
jj-COUPLING MODEL

=+2, Bs=Bs=—Cs= C—s=Ds=Ds= —1 with nor-
malizing factor (27)—&.

If one does not set coeS.cients equal to zero as in the
approximate case, the I+ and T+ operators will lead to
equations reducing the number of arbitrary constants
from 16 to 3. This indicates that there are three states
with I=7/2, 7= 1/2, which can only be resolved by
solving a secular determinant of the matrix elements
for nuclear interactions. Three arbitrary wave func-
tions are constructed, consistent with the I= 7/2,
7=1/2 requirements and mutually orthogonal. The
secular determinant is solved for the case of a two-
particle delta-function interaction

Vis ——As(0.8+0.2Qis)3(ris), (A14)

where Q» is spin exchange. The various physical quan-
tities calculated with the resulting wave. functions are
given in Table XXI and compared with values ob-
tained by using the approximate wave function.

TABLE XXI. Expectation values with the approximate
and exact wave functions for Sc4'.

Wave function
1fv/2 shell

energy
Mag. mom. )~(GT2 for (MtGT~ for

nm Ti4g(P+) Sc4g Sc4g t,'P+) Ca43

P (approximate) 2.400 G
2.516 G

fs 1.313 G
$3 0.981 G

+4.08
+4.82
+1.03
+0.02

0.40
0.72

0.57
0.24

From Table XXI it is evident that the lowest energy-
solution of the secular determinant fi represents a
state with about the same energy as the approximate
state. However, while the energies agree within 5
percent, the magnetic moments and Gamow-Teller
matrix elements for beta decay are considerably dif-
ferent. This indicates the degree of validity in using
the approximate wave functions and is satisfactory for
energies.
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Empirical evidence on the shapes of 6rst- and second-forbidden spectra is surveyed to determine the
linear combination of invariants in the p-decay interaction. Absence of 1/W terms in allowed shape first-
forbidden spectra excludes combinations SA and VT. Spectrum shapes for II=2, no, transitions exclude
VA and indicate that for negatron emission the relative algebraic sign of the terms is (S T). These spec—tra
also indicate the need for considerable correction of nuclear matrix element estimates because of the presence
of pseudoscalar-coupled forces in the nucleus. Extrapolation of these empirical corrections to the case of
RaE shows that the full linear combination should be LS—T+(1/B)P], where 4 is positive and of order
unity. Arguments based on symmetry principles indicate that the correct interaction should in fact be
(S~T+P), where ~ refers to P emission. The effects of the difference in sign of the T term should in prin-
ciple be observable. This law for p decay is compared with the decay of the p, meson, and. it is found that jf
the linear combinations are the same, the coupling constants also have identical absolute values. The mean
coupling constant is

~f ~

=1.44XO 04X10 " erg cm'. The chief experimental doubt concerns the ii-meson
spectrum, which is expected to go through zero at its end point if the p and p interactions are identical. It
appears possible to deduce the combination (S—T+P) uniquely from the postulates that the neutrino
field is (1) unique; (2) massless; (3) part of a universal four-particle interaction.

I. INTRODUCTION AND SUMMARY

=HE shapes of forbidden P spectra are analyzed to
provide information about the linear combination

of invariants, SVTAP, in the P-decay interaction. It is
assumed as a basis throughout that (1) the interaction
contains equal parts of Fermi (S, V) and Gamow-Teller
(T, A) invariants; and (2) that there is no appreciable
(&10percent) mixture of S and V or of T and A in the
interaction. These assumptions are indicated by the
most recent analyses of allowed spectra. ' '

*Work performed under the research program of the U. S.
Atomic Energy Commission.

' O. Kofoed-Hansen and A. Winther, Phys. Rev. 86, 428 (1952).
2 J.P. Davidson and D. C; Peaslee, Phys. Rev. 91, 1232 (1953).

In forbidden transitions only those spectra involving
a mixture of diferent nuclear matrix elements can give
information about the linear combination; by assump-
tion (2) this implies that the only useful spectra are
those with a spin change AI &rs+ 1, where e is the order
of forbiddenness. To extract the parameters X of the
linear combination, it is necessary to have some inde-
pendent estimate of the ratios of nuclear matrix ele-
ments, which always occur in combination with X.
Section II attempts to form such estimates for the
general matrix element, extending a procedure previ-
ously given' for 6rst-forbidden matrix elements and

s T. Ahrens and E. Feenberg, Phys. Rev. 86, 64 (1952).
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making some allowance for pseudoscalar-coupled nu-
clear forces. 4

In Sec. III are given simpli6ed expressions for the
spectrum shapes of 6rst- and second-forbidden transi-
tions. The low-Z approximation is used in order to
obtain perspicuous algebraic forms for the spectrum
shapes; since the analysis relies only on order-of-
magnitude arguments, the low-Z approximation should
not generally vitiate the conclusions. It is found possible
to simplify the expressions for the spectrum shape even
further by taking only the large terms of order nZ/2E
The combinations ST and UA are observed to have the
same generic shapes in this lowest-order approxima-
tion. They can be differentiated only by using inde-

pendent estimates of matrix element ratios for second
and higher forbidden spectra, or by comparison with

spectra like RaE, where the usually dominant terms of
order nZ/2E happen to cancel.

Section IV discusses the comparison with empirical
data. The allowed shape of most 6rst-forbidden spectra
with AI &2 clearly arises from the dominance of energy-
independent Coulomb terms in the electron wave func-

tion, as has been observed. ' The absence of 1/W terms
in these 6rst-forbidden transitions of allowed shape

definitely rules out the combination SA and provides

some evidence against VT. Nothing more can be de-

duced from these spectra because their allowed shape

does not provide any indication of nuclear matrix

element ratios.
The second-forbidden spectra with AI= 2 have non-

unique shapes for which only the combinations VA

and ST are available on the basis of previous evidence.

The combination VA is found to be at variance with

the spectrum of CP', so that the only remaining possi-

bility is ST. This conclusion is in harmony with recent

P—v correlation experiments' in He'. Further compari-

son with the DI=2, no, shapes indicates that (1) the

relative algebraic sign of the terms in negatron decay is

given by S—T; (2) a reasonable fft cannot be obtained

without a considerable correction of the nuclear matrix

elements for pseudoscalar-coupled forces.
The spectrum of RaE is considered as the only case

that gives evidence on the amount of pseudoscalar

interaction I' in the linear combination. General argu-

ments based on the rarity of the RaE type spectrum

indicate that it should be considered a 0=+0"transition.

The unique shape indicates cancellation of the usually

dominant, energy-independent terms, These conclu-

sions are the same as those obtained by a detailed

analysis of the spectrum. ' Extrapolation of the empirical

4 M. Ruderman, Phys. Rev. 89, 1227 (1953).
' H. M. Mahmoud and E. J. Konopinski, Phys. Rev. 88, 1266

(1952).' B. M. Rustad and S. L. Ruby, Phys. Rev. 89, 880 (1953);
J. S. Allen and W. K. Jentschke, Phys. Rev. 89, 902 (1953).

'A. G. Petschek and R. E. Marshak, Phys. Rev. 85, 698
(1952).

pseudoscalar-coupled force corrections from the second-
forbidden spectra to the case of RaE indicates that the
hnear combination active ln this transition 1s T (1/—8)P
where 8 is a positive number of order unity.

In Sec. V are reviewed the symmetry arguments that
bear on the linear combination. The only combination
consistent with any symmetry principle and the em-
pirical evidence is (S—T+P). This is taken as the cor-
rect form for negatron decay; for positron emission the
combination becomes S+T+P, and the difference in
sign of T should lead to observable eGects. This linear
combination is uniquely selected by the conditions
that (1) the interaction should be antisymmetric in
exchange of pairs of equivalent particles, where this
does not include all pairs of particles in the interaction;
(2) the interaction should be invariant on mass reversal
of the massless neutrino 6eld, in the case of p-meson
decay into two neutrinos; and (3) the P-decay inter-
action is identical with that for p-meson decay.

In Sec. VI the decay of the isolated p meson is com-
pared with P decay. It is found that if the linear com-
bination is assumed to be the same for both cases, then
the coupling constants have the same magnitudes
within allowances for experimental errors. The mean
value of the coupling constant inf(S—T+P) is

tf i
= 1.44

%0.04 erg cm'. The chief point of present experimental
doubt is the shape of the p-meson decay spectrum,
which should go to zero at its end point if the P- and
p-decay interactions are indeed identical.

II. NUCLEAR MATRIX ELEMENT RATIOS

The shapes of forbidden spectra with E. I(v+1 can
be used to determine the linear combination only if
the ratios of certain nuclear matrix elements can be
estimated a priori. Arguments of invariance under
rotation and reQection show that general relationships
exist only between matrix elements with identical selec-
tion rules. Fortunately, only such ratios are required
in fitting the spectrum shapes. Ratios of matrix ele-
ments with diferent selection rules depend on speci6c
details of the wave functions involved.

A procedure has been given' for estimating the ratios
of 6rst-forbidden matrix elements. It leads to conclu-
sions at variance with the fit' of the RaE spectrum,
unless one assumes an unconscionable proportion of I'
in the linear combination. This dilemma can be re-
solved' in the case of RaE by considering the pseudo-
scalar nature of nuclear forces. In this section we

attempt to obtain approximate ratios for first- and
second-forbidden matrix elements, taking pseudoscalar
forces into account but otherwise following the spirit
of reference 3. .

In writing .the P-decay operators, a summation g&
over all the nucleons of the nucleus will be understood
but not written explicitly unless necessary. The P-

decay operators concerned are all contained among the
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forms
1

P yp er
:R„
e vR
.a&(r VR„

I e,+Q~&& r ~R„+,=i/a e,*Q[~ r&& p, R.]+, (2)

where Q changes a neutron into a proton and R„ is a
solid harmonic [r V„(8)] or equivalent coordinate
tensor' with (2ii+1) independent components. The
"relativistic" operators contain the factor y5 and de-
pend strongly on the presence or absence of the factor
P. The nonrelativistic operators are not much affected
by P and will be written without it. The most general
relations are those between relativistic and nonrela-
tivistic operators, but there is one fairly general rela-
tion between two nonrelativistic operators for an eth-
forbidden transition:

representing the extent to which the change in Coulomb
energy is counterbalanced by an opposite change in the
nuclear symmetry energy. Reference 3 takes f„=pP,
while a value equivalent to f„=p is obtained from more
explicit calculations with single-particle wave functions
and a specific Hamiltonian operator. With atomic units
h/mpc for length, mpc'=2 Mev for energy, Eq. (4)
becomes

"Qo. ~R„=ix QR„, x= 2.4B(1 f„) A—W, —(5)

where B is the Coulomb barrier height of the (final)
nucleus in Mev and AW= hE/mpc'. For negatron emis-
sion in elements heavy enough to have forbidden spec-
tra, 65' is frequently negligible relative to the term
in B. Equation (5) for I=1 is the first Eq. (19) of
reference 3.

The only other relativistic operator of possible im-
portance in il decay that does not involve P is Qyp,
consider

=it 4I*QR„%,, [Hp, Qe r]= ihc~ Qpp[o .p', Qe. r]

where the square bracket is a commutator and the sub-
scripts i and f indicate initial and final nuclear wave
functions. For multiparticle transitions or cases where
there is considerable Russell-Saunders coupling, the
coeKcient t can be evaluated only from detailed
knowledge of the nuclear wave functions. For the most
useful 6rst approximation of transitions between the
same subshells in j—j coupling, however,

t= (1/&)((~ L)i —(~ L)'}
= &m for odd A.

(3)

The relativistic matrix elements not containing P can
be related directly to nonrelativistic elements without
explicit introduction of the nuclear forces. For example,

Z

I Q'Yp& ~R = [Ho, QR ]
ac&

Z

[H—H.—H„, QR„]
h

Ze2
AE 1.2 (1—f„) I—QR, (4)

R

where Hp= —n pc—PMc', again without writing ex-
plicitly the summation g&. The argument follows that
of reference 3: the total energy diGerence of the two
nuclear states is AE=E~—E,, the Coulomb energy
difference for a uniform charge distribution is 1.2 Ze'/R
with R the nuclear radius, and 0(f,(1 is a fraction

'E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308
(&94&).

= iI'tc Qyp (3+2io" ~ && r)

For the operator e L in this matrix element we must
take, for any individual nucleon that makes a transi-
tion, the average value of e L for fixed j and l=j&p;
this value is —5, independent of j and I, so that in
general

f b'
Qyp ——

~ [Hp, Qe r]=i@ Qe r.
hc&

(7)

t

+r*QPVp+'= (0v*Q o'—A)*&Pi')

Here ijp is the product of the large components of the
wave function for all nucleons in the nucleus, and Pi
diGers only by the substitution of the small component
for the particle on which QPyp operates An. onrela-

9 D. L. Pursey, Phil. Mag. 42, 1193 (1951).

This is the second Eq. (19) of reference 3.
In contrast to Eqs. (5) and (7), relativistic operators

containing P can be related to nonrelativistic operators
only by writing out the matrix elements in nonrela-
tivistic approximation. At this point certain char-
acteristic terms will arise if the nuclear forces are
pseudoscalar with pseudoscalar coupling. Consider the
operator gyp.
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Pk( —nk y"c P—kMc')0'= (E V——V )0

tivistic approximation for P, is to be obtained from the over r, is expected to give a term of order (S—Z)/
equation of motion: 3&10 percent relative to the 6rst. The erst term of

(15) gives a contribution to (QPyk) of

where the pseudoscalar potential is

U i Q TjkU j k(P~, ) (jP~,)k
jQk

Tjk=~' ~k, Vj"= Vo exp( —~lrj r' —"l)/lrj r" l.
' —(10)

The "ordinary" potential V does not contain any Pps
factors. We write out the component of (9) that corre-
sponds to (E Vg i".—

LQ'o'. p', ~'"]
2Mc j kwj &

The order-of-magnitude relation between V'k and the
nonrelativistic approximation to the two-body pseudo-
scalar potential is U'" —(2Mc/hj:)'H'k. Now Pk»Hjk
is that part of the nuclear force on the jth nucleon which
is contributed by the two-body pseudoscalar potential.
We accordingly write

—irk ykqko Q—jrj pjcg2jk'+ (A 2)—Mc'pik (E—— V)gik-
jQk

+Q TjkU jkp j i p TijVjjp jjk (11)

)2M' ' H, j

4 jj ) 2Mc'
(17)

jI k [jrk. pkcP +Q TjkVjkg j]
2Mc' jQk

(12)

Since only terms of first order in y are preserved, it is
consistent to retain only those of first order in V and
substitute Pi'= (—1/2Mc)jr' p'$0 on the right-hand
side of (12), so that

where no summation is implied on the index k. Here
is the product of the small component wave

functions p for the n nucleons ijk, times the product
of the large components 4 for all other nucleons. Equa-
tion (11) reduces to first order in q by dropping the
second and sixth terms, which are small of order y'
relative to the otherwise similar first and 6fth terms,
respectively. Taking E—V =AMc' yields

where p is approximately the x-meson mass and p is
an undetermined factor. Here p takes care of the fact
that the effective potential in the nucleus may not all
arise from two-body pseudoscalar forces and also in-
cludes the uncertainty in the relation of V'k to H".
This uncertainty is aggravated because the above dis-
cussion depends on the 6rst term of a power series
expansion in V„, and higher terms may be important.
We do not expect

l p l
to di6er by an order of magnitude

from unity, but not much more can be said; it may
show appreciable fluctuation from one nucleus to the
next, and under these fluctuations may be a gradual
trend with A.

Lumping our ignorance in the factor p, we have

(QPVk)= [Q~.y, H ]
p'c'~

y k [~k. pk Q Tjkgjkjrj. pi]P
2Mc jgk

(13)
(1.2Ze' ) p

„, Q- p. (1g)
R 2 jj'c'&

T7' TJ ('0 Ar c2T7' V (2il+c Since we have already taken the pseudoscalar forces
The matrix element (8) is now, writing' the pk into account once, we can evaluate J'Qjr p to this

order by taking for Bo the nonrelativistic approxima-
tion without pseudoscalar forces, Ho= p'/2M. Then

(QPVk)= 2 „[~"p' Q"]
2Mc»

+ ZZ [T'"'p', Q'~'"]c»~»

iM p

) Qjr p= ' [Hp, Qjr r]
k~

Qjr' r (19)
iM Ze

=—AE 1.2—-(1—f„)—
The first term of (14) is just that obtained without
considering pseudoscalar forces and to this approxima-
tion vanishes identically. The second term arises from
the pseudoscalar potential. Using the fact that Q
= ~i (r +jr„), we obtain

so that, in atomic units,

(jjjoM y
QP&,)= —ij

I
i&y„2.41'~"Q

E j') (20)

[Tjk~j.pj QkUjk] —Qj[oj.pj Ujk]'
+ (Q"r.'—Q'r*') [~'.y', U'"]+, (15)

where the + bracket is an anticommutator. The second
term in (15) will be dropped because a summation

The procedure leading to (12) ma, y be immediately
applied to show that nuclear forces with pseudovector
coupling will make a negligible correction to the matrix
elements as compared with that from pseudoscalar
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coupling. In this case, (13) becomes

Pik = —(1/2Mc') [e".pkcgo p—H„Pik]
= —(1/2Mc') [1+pH„/2Mc']e" pro,

so that

(QPV )= —(1/2Mc) L p, Q]

(21)

and for the particular case m= 0,

(iM) t x)
(eXp) vR.= —

] )] —
) (aXr) vR.. (29)ia) «i~

The first term of (23) is, accordingly,

(QPa VR„)p= —
~

—
~

"(eXr) VR.—(p/2Mc) [e p, QH, ]/2Mc2. (22) &n) &

(30)
In this case the second term is smaller than (18) by a
factor of order (p/2M)' 5X10 '. Thus pseudovector
coupled forces behave like any "ordinary" forces in

making no appreciable correction to the lowest order
approximation for relativistic matrix elements.

Repeating the above arguments for the operator
Qpyke vR leads to

by use of (2). For jr=1 this is the third Eq. (19) of
reference 3.

For the second term of (23) we write

[ep. p j ek. VkR kUjk] —[i[aj.p j

(QPn VR )=— — P, Q"[ek pk, ek. VkR k]
2Mc I

i
+ Q Q, [Qjej pj ek. VkR kgjk]

2Mc j k~j~
(23)

and then capitalize on the fact that U&~ is almost a
8 function. Under this approximation, &~X„~=—V &E„&

and the pk„jek= S—e', where 5 is the total spin.
Assuming no correlation between S and V', we drop
the term S V' and have for (31):

t [e p a" VR„]=2i) (aXp) vR„.

Consider the quantities

a= ( ih/M—)(eXp) VR„
b„= (eXr) V(—(ik/M)p v)"R„.

Now using Ho= p'/2M and atomic units, we have

(25)

[Ho, b ]=—y b

Here again the first term is obtained under any nuclear
force assumption, and the second is peculiar to pseudo-
scalar coupling. For the first term we have

Q [e& p' e" V'"R kUjk]=Q [p' V'R ' Ujk] (32)

With (17) the second term of (23) becomes, in atomic
units,

p
Q[y vR„, H„]

p2c3~

(1.2 Ze') p
=f„] I

' Qy vR„
R ) p'c'~

(jÃOM )i.f.(24~) QR-, (33)Ep'i
since

t p ik —y( ih-
eXy V ll p V I"R-+ ~ b-+i (26)

k M M

r iM1
y vRn= [Ho, Rm]=

k~

Thus, 6nally,

—iMy t-

R„. (34)

The first term of (26) can be obtained by taking the
( R )

. '
~&

'
'l~f (24+) QR (35)

commutator of u with H0 m successive times, so that
(26) reads

x)~b„= (—x)" '—a+ b„~i. (27)

b„= (I—m)( —x)m—i Ia

Equation (27) is a recursion relation in J'b subject
to the boundary condition that b„=0, since E is- of
degree e in the coordinate on which V operates. The
solution ls ~

Relations (2), (4), (7), (20), and (35) will be used in
the analysis of the shapes of forbidden spectra. From
this analysis it will appear that the general form of the
pseudoscalar corrections is adequate, but that the
specific expressions for the coefficients of the pseudo-
scalar terms cannot be taken too seriously. This is not
surprising in view of the many crude approxima, tions
made in obtaining these coefficients; they are perhaps
better replaced by a single phenomenological parameter
with absolute magnitude of order unity.
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To obtain some insight into the shapes of forbidden
spectra that are possible under various linear combina-
tions, we write out the correction factors in low-Z
approximation. This procedure has the advantage of
showing at once which terms are large and what can-
cellations must occur among these large terms in order
to produce unusual spectral shapes among the remain-
ing small terms. Use of the low-Z formulas means that
the cancellation conditions and the spectral shapes re-
sulting from cancellation are given only approximately.
Any conclusions based only on order-of-magnitude
arguments ought still to be valid, however.

The features of all linear combinations not containing
SV or TA mixtures are illustrated by the four choices
STI', VA, SAI', VT. The real coefFicients X in these
equations are limited by the result from the mirror
transitions that Xp ——&Xgr. This condition is assumed
throughout. To specify the 6rst-forbidden correction
factors ' "it is convenient to de6ne the following func-
tions:

2

r
2 2

ci JrBij +1+ ' r yl+ J
&' r zi. (39)

Here x is independent of the combination assumed, and

y and s are given by the following scheme:

STP: yi( —E, a); zi(IC, g, 0),
VA: yi(E, Xa'); zi(k, g', 0),

SAI': yi(E , 0, 0); z'i(E, g', g),

VT: yi(E, a, a'); zi( —E', 0, 0).

(40)

For the second-forbidden correction factors it is
convenient to define the functions

1080x2——[(p'+K')'+ (4/3) p'K']

3y2(K, a) =p'([kB(~+kt) —2a]+k(p'/W) (li+kt)
+-',E(X——,'t) }'+K'( [B(X+-,'t) ——',a]+-,' (p'/W)
X (X+-', t)+-,'E(X—-', t) }'+(1/150)P'(3X —t)'

+ (1/150)K'(3a+ t)'+ 'p'K'+ -(p'/W') (a+ 't)'-
X [(1/25)p'+ 9E'],

, a, a') =p'fit'(a'; —,', —,')+ (-,'t)'rp(2a/t; —,', —,')
2Xt/W)[&(a'; -,')| (2a/t -') —-',E']}

{rP(a'; —,', —,')+ (,'t)'rt'(2a/t-; —',, —,')
~t/W)[f (a'; l)f (2a/t; l) —(1/25)K']}
4+E4) [(9+t')/150]+-'p'E'+ (p'/W')

X (1+P/4) [(1/25)p'+-'E']. (41)

p(a; k) =B ,'a+kE, ——

it(a;j, k) =|(a; k)+j P'/W,

12xi——(p'+ E')

y (K, a) = [tB(~+t) a}+—l ((p'/W) 6+t) 3yi(K
+K(y —t)}]'+(1/18) [p'(2X—t)'+E'(2K+ t)'7 +(

+-,' (p'/W') (X+t)', +E
y, (E', a, a') = [Bt—a+-', t(P'/W+K)]' +(2

+[B a'+ ~a (pi/W+K)]2+ (2X/W) [(Bt—a +(p
+ 'Et) (B—a'+ 'E)——'K't]+ (1/1—8) (P'+—E )

X (4+t')+9i (p'/W') (1+t'),
zi(E, g, g') = [B—g+ 3 (p'/W+E)]'+g"

(2/W) g'—(B g+ 3K)+—9(p'/W') (36)

III. ALGEBRAIC FORMS OF FORBIDDEN SPECTRA combinations listed above now take the form

Here B=ze'/2R; and if R is in atomic units, B is nu-

merically equal to the Coulomb barrier height in Mev
of the final nucleus, B=Z/A'*. The quantities p, W and
E are the electron momentum, electron energy, and
neutrino energy in mac' units; and

t'
PA, ;=~a R,;,

t'
A;, =ia'

~ Rg, (42)

and the T,;, A,;, R;, are defined in reference 8. The co-

e other parameters are all. real numbers and repre- efhcients g, a' are again of order S.In low-Z approxima-

sent ratips pf nuclear matrix elements as follows tion, the second-forbidden correction factors are then

J
gxx=tt rr, J~ pa=iaJ~ r, J~ n=ta'J~ r,

2 2

~2+ I R,, y2, (43)

f
(Xi/Xgr) Pyq=zg e r,

,
Y& ig'J e r.——

(38)
where x2 is associated with the GT part of any linear
combination, and y2 is given by the following scheme:

The factor g includes in its definition the ratio Xi/Xgr,
which is real but of undetermined magnitude. According
to the results of the preceding section, the coefFicients

u, u', g, g' are all of order 8.
The 6rst-forbidden correction factors for the four

' A. M. Smith, Phys. Rev. 82, 955 (1951).

ST: y, ( K, a), —
VA: yp(E, Xa'),

SA: y2( —E, 0, 0),
VT: y2(E, a, a ).

(44)

Since the matrix elements of I' contribute only a
negligible amount to any second-forbidden decay, the
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8/ X+—
f
b—

0

VA,

SA,

For the combinations SA and t/T the value of b is
obtained under the approximation 1/W=1, which is
not unsuitable because all second-forbidden transitions
with BI=2 have low-energy end points.

In this first approximation where only the leading
terms in nZ/2R are retained, certain general features
of the combinations are independent of the order of
forbiddenness. The ST(P) and VA combinations are
indistinguishable in generic form: each contains two
constants representing matrix element ratios (t and a
or a'), and if we have no prejudices about the values of
these parameters, any spectrum can be fitted equally
well with ST(P) or VA. The combination SA(P), on
the other hand, has only one such parameter (t), and
is therefore relatively inQexible for fitting observed
spectruni shapes. It will be seen below that this in-

bexibility is sufFicient to rule out the combination
SA (P). The combination VT is the most flexible of all,
containing three independent parameters (t, a, a'); it
wouM therefore be very difficult in general to exclude
this combination by comparison with observed spectral
shapes. A fortunate circumstance in the fii'st-forbidden
spectra makes it possible to make a fair statistical
though not absolute argument against this combination.

schemes (44) are independent of P. This was not true
of first-forbidden decays, where P contributes appre-
ciably to BI=0 transitions. In the applications of (43)
below, we consider only transitions with AI=2 and
drop the term in x2 as negligibly small.

Some general features of the y& and y2 are at once
apparent. For medium-to-heavy nuclei where most for-
bidden transitions occur, the terms in (36) and (41)
involving 8 are an order of magnitude larger than the
remaining terms. Hence to a first approximation the
spectrum shapes are given by the terms in 8 alone.
This makes for great simplification in classifying the
spectrum shapes. In particular, this simplification shows

why most first-forbidden transitions with BI&2 have
an apparent allowed shape, as has already been pointed
out the dominant terms containing 8 in (36) have no
energy-dependent factors. The same approximation for
the second-forbidden spectra leads to a general shape
of the form:

p2+ ~2+2

The higher terms that do not involve 8 in the spec-
trum shapes must be considered only in the event that
the terms in 8 happen just to cancel. In this relatively
rare circumstance, the combinations ST(P) and VA
will show a real difference in shape, arising from the
opposite signs of E in the two cases. Apparently the
only known spectrum of this type is the RaE spectrum,
where analysis7 shows that ST(P) is a better fit than
t/'A. It is of interest to note that this necessity of in-
voking higher terms in the spectrum shape is prac-
tically peculiar to first-forbidden transitions, For second-
(and presumably for higher) forbidden transitions, the
quantity 8 occurs in several coe%cients that multiply
simple functions of the energy like p' and E'. These
coeKcients are not identical in form, so that if one of
them vanishes, the others are very likely not to vanish.
For example, in the first-forbidden transitions we must
use the higher terms in y, (E, a) if 8 (X+/) =a, which is
certainly conceivable; in the second-forbidden y2(E', a)
the higher terms will be necessary only if X+t/2=b=0,
which is a much less likely occurrence.

These spectrum shapes, particularly their approxi-
mate forms preserving only the large terms, are applied
in the next section to observed spectra. The AI=2, no,
spectra have previously been fitted by using T alone,
and it is easy to see why this was possible. This choice
corresponds to taking b=a, X=O in (45); and for any
value of a that yields a certain v' when ) =~1, we can
find another value of u that yields the same v' with ) =0.

IV. COMPARISON WITH OBSERVED SHAPES

First-forbidden spectra with AI&2 all have allowed
shapes with the exception of RaE, which will be dis-
cussed below. These allowed shapes attest to the va-
lidity of the first approximation, in which only terms of
order 8 are retained in fitting the spectral shapes. It is
impossible from these allowed-shape spectra to dis-
tinguish between ST(P) and VA, but the presence of
1/W terms in the expression (36) for SA(P) and VT
allows us to argue against these combinations.

A number of first-forbidden spectra of apparent
allowed shape have been analyzed' with a correction
factor C~ ——(1+r/W). The values of ~r~ average on the
order of 7 percent. and are generally within the esti-
mated errors of the determination. The algebraic sign
and magnitude of r seem to fluctuate randomly among
independent measurements of the same spectrum. %'e

may conclude that there is no evidence at variance with
the statement that r=0.

This conclusion immediately rules out the combina-
tion SA. For the AI= 1 transitions, only y&(E, 0, 0) is'
effective, and

r=2Xt/(1+t') =+1, (46)

since ) =&1, and t= ~1 is the most likely value for a
first-forbidden transition with DI=1. Of the first-
forbidden transitions analyzed in reference 2, the shell
model indicates the Pr'" Pm"7, Re'" and. Au"' are
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most likely to have AI=1; while Be"' and Hf'" are
somewhat uncertain and may or may not have AI=1.
It is clear, however, that none of the cases most likely
to have DI=1 give anything approaching ~r~ =1, so
the combination SA seems definitely excluded.

The argument is somewhat less positive for VT, the
other combination that gives 1/W terms in the allowed-

shape spectra. Again taking only the AI=1 transitions
and retaining only terms of order B in (36), we have

2X (Bt—a) (B a')—
r=

L(»—a)'+ (B—a')'3
(4/)

"This is just the opposite of the conclusion reached in reference
6 by means of the same arguments. The difference is that reference
6 assumes not only a'=B but also a=Bt, in which case all the
first-order terms of y1(E, a, a') vanish, leaving only the strongly
energy-dependent second-order terms. Actually, the matrix ele-
ment estimate should be a= —Bt; the error appears to arise from
the notation in reference 6, which rather suppresses the roles of
X and t and thus makes it possible to overlook a minus sign.

This can give r =0 in agreement with observation if
a'=B or a=Bt. The matrix element estimate (35) in-
dicates that a/Bt; but the estimate (5) shows that
a'=g, which is at least of order B. In fact, if f„=0.6 as
assumed in reference 3, we have y=B. It is therefore
apparent that the nuclear parameters can conspire to
give r=0 by a fortuitous cancellation in the VT case,
while still retaining the allowed shape. "

The matrix element estimate (5) is certainly not to
be regarded as accurate to the last percent, however:
fluctuations are expected in nuclear parameters like f„
and Ze'/E, and the term hW in x will vary in any case.
For example, variations in 68' alone cause a standard
deviation of about 5 percent around a mean value of
x/B=1 for the four AI=1 cases of reference 2. If we
assume an equivalent, independent deviation in x/B
from other sources and include the factor 2 in (47), we
have an expected standard deviation of o-„15percent
about a mean value of r =0.
The AI= 1 transitions in reference 2, weighted accord-

ing to their errors 6„, show a 0-„'~5 percent about a
mean value of —0.02. The probability that four inde-
pendent elements which should have a Ructuation o-„

actually show by chance a fluctuation &0„' is roughly
p=-'s (a„'/a„)'t' for o„'/o.„«1. If we take a„'/a„~l/3 as
is suggested by the figures in the preceding paragraph,
the value obtained for p is on the order of 0.2. We may
therefore make a statistical argument that it is quite
unlikely (expected chances of order 20 percent) for
the linear combination to be VT.

For the second-forbidden transition we again make
the simplification of retaining only the terms in (41)
of order 8', since this approximation proves to be so
well followed in the first-forbidden cases. We fit the
DI=2, no, spectra by first plotting C(W) =[rt/(Wo
—W)$', where e gives the conventional Kurie plot.
According to (45), this C(W) should have a minimum
at W, where o'=W /(Wp W ). Although the ex-

TABLE I. Fits of b,I=2, no, spectra.

Decay

C136 a

c
1129 0

CS135 d

Csl37 e

0.6

)&to j

Transition

~3/2
d 5/2 ~ g9/2

~3/2 ~ g7/2

0
+2

a L. Feldman and C. S. Wu, Phys. Rev. 87, 1091 (1952)."S.I. Taimuty, Phys. Rev. 81, 461 (1951).' C. S. Wu and E. der Mateosian (private communication).
d Lidofsky, Alperovitch, and Wu, Phys, Rev. 90, 387 (1953).
e L. M. Langer and R. J. D. Moffat, Phys. Rev. 82, 635 (1951).

perimental minimum is not always very pronounced,
it seems more reliable to estimate e' in this way than
by a least-squares fit, which tends to overemphasize
the ends of the spectrum where the data are poorest.
Table I lists valuesf of o'.

Table I also indicates the individual particle transi-
tions according to the shell model and the associated
values of the parameter t. As far as the crude arguments
below are concerned, Table I contains just three inde-
pendent cases: GP' with 3=0 and Z=18 has e'&1;
Tc" with t=+2 and Z=44 has o'&1) and I"' Cs"'
Cs"r (high-energy transition) all have t= —2, Z=55,
and v'))1. We shall use just these three groups in
applying (45) to determine the linear combination. The
ideal values of t given in Table I will also be assumed;
they are presumably subject to at least the same sort
of deviations as found between the magnetic moments
and the Schmidt limits, but this should not vitiate the
order-of-magnitude considerations below.

The results for first-forbidden spectra indicate that
we have only to consider the combinations VA and ST.
In allowed-shape, first-forbidden spectra it is impossible
to distinguish between these combinations; and the
distinction would remain impossible in any order of
forbiddenness, if we had no independent means of esti-
mating nuclear matrix element ratios. Because of esti-
mates like those of Sec. II, however, we are able to dis-
tinguish VA and ST in the second-forbidden spectra.
Consider first VA: Zq. (5) indicates that a' B, and
inserting this relation in (45), we have

This should be of order 10 and 1 for t= 2X(= &2) and
t= —2X, respectively, which might agree with Table I
if ) = —1; on the other hand, v' should be very large
for t=0, which is in disagreement with Table I. Hence
the spectral shapes provide evidence against VA, cor-
roborating the direct recoil measurements. '

For the ST combination we use the matrix element
estimate (35), writing it in the form

a ='—x[—'t+3j,
t Pote added irt proof: The second-fo—rbidden spectrum oi the

ground-state P decay of Fe~9 has been measured by F. R. Metzger
(private communication). The spectrum shape indicates e =2.
The most likely shell model assignment is a p3/2~f&/2 transition
with t=+2. This case therefore appears to be strictly analogous
to Tc".
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where the pseudoscalar correction is regarded as an
empirical parameter. The specific form given for 5 in
(35) depends on too many approximations to be very
reliable. From (45) it is clear that v'= 1 when t= —2X,
regardless of the value of u. It is therefore only a ques-
tion of whether Tc" or the I—Cs group has e' closest to
unity; and Tc" is obviously the choice. This implies
that X= ——2t= —1, or that the combination involves
(S—T) for negatron decay.

From (45) we see that e' is large (I—Cs) when the
denominator approximately vanishes and small (CP')
when the numerator approximately vanishes. Taking
X= —1 and the appropriate values of t, these conditions
lead to the requirement that

(50)

in each case. Comparing with (49) and taking y/8
=1—2, we have

[5 T+ (1/—b)Pj,
where 8 is a positive number of order unity.

(55)

V. SYMMETRY PRINCIPLES

The empirical evidence on the linear combination in

P decay is summarized in (55). Because of the difliculty

Taking h to be the same as in (51) and x=8, we obtain

—&~/&r= 1/~= (3+3)~

The entire empirical argument based on spectrum
shapes may now be summarized as follows: the absence
of 1/W terms in allowed spectra excludes SV and TA;
the absence of 1/W terms in allowed-shape first-
forbidden spectra excludes SA and VT; the non-unique
second-forbidden spectra exclude VA and indicate a
relative sign (S T) for—negatron emission; and the
RaE spectrum indicates that the full linear combina-
tion for negatron emission should be

I—Cs.
(51)

in estimating precisely the contribution of pseudoscalar
forces to the nuclear matrix elements, we cannot hope

g= —(Xi /Xr)y8.

"R. W. King (private communication).

(53)

The fact that 8&0 is empirical evidence for the neces-
sity of pseudoscalar-coupling corrections to the P-decay
matrix elements. It would be impossible to approach
cancellation of numerator or denominator in (45) if
5=0.

The second-forbidden spectrum shapes thus lead to
the conclusions that (1) the combination VA is ex-
cluded in favor of ST; (2) the relative sign of the terms
is (S T) for negatro—n emission; (3) nuclear matrix
element estimates require substantial corrections for
pseudoscalar-coupled forces in the nucleus.

We now return to the first-forbidden spectrum of
R.aE. This transition has a comparatively long half-life
and a non-unique forbidden shape, both of which indi-
cate a cancellation among the large, energy-independent
terms in (36). We may argue the choice of the par-
ticular expression in (36) as follows: the transition is
most likely to be one involving y& alone or s& alone,
because a simultaneous cancellation of the large terms
in both y& and s& is even less likely than the relatively
rare cancellation in either one. The quantity y& appears
alone in all AI= 1 transitions, while s~ appears alone
only in 0=+0+ transitions. These latter occur very in-
frequently, " which implies that the rare RaE-type
spectrum should be associated with s&. The previous
analysis limits the choice of interaction to STP, and
cancellation of the large terms in zI implies that

(52)

This is just the result obtained by detailed analysis7
of the RaE spectrum. To compare this with the matrix
element estimate (20), we write (20) in the form

WPAWA4, (56)

where p=pr*p is th'e adjoint function and 0 ~ 0 is a
scalar product of any of the five Hermitian relativistic
invariants, or a linear combination of these products.
The behavior of (56) on permutation of |ti and lt3 or
i' and f4 has been given. " It is convenient to write
(56) in terms of the "normal" linear combinations that
are eigenvectors under the exchange operation P=pi3
or p24r

Q,i S T+P, —— —
02——A —V,

Qg
——2 (S—P)—(A+ V),

04= 2(S—P)+ (A+ V),

Qs ——3S+T+3P,

p= —1;
p= —1;
p= —1.
p=+1
p=+1 ~

The eigenvalue of P for each 0 is given in (57).
To generate all possible permutations of (56), it

would be necessary to add to P just one further type of
permutation operator P'= pi2 or p34. We cannot find
general eigenvalues for P', however, because

P'g, &$2)=i' Opi = g,O i') =$,0 $2, (58)

where the superscript T indicates transpose. There is
no general linear relation between 0 and O~ that is
independent of the representation of the Dirac matrices;
hence the eigenvalues of P' are dependent on the Dirar

-" M, Fierz, Z. Physik 104, 553 (1937).

to obtain more than an order of magnitude value of 5

from the data. Since it appears impossible to proceed
further on an empirical basis, we consider what com-
binations like (55) may be in accord with various
simple symmetry principles.

The general interaction of two Fermi-Dirac fields is
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This operator is physically suitable because Pipk2 and
F2'Opi' both describe the same physical process. More-
over, the eigenvalues of P' are independent of the repre-
sentation, being

P'= —1 O=S A P
(61)=+1 0= U, T.

Equations (57) and (61) give the eigenfunctions of
P and P'. There is only one linear combination that is
a simultaneous eigenfunction of both operators:"

~ (Qg —Qg) =S—A P, p =—p'= —1. (62)

Since the combination (62) is excluded for P decay by
the experimental data, we may inquire which of the
operators P and P' to abandon first. There is some
precedent for requiring the eigenvalue p= —1, if the
interaction (56) is to hold for equivalent particles in
the positions (1,3) or (2,4), since these particles are
known to obey anticommutative statistics. On the
other hand, the experimental evidence favoring P'
as a valid physical operator is all obtained from inter-
actions with the electromagnetic Geld, which is not the
case described by (56). On this basis the operator P
seems to be the more fundamental for (56); the only
eigenfunction of P resembling the empirical (55) is Qi.
We henceforth assume that the true combination in P
decay is in fact Qi, so that in (55) b=—1.

The linear combination Qi describes P decay when

(56) is written in the conventional order:

(63)

To find the corresponding combination 0~' that is
appropriate the describe P+ decay, first, take the charge
conjugate of the right-hand term,

$,-0$„=P„'O'P, +, (64)

where 0' differs from 0 by the associated eigenvalue
p'= ~1.Then insert (64) in (63) and take the complex
conjugate of the entire expression, obtaining

According to the eigenvalues (61), the linear combina-
tion Qi' in (65) that corresponds to Qi in (63) is

Qi'=s+T+P. — (66)

representation, implying that P has no physical sig-
nificance.

The only operator like P' for which general eigen-
values exist is P', where

P't4 iOAP =k2'06',

and P' is the charge conjugate solution" defined by

The minus sign pre6xing Q~' is unobservable, so that
the net result is a change in the relative sign of the T
and (S+P) terms in going from P to P+ emission. The
sects of -this change should in principle be observable.

g.OQ ) (iP.QP.) . (67)

Now if both P„represent quanta of the same field, we
require p= —1 to satisfy their anticommutative statis-
tics. This limits the choice of linear combinations for
(67) to Qi, Q2, Q3.

We obtain a further selection of the linear combina-
tions by assuming that the unique neutrino field in (67)
is strictly massless. This means that (67) should be
invariant under mass reversal of the neutrino field.
This mass reversal is effected by P„~,pz, or hence
O~qO in (67). This transformation will at most change
the sign of (67). The sign changes for the five combina-
tions (57) are, respectively, en=+, —,—,—,+. The
only combination that has P= —1, m=+1 is Qi.

We can therefore deduce the unique choice Qi for P
decay from three postulates:

(1) there is only one type of neutrino field;
(2) this field is massless;
(3) the interaction of four spin ~i fields is

"universal. "
(6S)

In the last postulate "universal" means only that P-
and p-meson decay have the same interactions, with
proper replacement of equivalent fields. If later develop-
ments prove that other four-particle interactions have
the same form, we can remove the quotation marks.
We can make certain tests of this third postulate by
comparing the half-lives for P decay and p-meson decay,
and also by examining the shape of the electron spec-
trum for p-meson decay.

The electron spectrum for p,-meson decay has been
calculated. " It is convenient to express this spectrum
in terms of the linear combinations 0' associated with
(65) by writing

(69)2 g~O~=Z f~~~',

where the g and f are coupling consta, nts. A substitu-
tion g2, g5~—

g2,
—gs is necessary to convert the sign

conventions of reference 17 to the usual ones. Neglect-

VI. DECAY OF THE p MESON

It is of interest to compare the decay of the isolated
p meson into an electron and two neutrinos" "with the
law (55) for P decay. In fact, it appears that we can
select the combination Q~ on the basis of a couple of
plausible postulates concerning the neutrino field. In
the interest of formal simplicity we consider the equiva-
lent process of annihilation of a p+ meson by an electron
with the production of two neutrinos. The interaction
operator has the form

' A. Pais and R. Jost, Phys. Rev. 87, 871 (1952); earlier refer-
ences are given here.

» C. L. Critch6eld, Phys. Rev. 63, 417 (1943).

"Tiomno, Wheeler, and Rau, Revs. Modern Phys. 21, 144
(1949)."L.Michel, Proc. Phys. Soc. (London) 63, 514 (1950).
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ing the electron rest mass, we have for the spectrum
formula (45) of reference 17:

4 IJ,E'dE
P(E)dE= [ay, bE]—,

3 ti (2~5'c')'

&=3P'= 3(jP+j2'+ j3'+f4'+ js'),

$=6j 2+6j22+4j32+4j42+2jp

(70)

where E is the electron energy and p, ip the rest mass
energy of the p meson. Use of the linear combinations
0' has the advantage of eliminating cross terms in j~f,
from (70). The shape parameter p of reference 17 is

~= 2(1 &/2~—) = Lj '+ '(j4'+-j3')]/F' (»)
The mean life r for p-meson decay is given by 1/r

=fI""P(E)dE, or hence:

j2+j2+2 (j2+j2)+3j 2

= (24'/r) [2m k c2'/p']'

=2.00X10 9' (erg cm')' (72)

when the experimental values"" v=2.09)&10 ' sec
and p=(209.8~2.2)moc' are used. We may compare
(72) with the' value of the interaction constant deduced
from P decay. The most detailed estimate published to
date is based on mirror-image transitions in light nuclei
where the interaction I' plays no part. A re-analysis of
this problem, using the most recent data, selecting only
those cases closest to the ideal one-particle model, . and
assuming the interaction Q~, leads to a constant"

80= (ft) ~&~~'=2/k7 ln2/(j'mo'c')=5600 sec, (73)

where (jt) is the empirical parameter determined in
measurements of P-decay lifetimes and m, is the elec-

tron rest mass. An extra factor of 2 appears in this value
for Bo because the empirical fit in reference 1 was so
normalized that Bo/(jt) = '2~Q~~'. The corresponding
value of jP is

jP=2.19X10 " (erg cm')'. (74)

Although the numerical values in (72) and (74) are
not identical, the uncertainty in the rij,-meson mass in-
troduces an error of about 5 percent into (72), and the
scatter of individual (jt) values in determining 8 makes
it reasonable to assign an error on the order of 10
percent to (74). Therefore, if we assume the same linear
combination Q& for P and p decay, the coupling con-
stants are the same within the experimental errors
speci6ed. The weighted mean value of the coupling
constant is

~ji~ = 1.44+0.04X10 4' erg cm'. (75)

If the p-meson decay interaction is really 0&', the
shape factor (71) should be p=0, indicating a, decay
electron spectrum that goes to zero at its end point.
Present experimental evidence on this question is
somewhat convicting, " and an accurate determination
of the spectrum near its end point would be of crucial
significance in determining whether the P- and p-decay
interactions are identical. It would also be desirable,
if possible, to determine the capture rate of p, mesons
by individual nucleons to an accuracy comparable with
that of (72) and (74), say 10 percent.
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