls ll l2 j3
X ) ). )
H1 Az —A3 —A1 m2 A3/ NAp —Ag w3
(jn J12 j13)(j21 Joo fz:s)(jsl Fs2 jss)
A M2 As/ \X21 Xaz Aas/ \Agp Agg Ass
X(jn Ja jsl)(jm Jo2 j32) (jla Je3 ]33)
A Ao Ast/ \Aiz Aoz Ase/ \Aig Aas Ags
Ju Ji2 ]'13}{]'2'1 Joa ]23}

- S (- 1+ o
7 Ji2 7 J32

J23 jsa ]
ju sz jla

j31 j32 j33 . i .
X{. . ]= Jo1 Joo jesp. (14)
7 Ju Ja . . .
Js1 732 Jss
(14) defines Wigner’s nine-j symbol, which is also

called an X coefficient (Racah and Fano) or a Schwinger
coefficient.® It is easy to see from the symmetry proper-
ties of the Wigner coefficients that the interchange of
any two rows or two columns in a Schwinger coefficient
multiples it by the factor

(— 1) sttt jartjeatdast it fazt g3

OUTLINE OF THE COMPUTATION

We shall assume that in the zeroth-order approxi-
mation the particles are moving in a central field with
no interaction between them. The central field, ac-

6 J. Schwinger, Nuclear Development Associates Report NYO-
3071 (unpublished).
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cording to this approach, takes care of the major part
‘of the mutual interaction between the nucleons, the
remaining part of the interaction being treated as a
small perturbation. Limiting our considerations to two
particles in the jj-coupling scheme (/171) and (l252), the
degenerate states of the configuration j,j, will be split
by the perturbation, and the first-order correction to the
energy of a state with a total angular momentum J will
be given by

EGujs 7)= [¥*Guis IOVA GrjaTMdr. 15)

We shall take as our wave function for the state
(J1je, TM):

\I/(]ljZJM) = (-— l)jl“‘f2+M(2]+ 1)%

v T
X( )'/fl(flm)l/@(]'z#z)- (16)

uope —M
For particles in equivalent states (ji=js) this gives
antisymmetric states for even J and symmetric ones
for odd J, etc. No mdependence is assumed, so that this
wave function is good only for two distinct particles
such as a proton and a neutron, provided they are not
considered as two different states of the same entity,
i.e., provided the Pauli principle should not be applied
to them. This assumption is probably good for the
heavier odd-odd nuclei.

Introducing the notation

0y ® = 1 o V= _%("'z'—i""y);

o110 =}(ortia,),

and expanding V(| r;—r;|) in Legendre polynomials of
the angle w between r; and rs:

V(ti—r)=3% w(|n], |r2])Pe(cosw),  (17)

we find that the first-order correction to the energy
of the state (jij,, JM) due to a perturbation
61 -0,V (| r;—r3|) can be written in the form

E(j1j2J)= Zk fnk (jle-])Fk (’l’hh%zlz),

o W=0,,

(18)

where
far= (2k+1) (j1joI M |01 - 05" Py (cosw) | j172T M),

and

Fi=1/(2k+ 1)fR12 ()R (nals) i (1, ro)dridrs, - (20)

(19)

R(nl)/r being the radial part of the smgle—partlcle wave
function y (nljm).

The integrals f. can be evaluated exactly since they
do not involve any unknown parameters of the central
field. This is most easily done by the tensor-operator
algebra developed by Racah? and in fact the explicit
expression for fo, was given by Racah as early as 1942.
We shall here follow a slightly different way which is
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more convenient for the summations involved in the
special case of delta forces.?

Following Racah we decompose Pk(COSw) by the
addition theorem for spherical harmonics,

P (cosw) =2, (—1)*C® (1)C®(2),
Ce® (1) =[4n/ (2k+1) 1Y ® (8:000),
and get for (19) the expression:
fue=22 2k+1) (j1jaT M | oy ™ (1)C® (1)
U @O Q)T (C) Q1)

Since both ¢ and C® are reduced tensor operators,
their product can be reduced into a sum of tensor

_ operators of orders 7(|k—n| <7< k+n) which are given

by
nk r
Tp<r>=(~1)k+n+p(2,+1)%( )07<n>cx<k>. (22)
Y kK —p

If we use (5), we obtain
Jue= (—=1)"+*(2k+1)

X (G1je I M| (= 1) T ToM| j1 oI M),  (23)
where A-B stands for the scalar product of the tensor
operators A and B.

The matrix elements for the scalar product of tensor

operators were given by Racah,? and in the present
notation one obtains

]1 ]2]
= (=Dt (- nw%«%+n{ }

]2 ]1 r
X (Gl T2 71) Gall T2 72).

!

vessiiirensen(’ 7))
o A

=Wﬂu”ﬂﬂ”

(24)
By definition,

I) = (_ 1)k+n+p (2,,_;_ 1)%
x( )(Sljplo'a,(")c ® |V ). (25)
Y K —p

If we transform the last matrix element from the (s/ju)
scheme to the (susJu;) scheme, and remember that both
¢ and C® are tensor operators with respect to s and
I, respectively, we find that

GUITD(s' ) =[r+1) (2j4+1) 25+ 1) ]
’ nkr
X (slle™|[s)@CP(I)s 1 5

37

sV g

(26)

We may note here that due to the symmetry properties
of the Schwinger coefficient the diagonal matrix ele-
ments of 7 vanish unless k+#n-7 is even.

7 Compare also similar calculations by: M. H. L. Pryce, Proc.
Phys. Soc. (London) A65, 773 (1952); D. Kurath, Phys. Rev. 87,

218 (1952); B. Feld and L. Marks (private commumcatxon),
I. Talmi, Phys Rev. 90, 1001 (1953).
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From (26) we obtain for (19) the expression
far= (—=1)7+27(25:4-1) (272+1) (2k+1)
X (s1llo™|ls1) (s2llo ™|[s2) (al|C®|11)
X (lzllc(k)”lz); (—1)ktntr

L nkrymb©kr
g J ) .

X{ L. } S l1 1 S2 l2 J2 e (27)
Je Jv 7 . .
s1h J1J) ($2 Iy 72

The sum over 7 can be performed yielding a relatively
simple expression. Since, however, we are interested in
the values of the energies for delta interaction, we shall
find it easier to evaluate the sum over % first. We also
notice that »# can assume only two values (since s=3%):
0 and 1; for =0 the summation over k and r reduces
to a very simple expression. It is therefore very con-
venient to sum over n too and obtain the value of
E(417s, J) for n=1 by subtracting the contribution of
n=0.

To proceed with the calculation we note that for

V(| r1i—13|) =8(r1—72)8 (cosw— 1)ryr,
w71, [72]) = (2k+1)rirs,

so that Fy=F, for every k. (J||C®||I) was computed by
Racah?

(28)

Il 1k
(Mc“mn=(—1wah+0(o()o).

It is also easy to see that (s||a™|[s)=[2(2n+1)]%
If we combine all these results we obtain (expressmg
E in units of Fy)

3 2 E.(juj])

n=0,1

=Y (-1 7'1+7'2+J+n+2k+r(2]‘1+ 1) (2j2+ 1)

n,k,r

X (2h+1) (20241) (2n+1) (2k+1) (2r+-1)

X(llll )(lzlz )[]1]2J}
000/\oo0o0/ljjr

nkrymékr
X351l f1pdse by jop= > (—1)ivkirkTHntr
nrkike
S1 ll jl S92 l2 j2
X (271+1) 272+ 1) (21+1) (2l+1) 2n+-1)
J1 Je
x@r+n-{7 }(—1V%2h+4)
]2 nr
n kl r
n kl r ll ll kl .
(oD e
vy0 p/\0 00 )
s1h J1
N 2%4

kz 4 lz lz kz i
X(2kz+1)( )( ) saly jap. (29)
v 0 o/\0 00

So Iy j2

pE-SHALIT

The sums over k; and &; can be carried out separately
by using the following relation which is easy to verify :

nkr

zen (L )0

/ N4

J
ns SNkl UNfsl j\Ny' U §
CoACC D0 ) @
yod/ \e AN/ \o N d NV
The sum over # can then be carried out by applying
directly the orthogonality relations of the Wigner coef-
ficients, and the sum over 7 results immediately by the

use of the relations involving the Racah coefficients.
The final expression is

3T Ea(ie))

= (= 1)t (25141) (2724+1) 20 +1) (21+1)
J1 72 J J1 Je J
* ) )
Q1 —a Ga— Q2 —01 a1~
(81 L5 st h »
(o —ad o )
(43} 0 —Qy [s2) 0 — Q2
So lg jz ’82 l2 j2
(oo 2ad o Z0) @
a1 0 —a1/ \a2 0 —as
Since both a; and a; can have only the values £3 and
since
(o) 5
10 -1/ 204+1)
we get
32 En(f1)2)) =321+ 1) (2/2+1)

.. . . .
X{(Jl I ]) -—(—1)11+12+J(]1 J2 ]) }'. (32)
3 31 b —3o

This expression can be further simplified by means of
the relation

(7Y ks -
1 1-1) “worn

. 2 jl jo J 2
xeieoy (777 69
, 7 =30
Noting that
0k~ ..
' _ L (kd
s 1 f = (— 1)kt 2(2k41) T L 8(k, 7),
s
sl g

(34)
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we get, for n=0,

. . . EAAN
B =30 @it (] ")
3 —z

(@it D)4 (= 1) iist7 (2 1)
[1+ - J (350)
47 (J+1)

and therefore

. . . U ENAN
B =it @0 (5 1)
2 T2

% [[(2j1+ D+ (D)7 27,4+ 1) ]
47(J+1)

—(1+2(-1)h+lz+1)]. (35b)

The last two formulas obtain an especially simple form
when j1=j2 and l1=l22

A
=i (; )

i3 0
1 for even J,
X{ (36a)
(14 274+ 1)2/J(J+1)] forodd J;
A A
mn=iei(; )
720
-3 for even J,
x| (36b)
(14 @2j4+1)¥/J(J4+1)] for odd J. .

For equivalent nucleons only even-J states are
allowed. (because of the Pauli principle) and one sees
that a potential of the type [34-01-0:15(r1—r2) yields
no interaction in these states corresponding to the fact
that 3+0,-02 vanishes for states symmetric in the
coordinates (and therefore antisymmetric in the spins);
whereas, (r;—r») vanishes for states antisymmetric in
the coordinates. For similar reasons, one can see that
for these states the Wigner force and the Majorana
force [1(1—01-02) for particles of the same charge]
give the same results for the energy levels in the delta
limit.

NORDHEIM'’S RULE

On the basis of the analysis of 8 transitions in even-A4
nuclei, Nordheim has deduced the empirical rule for the
spins of the ground states of odd-odd nuclei.! When the
states of the two odd nucleons are /;7; and /57, this rule
can be stated with the help of the Nordheim number
N=Ul;+ ji+12+ j» in the following way :

For even N, J=|ji—j2|; for odd N, J>|ji— 7.|
and is usually of the order of ;4 7a.

1483

TaBLE L | (j1i} je— 3| 7142 70) |2. The Clebsch-Gordan coefficient
is minus or plus the square root of the entry in the table according
to whether this entry is, or is not, preceded by an asterisk.

ja\Jj1 1/2 3/2 5/2 7/2 9/2
J=0 1/2 1/2 0 0 0 0
3/2 0 *1/4 0 0 0
5/2 0 0 1/6 0 0
7/2 0 0 0 *1/8 0
9/2 0 0 0 0 1/10
J=1 1/2 1/2 1/2 0 0 0
3/2  1/2 *1/20 *3/10 0 0
5/2 0 *3/10 1/70 3/14 0
7/2 0 0 3/14 *1/168 *1/6
9/2 0 0 0 *1/6 1/330
J=2 1/2 0 1/2 1/2 0 0
3/2 1/2 1/4 *1/14 *9/28 0
5/2 1/2 *1/14 *4/21 1/42 5/21
7/2 0 *9/28 1/42 25/168 *5/462
9/2 0 0 5/21 *5/462 *4/33
J=3 1/2 0 0 1/2 1/2 0
3/2 0 9/20 1/5 *1/12 *1/3
5/2 1/2  1/5 *4/45 *1/6 1/33
7/2 172 *1/12 *1/6 3/88 3/22
9/2 0 *1/3 1/33 3/22 12/385
J=4 1/2 0 0 0 1/2 1/2
3/2 0 0 3/7 ~5/28 *1/11
5/2 0 3/7 1/7 *15/154 *12/77
7/2  1/2  5/28 *15/154 *81/616 81/2002
9/2 172 *1/11  *12/77 81/2002 81/385
J=5 1/2 0 0 0 0 1/2
3/2 0 0 0 5/12 1/6
5/2 0 0 25/63 5/42 *4/39
7/2 0 5/12 5/42 *75/728 *3/26
9/2 1/2 1/6 *4/39 *3/26 3/65
J=6 1/2 0 0 0 0 0
3/2 0 0 0 0 9/22
5/2 0 0 0 25/66 7/66
7/2 0 0 25/66 25/264 *7/66
9/2 0 9/22 7/66 *7/66 *16/165
J=T7 1/2 0 0 0 0 0
3/2 0 0 0 0 0
5/2 0 0 0 0 105/286
7/2 0 0 0 1225/3432 35/429
9/2 0 0 105/286 35/429 *784/7293
J=8 1/2 0 0 0 0 0
3/2 0 0 0 0 0
5/2 0 0 0 0 0
7/2 0 0 0 0 49/143
9/2 0 0 0 49/143 49/715
J=9 1/2 0 0 0 0 0
3/2 0 0 0 0 0
5/2 0 0 0 0 0
7/2 0 0 0 0 0
9/2 0 0 0 0 3969/12155

We shall now proceed to investigate our results in
order to see whether they offer any way of explaining
these regularities. It should be emphasized that we do
not know as yet any reason to believe that the delta
forces give best description of the interactions between
nucleons in a nucleus, although they might represent
not too bad an approximation.

For pure Wigner forces one gets a dependence of the
energy levels on the j’s of the interacting particles only
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J:0
5> J=! Je3 \
3 3
e ¥z g a J=2
J=0 J=2
2 U3 J=l
J=0
Je4
Js
% % J=4
J:3 J=2 J=3 __—
J=2
J:=4
J=l J=1
J=2
J=5 =2
J=5
J=3 V=4 J:a
% %
/ ~ =
Je3 J:4
J:4
J:5
J=5
J=2
J=2
J=6 Je6
J=4
¥2 92 —
3 =4
. s J=5
J=5
46 J:6
J=3 J:3

Fi1c. 1. Energy levels of odd-odd nuclei for a potential [(1—a)+ eao1-0215(r1—73). Left column—odd Nordheim numbers; right
column—even Nordheim numbers. In each figure the right half corresponds to e=-1 and the left half to e= —1. « varies from 0 to 1.
The energy scale is arbitrary.
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J=1 J*0
J:3
J:5 J:5
% %
=K e
) Jst
; e 3:4
2 73 J=2
75
J:0
J:0
gzl
gl
J=3 s Je6
Jz5 J=4
J= ] prd
73 P et
e — =
75 / J=4 776
—z
5
/ gl
J:3 76
J:1
% % 2
Jsey |- 95
=
J-a =
337 I'ED)
J=2 J:2
4:0 J=0
Js=
=t
Jed
=2
J:6 ~
.7 s
=3
J:5
J=4 / J=3 =7
J=7
J:2 J=
20 J:0

Fi16. 1.—Continued
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(in the jj coupling) and not on their I’s. This result
is strictly valid for the case of delta interactions, as can
be seen from the results of the previous section, but also
in other ranges and forms of the potential the depend-
ence on the I’s enters only through the usually weak
dependence of the Fy on the I’s.2 We, therefore conclude
that Nordheim’s rule probably cannot be explained on
the basis of the Wigner forces alone. A potential which
evidently might give results in accordance with Nord-
heim’s rule is [@+bo:-05]6(r1—12). The energy levels
for this potential can be deduced from the results of
the previous section. For this purpose we calculated the
Clebsch-Gordan coefficients which are involved in the
determination of the energy levels. These are given in
Table I. In Fig. 1 we have plotted these energy levels
for a potential of the form [ (1—a)+ eag;-02]6(r1—12)
with 0€a< 1 and e==1.

The similarity between the graphs so obtained for
different j’s is striking, and it is immediately evident
that the configurations in question can be divided into
two classes according to whether the Nordheim number
is odd or even. For e=--1 and starting from a=0 (pure
Wigner forces) we find that for even N, J=| 71— 7.|
always remains the lowest state even as a increases,
and that it is an isolated lowest state, i.e., all the other
states are clustered at relatively high excitations. For
odd N, J=|j1—ja| is still the lowest state for a=0,
but it rises very steeply with «; and even for small
values of @, J=ji+ j:» becomes the lowest state. The
state J= 71+ 72, however, is no longer isolated as was
the state J= | 1— 7| for even N, and is relatively close
to ji+j:—2 and ji+j.—4, etc. Thus a weak con-
figuration interaction or a transition to a potential of a
finite range could bring one of these close-lying states
below J= 71+ js. We thus see that this simple model
can explain Nordheim’s rule and its decomposition into
“strong” and “weak’ rules. It goes a little bit beyond
the original formulation of the rule, in as much as it
predicts that in the “weak” case the ground state will
have an even or odd spin according to whether ji;+ j.
is even or odd.

The spins of very few odd-odd nuclei have been
measured directly and the spin assignment for most
of them is usually made on the basis of 8-decay analysis.
This analysis, however, is less reliable in the case of
odd-odd nuclei than in the case of odd-even nuclei.
Thus, if an odd-odd nucleus with odd neutron in j,
and an odd proton in j, and total angular momentum

DE-SHALIT

J; undergoes a 8 decay to the state J; of the configura-
tion j7,? in the daughter nucleus, the matrix element for
an allowed transition will be reduced by a factor®

27t 1) @I ADIW (Gnd ijpT 55 5D 1%

compared to that of the corresponding single-particle
transition. This factor may be quite small and may
make an allowed transition look like a first-forbidden
one. Also the order of the transition / is determined by
the inequalities:

. Il_llgjgl—}_ly = (—l)lﬂ’f}
max(| ja—7p|, [Ji=J;|) ST min(futj Ji+J 1) ;

so that if one observes for instance the ‘“unique for-
bidden” shape one knows only that max(|j.—7,|,
|Ji—Js|)=2, and one cannot make a definite state-
ment about |J;—J;| without some assumption about
jn and jp, unless J;=0.

Even if one adopts the order of levels for the odd
particles from the shell model, an ambiguity arises from
an effect similar to that of the pairing energy. It is very
probable that the situation in nuclear spectroscopy is
such that the energy difference between two adjacent
single-particle states (computed for a central field which
takes into account most of the mutual interactions of
the particles) is small compared to the “extra” inter-
action between the particles (which is considered as a
perturbation upon” the central-field approximation).
Thus, if the order of levels for the single particles is
Jngn' 'l Jugs Jo’ -+, it does not necessarily mean
that the ground state of the configuration (j.j,) is
lower than that of (j.7,") or (§.'j») or even (j.'7,),
and the assignment of the right configurations for the
states of the odd-odd nuclei is not always unique, even
if the total spin and parity are known. In principle, the
measurements of transition probabilities involving these
states could determine their configuration, but so far
it has been impossible to get a good enough agreement
between calculated and experimental values for tran-
sition probabilities even in the ‘‘simpler” cases of odd-
even nuclei. It seems that the only practical way of
obtaining more information concerning the configura-
tion of a certain state in odd-odd nuclei is the measure-
ment of its magnetic moment and eventually its quad-
rupole moment. This would also enable a check of the
refinement proposed here for the Nordheim rule.

8 Henry Brysk, Phys. Rev. 90, 365 (1953); A. de-Shalit and
M. Goldhaber (unpublished).



