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Application of the jj-Coupling Model to Moderately Light Nuclei*
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An investigation based on the strong spin-orbit coupling model is made for nuclei in the 1d3&2 and 1f&/2

shells. Hartree-Fock wave functions and central forces are used in calculating ground state spins and binding
energy differences. Coupling rules are found for con6gurations of identical nucleons and for the simplest
odd-odd nuclei. Approximate wave functions are constructed for odd-A and even-even nuclei having both
neutrons and protons in the 1f&Is shell. Binding energy differences, magnetic moments, and beta decay
matrix elements are calculated with these functions. The result of comparing binding energy differences with
experiment is interpreted as favoring strong spin-orbit coupling over weak spin-orbit coupling.

I. INTRODUCTION

HE hypothesis of strong spin-orbit coupling, the
basis of the jj model, has been quite successful

in explaining the shell structure of nuclei, and in ac-
counting for observed spins and magnetic moments.
For this reason a more detailed investigation has been
made to see whether there are other experimental
features of nuclear structure contained in the model.

In an earlier paper, ' the model was applied to the
1p shell which is filled in between, He' and so". The
results were compared with those of a previous calcula-
tion' based on the hypothesis of weak spin-orbit cou-

yling, the LS model. Neither model presents a con-
sistently better picture of the experimental results
than the other, but there is a tendency for the LS
model to be preferable for the light nuclei in the shell,
while the jj model is better for the heavier nuclei.

In going to heavier nuclei, the next region where the
filling of shells is unambiguous is the 1ds~~ shell from
IsS" to ssCa" and the 1fi(s shell from ssCa4' to ssNi' .The
erst part of the paper treats the order of nuclear energy
levels in this region for configurations of identical
nucleons and for odd-odd nuclei involving only two
nucleons or a nucleon and a hole in a shell. The latter
category contains the interesting nuclei, »Cl" and
&9K", whose spins have been measured.

The second part of the paper treats the ground states
of the odd mass number and even Z-even mass number

nuclei in the 1frfs shell. Approximate wave functions

are constructed for those configurations not consisting
of identical nucleons in the shell. Binding energies,
magnetic moments, and ft values are computed. In
particular, the binding energy differences of isobars are
related to the symmetry properties of the wave func-

tions. The symmetry properties depend on the strength

of spin-orbit coupling, and the experimental evidence
is shown to favor strong coupling.

II. METHOD OF CALCULATION

The calculations are carried out with Hartree-Fock
wave functions. While there are objections4 to the use
of such functions, wherein the total wave function is
represented by the product of individual nucleon func-
tions, this procedure offers the only feasible means of
calculation, and presents reasonable values for spins and
magnetic moments.

Two fundamental assumptions are employed in con-
structing the wave functions:

(1) The Hamiltonian is symmetric to the exchange
of any two nucleons, which allows the separation of
the wave function into the product of a space spin
function and an isotopic spin function. This assumption
of the equality ot P—P, I—P, and ts —rI forces makes
the isotopic spin T a good quantum number. The
effect of Coulomb forces for determining the wave func-
tions is also assumed to be negligible, which should be
a valid approximation since the nuclei treated are
rather light.

(2) The intrinsic spin and orbital angular momentum
of each individual nucleon are strongly coupled so
that the individual particle energy for the state j =1+
lies considerably below that for j=l—~.

The single particle wave functions are taken to be
those resulting from a central harmonic oscillator po-
tential. The state of orbital angular momentum / is
then represented by the product of a spherical har-
monic and a radial wave function. The radial depend-
ence for states encountered in this calculation is given
by the functions with no nodes:

RI (r) = VIr' expL —(r/rI) $,
*Much of this material is contained in a thesis submitted to

the University of Chicago in partial fu16llment of the require-
ments for the degree of Doctor of Philosophy (August 1951).
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Illinois.
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where S~ is a normalization factor. The parameter r~

in the oscillator function can be chosen in such a way
as to make the function quite similar to that function
resulting from a square-well potential with constants

E. 'H. A. Bethe and R. F. Bacher, Revs. Modern Phys. 8, 149
(1936).
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TABLE I. Coefficients in the potential energy expressions, (no+n1x+npx +r22x )E and (Po+P1x+Psx +Ppx )Ep
where x=p /4(1+p ) p=rj/rp and E= (Ap/735)(1+p ) '12

(1fvi2)'
I=6

4
2
0

(1fr)2)'I= 15/2
11/2
9/2
7/2
5/2
3/2

(if7»)'
I=8

6
5
4
4
2
2
0

—525—195
15

105

—1350—930—765—630
- —525—450

—2340—1890—1710—1560—1560—1350—1350—1260

—2520—2124—360
2268

—7290—5526—6120—2772—3528—5238

—13 428—10 332—11 664—9684—9936—11 448—8172—5544

&2

—630—1422—4950
12 474

—2430—5958—4770
5544—9954—6534

—7164—2016—10 692—14 652—2808—11 124—6336
11 088

2100
4212
8580

36 036

7740
12 948
12 420
36 036
18 564
15 444

19 224
38 136
25 272
29 832
40 248
27 144
44 616
72 072

735
735
735'
735

2205
2205
2205
2205
2205
2205

4410
4410
4410
4410
4410
4410
4410
4410

5040
5040
8820

11 340

15 120
18 270
16 290
21 420
22 050
17 550

32 040
36 540
34 560
39 060
36 540
34 020
40 320
42 840

6930
10 494
18 810
37 422

23 220
32 796
31 410
51 282
43 218
36 828

53 208
72 072
64 044
72 864
75 636
67 068
83 952

102 564

2100
4212
8580

36 036

7740
12 948
12 420
36 036
18 564

19 224
38 136
25 272
29 832
40 248
27 144
44 616
72 072

fitting experimental observations. In this way the
differences resulting from the use of these two central
potential wells can be minimized.

These orbital functions are then coupled with in-
trinsic spin functions in linear combinations that have
individual particle eigenvalues j= l%-, . The individual
particle eigenfunctions are multiplied by isotopic spin
functions and combined into many-particle Hartree-
Fock wave functions having total angular momentum
I and isotopic spin T. The procedure is illustrated in
Appendix III.

Kith these wave functions as zero-order functions,
the potential energy of two-body interactions can be
calculated as a 6rst-order perturbation. If the nuclear
interactions are restricted to be charge independent
static central forces, the general interaction of two
nucleons is'

)CO++1(rrl'&2)++2(&1' &2)

++2 (221 ' &2) (21 ' 22)]~ (r12)l (2)

where e and ~ are the ordinary spin and isotopic spin
vectors, respectively, and J (r») is the spatial depend-
ence. The interaction can be alternatively expressed
'in the form of exchange interactions

LW+ MP12+ BQ12+BP12Q12]J(r12), (3)

where P12 and Q12 are the operators that exchange the
space coordinates and spin coordinates respectively for
particles 1 and 2. The coefficients identify the usual
name for the interaction, Kigner, Majorana, Bartlett,
and Heisenberg. The wave functions are antisymmetric
to the complete exchange of two nucleons, so that if
one introduces the operator 8~2 which exchanges the

5 E. Wigner and i. Eisenbud, Proc. Nat. Acad. Sci. U. S. 27,
281 (1941).

charge of two nucleons, all wave functions obey the
relationship

P12Q1%12$

The coefiicients in (2) and (3) are connected by the
relationships for antisymmetric wave functions:

Q12=-', (1+~1 ~2),

P12Q12 +12 2 (1+21 ' &2) 1

P,2
————,'(1+or 222)(1+~, ~2).

Therefore, by calculating the energies for the four
possible interactions (1, P12, Q12, and P12Q12), one can
obtain the result for any central-force interaction. The
central-force solution of the deuteron, where P~2 ——1,
requires that W+M=0.8 and H+ 13=0.2 in order to
account for the difference of singlet and triplet poten-
tials for low energy neutron-proton scattering. Aside
from this restriction, the coefiicients are rather un-
certain.

For the spatial dependence of the interaction, the
negative Gaussian is used:

J(r,2) =AP exPL —(r12/rP)']. (6)

The parameters Ao and ro are related from the deter-
mination of the deuteron binding energy. This func-
tion provides easy variation of the range of interaction,
rg, and in the limit as ro goes to zero it behaves like a
delta function. In this limit the ambiguity in exchange
mixture is removed since Pj~ approaches unity, and
one can also check results of previous delta function
calculations. The method of calculating the interaction
integrals plus a tabulation of these integrals is pre-
sented in Appendix I.

H. A. Bethe, Revs. Modern Phys. S, 111 (1936).
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configurations is obtained using the finite range inter-
action integrals of Appendix I. The general expression
of the potential energy of a level is

E= (M 8)—(o/p+ o/tx+o/sx'+nsx') K

+ (W H) (P—p+Ptx+Psx'+Ppx')E, (7)

where 8", 3f, 8, and B are the strengths of I, Py2,
Qtp, and EtsQtp exchange, respectively. As shown in the
appendix, E and x involve the parameters Ap, rp, of
the Gaussian interaction and the oscillator wave func-
tion parameter, r/. The coeKcients rr, and P; are tabu-
lated for the various levels in Table I.

The level order depends on the quantity //=r//rp,
the ratio of the range of a 1f7/7 nucleon to the range of
nuclear forces. Some possible exchange mixtures are:

L0.8P»+0.2Qt&jJ(r»), Majorana plus Bartlett; (8)

P7 7L0.8+0.2Qts7 J (rtp), Majorana plus Heisenberg; (9)
—',L1+E»)L0.8+0.2Q»jJ(r»), Serber mixture. (10)

0.6
I

0.8
I

I.O
I

l.2

FIG. 1. Order of energy levels of the (1f7/2)' and (1f7/2)' con-
figurations for the interaction (8) as a function of p, the ratio of
nuclear size parameter to range of nuclear forces. Solid lines are
levels appearing in both configurations; broken limes are addi-
tional levels for (1f7/2) 4.

III. DETERMINATION OF GROUND STATES

A. Identical Nucleons

The ordering of ent:rgy levels for a given nucleus
depends only on the interactions among the nucleons
outside closed shells. In configurations where the nu-
cleons in unfilled shells are identical, the predictions of
ground state spins have been given for the cases of
delta function" and infinite range' forces. The two
approximations give a spin of zero for an even number
of identical nucleons or holes, but for an odd number
they dier in all but the trivial cases of a single particle
or hole in a shell. Since the id3~2 shell contains no con-
figurations where the predictions differ, only the 1f7/9
shell is treated.

Since the 1f7/s shell is 611ed above spCa~, the nuclei
having an unfilled shell of identical 1f7/7 nucleons are
the Ca isotopes, and those nuclei with filled 1f7/s neu-
tron shells, 2~Sc", 2~Ti", ~3V", 24Cr" 25Mn", 26Fe",
»Co", and»Ni". The potential energy of interaction
among 1f7/7 nucleons is all that splits the levels, so the
theory of holes says that the level order for e identical
particles is the same as that for e identical holes. There-
fore the only configurations one needs in order to study
the level splitting are (1f7/s)', (1f7/s)s, and (1f7/7)'

For identical nucleons, the charge-exchange operator
Ets has the eigenvalue one, so from (4) we see that
&tsQts= —1 or Pts ———Qrp. The level order for the

7 M. G. Mayer, Phys. Rev. 78, 22 (1950).' G. Racah, Phys. Rev. 78, 622 (1950}.

The space exchange part of (10) comes from the
present interpretation of high-energy neutron-proton
scattering, although such a potential violates the
saturation requirements for nuclear forces.

The level order of the various configurations is pre-
sented as a function of p in Figs. 1 and 2 for the inter-
action (8). For an even number of nucleons, the ground
state has I=O and is well separated from the erst ex-
cited state 2 for all ranges. This is true for any ex-
change mixture that is not predominantly spin de-
pendent. For three nucleons (or holes) there is a crossing

0.8

0.6

ENERGY

0.4

UNITS
OF

0.06 A,

0.2

-0.2

0.6 0.8 I.O l.2 l.4 p-
fn,

FIG. 2. Order of energy levels of the (1f7/s) configuration as a
function of // for the interaction (g).

9 R. S. Christian and E. W. Hart, Phys. Rev. 77, 441. (1950}.
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of the 7/2 level with those of lower I. The position of
crossover depends on the exchange mixture, and the
ground state of (1f7/s)' is listed as a function of p for
several mixtures in Table II.

In order to estimate a value for p corresponding to
existing nuclei, the parameter rf is determined by com-
paring the oscillator wave function with a square-well
wave function whose constants are determined from
the experimental evidence in this region of masses:

Atomic mass number, A =43,
Nuclear radius = 1.48)& 10 "A ~ cm= 5.19&(10 "cm.
Binding energy of last nucleon= 8 Mev.

For rf=2.9)&10 " cm, the two wave functions are
quite similar. If the range of nuclear forces ro for a
Gaussian potential is assumed to be about 2.8&(10 "
cm, the ratio p=1. This is near the region of crossing,
but would tend to favor I=7/2 as ground state. The
use of a Yukawa spatial dependence shifts the cross-
over region so that an I of 7/2 is heavily favored; for
the Serber exchange mixture (10), 7/2 would be low
for all ranges. The singularity of the Yukawa potential
at the origin, which makes it similar to a delta func-
tion, accounts for this behavior, as has been pointed
out by Talmi, "who used a Yukawa dependence with
Majorana exchange. Similar level order calculations
have recently been published by Flowers and Ed-
monds, " using an elegant group theoretical approach
and covering other configurations as well.

The behavior of the levels as given by the Gaussian
calculation has some similarity to experimental facts.
It presents a possible explanation" of the spin of 3/2
observed in the (1dsfs)' configuration of Nass. The fact
that the (1frfs)' configuration of Vst has a measured
spin of 7/2 while the (1f7fs) ' configuration of Mn" is
measured as 5/2 can be interpreted as evidence that
these nuclei are near the region of level crossing. In the
1g9~2 shell there is strong experimental evidence that
there is a state, 7/2 (even parity), that competes with
the 9/2 level in configurations of 3, 5, or 7 nucleons.
These are the configurations where a generalization of
the calculation results would lead one to expect cross-
overs with the 7/2+ state being one which drops below
9/2 as one goes from large to small values of r,/rs.
However, one would also expect the levels 5/2+ and
3/2+ to be low-lying states in configurations (1gsfs)' "r,

and one would expect 1/2+ in addition to these for
(1gsfs)s. These have not been observed in any of the
numerous nuclei where such configurations occur. Re-
cent explicit calculations of the (1gsfs)' configuration"
show that 7/2+ is not expected as ground state with
the usual central forces, although the level spacing is

' I. Yalmi, Phys. Rev. 82, 101 (1951)."B.H. Flowers, Proc. Roy. Soc. (London) A212, 248 (1952);
A. R. Edmonds and B. H. Flowers, Proc. Roy. Soc. (London)
A214, 515; A215, 120 (1952)."D.Kurath, Phys. Rev. 80, 98 (1950).

'3I. Talmi, Helv. Phys. Acta 25, 185 (1952); B. H. Flowers,
Proc. Roy. Soc. (London) A215, 398 (1952).

TABLE II. Ground state of (Ifr(2l' as function of p=rf/rp

Potential

(8)
(9)

(10)

p) 0.79
p) 0.90
p&0.75

0.74 &p &0.79
~ ~ ~

0.58 &p &0.75

I =3/2

p &0.74
p &0.90
p &0.58

quite small. Therefore, while the model does contain
the possibility of level crossings in those nuclei where
such behavior is observed, it does not explain all the
observed facts, and further clarification is needed.

'4 L. W. Nordheim, Revs. Modern Phys. 23, 322 (1951).

B. Odd-Odd Nuclei

The question of ground state spins for odd-odd nuclei
has been investigated by Nordheim, "who found quite
good agreement with experimental evidence by using
the following hypotheses.

I. The individual configurations of neutrons and
protons in odd-odd nuclei are the same as in odd-A.
nuclei with the same number of nucleons in the odd-
particle group.

2. If the odd neutron and proton groups belong to
di6erent Schmidt groups, the resultant spin is the
difference. ji= lt+-'„js——ls —-', gives I=

~ ji—js ~.
3. If the-odd neutron and proton groups belong to

the same Schmidt group, the resultant spin is high,
often the maximum possible.

ji——tt&-„js——ls+ —', gives I large, often ji+j,.
%hen the odd-odd nucleus has a configuration of a

single proton (or proton-hole) in a shell together with
a single neutron (or neutron-hole) in a shell, the wave
function is determined uniquely by stipulating I.Calcu-
lations for such simple configurations in the 1d@2 and
if7fs shell were carried out to compare results with the
Nordheim rules and with experimental evidence. The
energy levels are listed in the tables of Appendix II for
the static central force interactions.

The results can be summarized in the following man-
ner. The space-dependent Majorana and %igner in-
teractions give diBerent predictions for the coupling
of two particles (or holes) and the coupling of a particle
and a hole. For two particles, the Majorana interaction
shows competition between parallel and antiparallel
alignment of the j's. It favors antiparallel alignment for
vanishing range of nuclear forces but parallel align-
ment for any reasonable ratio of nuclear size to range
of forces. This is shown in Table III where the crossover
value of p=rf/rs rs/rs, the ratio o——f oscillator pa-
rameter to nuclear force range, is given. For the nuclei
in question it is expected that this ratio is close to unity.
signer forces would give antiparallel alignment of j's.

However, for the coupling of a particle and a hole,
Majorana forces give competition between parallel

j alignment and a value of I one unit less. For vanish-
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TAnrz III. Coupling of a single neutron with a single proton. The ratio p= (nuclear size parameter)/(range of nuclear forces),
is expected to be near one in the region of physical interest. p=rr/ra=re/ro

Configuration

(1d3/2) (1d3/2)
(1d3/2) '(1d3/2) '
(1d3/2) (1f7/2)

(1f7/2)(1 f7/, )

Nucleus

17C134
K38

17C13'

gISc~

Iexp

~ ~ ~

(2 or 3)
(2)'

I for
p 00

Majorana potential
I for Crossover

p =0.1 region

p= 2.8
p=2.8
p= 4.3

p= 2.0

Serber potential
I

Always 3
Always 3
5 for 0.4(p+1.85
2 for p&0.4, p&1,85
7 for p&2.5

a Inferred from beta decay.

ing range of nuclear forces (p= ~) an I of one unit
less than the maximum is favored, while for long-range
forces the result is parallel alignment. This behavior is
presented in Table IV, and the crossover values of p
are seen to be considerably smaller than for the particle-
particle cases. Wigner forces favor the smaller I,
namely the p= ~ result. The results for space-dependent
interactions do not show any of the dependence on
Schmidt line groups postulated by the Nordheim rules.

On the other hand, the spin-exchange Bartlett and
Heisenberg interactions do not differentiate between
particle-particle and particle-hole couplings. The Bart-
lett interaction gives results in agreement with the
Nordheim rules, and the Heisenberg interaction also
gives this agreement but less unequivocally. From the
deuteron one expects that space-dependent interaction
has a weight of about 0.8 while spin dependence has a
weight of about 0.2. So the separation of particle-
particle cases from particle-hole cases should be real.
The I's expected for an exchange mixture like the
Serber potential (10) are given in the last column of
Tables III and IV.

In comparing the particle-particle predictions with
experimental results Sc4' is unknown, and the decay
scheme of CP' cannot be easily interpreted. The al-
lowed decay of K38 to the I=2 level of A" is consistent
with an assignment of 3 for the spin of K", in agree-
ment with calculation. The spin of Cl" seems to be 2.
Here Majorana forces would give 5, but spin-dependent
forces favor 2 in agreement with the Nordheim rule.
The Serber mixture bring 2 close to 5, but still above
it for the region of physical interest p=1.

For particle-hole coupling there is more certain ex-
perimental evidence. The measured I's of CP' and K"
are both one unit less than the maximum for the shell

model assignments. These agree with the results of
using a Serber potential, although other combinations
would give these results also. The spin assignment of
6 for Sc4' has been found to be compatible with recent
experimental results. " A further experimental result
of interest" is the measured spin of 6 for V", L(1fr~s)'
y(1fr/s) '). An extensive calculation" of V" also

'5Hamermesh, Hummel, Goodman, and Engelkemeir, Phys.
Rev. 87, 528 (1952); D. Kurath, Phys. Rev. 87, 528 (1952).

"Kikuchi, Sirvetz, and Cohen, Phys. Rev. 88, 142 (1952).
"A. Hitchcock, Phys. Rev. 87, 664 (1952).

found a spin of 6 for the case of vanishing range of
nuclear forces.

The results of this calculation agree with the Nord-
heim rule for coupling of two l+-,' or two l—z particles.
For the coupling of an /+ —,'particle with an / ——,

' par-
ticle the Majorana interaction gives parallel and anti-
parallel j alignment as the low states but favors parallel
alignment for expected values of the range parameter p.
Spin-dependent interactions favor antiparallel align-
rnent, in agreement with Nordheim's rule, but inter-
actions with 20 percent spin dependence still favor
parallel alignment. This disagrees with the experi-
mental result for Cl", which fits the Nordheim rule.

For the coupling of a particle and a hole, the present
calculation gives strong evidence for an I of one unit
less than that of parallel j alignment regardless of the
Schmidt line groups involved. This seems to be in
good agreement with experiment and explains K~, an
outstanding exception to the Nordheim rule.

The over-all picture for odd-odd nuclei is still ob-
scure. While the calculation of particle-hole coupling
seems to fit in well with experimental evidence, the
particle-particle results are not well supported. Fur-
thermore, there must be a region of transition from the
particle-particle picture to the particle-hole picture as
one considers nuclei other than the simple cases treated
here, and the calculation becomes formidable. For this
reason, odd-odd nuclei are not treated further in this
paper.

IV. POTENTIAL ENERGY CONTRIBUTIONS
WITHIN THE lfpgs SHELL

When one deals with configurations having both
neutrons and protons in unfilled shells, there are gener-
ally several states with the same total angular momen-
tum and isotopic spin. The problem of selecting the
state presumed to have lowest energy without solving
secular determinants is decided as follows.

The ground-state I's are presumed to be 7/2 for
odd-3 nuclei and 0 for even-even nuclei together with
T= T,. Those magnetic moments that have been meas-
ured are found to lie near the Schmidt line. The con-
figurations of identical nucleons have calculated mag-
netic moments on the Schmidt lines, and also have the
property that for an I=7/2, M =7/2 state the con-
figurations consist of an individual particle with m = 7/2



jj—COUPLING MODEL 1435

while the m's of the remaining particles cancel in pairs,
(i.e., for every particle in a+m state there is one in
a —77z state). Similarly the I=0, M=0 states are made
up of configurations wherein the individual particle m's
cancel in pairs. The property that only such con6gura-
tions occur is assumed to carry over to the ground
states of nuclei with both neutrons and protons in the
unfilled 1f7/2 shell. As a result of restriction to such
configurations, ' the quantum numbers I and T serve
to determine a wave function uniquely. The validity of
this assumption is tested in Appendix III for the case
of three 1f7/2 nucleons where three states with I= 7/2,
T=1/2 are possible. Solution of the secular deter-
minant shows that the lowest energy eigenvalue is quite
close to that found by calculating the diagonal matrix
element with the approximate wave function formed
using the procedure stated above.

By constructing the approximate wave functions
for all odd-A and even-even nuclei in the 1f7/2 shell in
accordance with these assumptions, as illustrated in
Appendix III, one can then calculate diagonal energy
matrix elements for the various static central force
interactions. The resulting potential energy contribu-
tions from within the 1f7/2 shell can be summarized in
the expression:

rz(zz+ 2) —4T (T+ 1) zz I/ (7/2)—
V„= b(p)+ D(p)

&(&—2)+I/(7/2)
d(p) (11)

Here T is the isotopic spin, I the total angular mo-
mentum, and n is the number of nucleons in the 1f7/2
shell. In this expression b(p), D(p), and d(p) are
quantities which depend on the interaction potential
used and the nuclear size through the ratio of oscillator
parameter to range of nuclear forces, p=r//r, intro-
duced in Sec. I. Explicit expressions for these quantities
are given in Eq. (A8) of Appendix I, but considerable
information can be obtained without them. In order
to obtain an idea of the physical meaning of the quan-
tities b, d, and D, we notice that for identical particles
T rz/2, so that b is not present. For two neutrons,
Us= D, and for three neutrons, Us D+d so that D is-—
the binding of two identical nucleons and d is the

amount added when another identical one is present.
On the other hand, b arises when both neutrons and
protons are present; its coeKcient depends on the iso-
topic spin T, that is, the symmetry properties of the
wave functions. It is the only term of V„ that is in-
volved when the difference in binding energy for isobars
with the same I is evaluated.

e = (6/5) Ze2/R. (12)

At 2sca4' Z=20, R= (1.48&(10 ")(41)'=5.10)&10-"
cm; these give a value of e= 6.75 Mev. This value is in

good agreement with the experimental difference ob-
tained from the mirror decay, Sc"(P+)Ca4', where the
binding energy di6erence is the sum of the kinetic
energy of the beta particle, the neutron-proton mass
diGerence, and two electron masses. Numerically this
is 4.94+0.07+0.78+ 1.02 =6.74&0.07 Mev. Therefore,
this part of the Coulomb difference is included in the
calculation as e=6.75(41/A)& Mev to provide for the
dependence on nuclear radius. The electrostatic inter-
action of the 1f7/2 protons is calculated in the same way

ISOBAR DIFFERENCES

A. Comparison of Calculation and Experiment

The experimentally measured odd-3 beta decays in
the 1f7/2 shell consist of one mirror decay, and ten
others which have logft values around five and are
thus allowed transitions. These provide the most ac-
curate experimental data for comparing energy dif-
ferences with the calculated values. In addition, there
are three isobar pairs of even-even nuclei whose mass
differences have been measured.

The theoretical binding energy difference consists of
two parts:

1. the Coulomb energy difference;
2. the difference in that part of the potential energy term due

to interactions of the Ifz/2 nucleons with themselves

The Coulomb diRerence has two contributions, one
arising from the repulsion of a 1f7/2 proton by the pro-
tons in the closed shells, and the other coming from
the Coulomb interaction of the 1f7/2 protons with each
other. The interaction with the core can be estimated
by the change in electrostatic energy of a uniformly
charged sphere of nuclear dimensions upon adding a
proton

TABLE IV. Coupling of a single nucleon with a single hole for odd-odd nuclei. The ratio p= (nuclear size parameter)/
(range of nuclear forces) is expected to be near one in the region of physical interest. p =r//ro=r4/r4.

Configuration

(1d3/2) (1d3/2) '
(1d3/2) '(1f7/2)
(1f7&2) (1f772) '

Nucleus

17CP6
K40

21SC48

Iex p

I for
p= 00

Majorana potential
I for Crossover

p =0.1 region

p= 1.5
p= 1.3

6, 7 degenerate at
p=O

Serber potential
I

2 for p&0.85
4 for p&0.6
6 for p)0.5
7 for p(0.5

' These ground states are believed to be iden'tical with those found by B.H. Flowers using the symplectic group. See reference 11.
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TABLE V. Energy resulting from electrostatic interaction of the
1f7/2protons. The unit of energy is c =0 76. e'/rr=f1 10X10 "I&&]
Mev=0. 35 Mev.

Element

24Cr
2;Mn
o6Fe
27«

Energy

1.0c
2.5c
5.0c
8.1c

12.1c
16.6c

TABLE VI. Binding energy diiferences for isobars in the 1ftn
shell. Column two lists the experimental information as well as
method and year of observation. Unless noted, data are from
National Bureau of Standards Circular 499. Column three lists
the experimental binding energy difference, and column four the
calculated difference.

Isobars

Sc43(p+) Ca48
i49(P+)Sc

Ca45(P )Sc4~
V47 (P+)Ti47
Sc47 (P )Ti4?
Cr49 (P+)V49
Sc49{P )Tj49
Mn»(P+) Cr51
Cr» (K}V»
Fesg (p+) Mngg
Ca49—Yi49
Tj50—Cr50
Cree Fe»

Maximum K.E. (Mev)
method and year of

observationa

1.12a0.05 a, s (4S)
1.OO~0.02 s (SO)
0.255 &0.005 s (50)
1.65 a {49)
O.61 a (49)
1.45&0.05 a, cc (42)
2.4 a (49)
2.O a (38)
Q for V»{p, n)Cr» (48)
2.5~0.1 s (51)
Mass spec. b (52)
Mass spec. b (52)
Sum of P+ and y energies
is 4.76 s (47) a (51)

Exp. B.E.
diff. (Mev)

2.92
2.80—0.525
3.45—0.17
3.25
1.6
3.8
1.534
4.3
2.7—2.8—8.36

Calc. B.E.
diff. (Mev)

6.65 —3b(p)
6.9o —3b(p)—6.ss+sb(p)
7.00 —3b (p)—6.80+5b (p)
7.25 —3b (p)—6.70+jb (p)
7.35 —3b (p}
7.15 —Sb (p)
7.60 —3b (p)—13.15 +14b (p)—14.05 +10b (p)—14.9S +6b (p)

a a—absorption; s—spectrometer; cc—cloud chamber.
b See reference 25.

as the interaction due to nuclear forces. However, since
the term is small and variations of the term for a group
of isotopes are at most 5 percent of the total term, the
contribution is listed only for each element. This is
done in Table V in units of c, where c=0.76e'/r~, rf is
the oscillator range parameter. In Sec. III it was esti-
mated that rf=3&&10 " cm for A =43; so an average
value of c over the shell is c=0.35 Mev.

The nuclear part of the interaction of 1fr~s particles
is given by (11), and it is clear that for isobar differ-
ences, V„(T—1)—V„(T)=2Th(p). The calculated dif-
ference of binding energy is therefore a very simple
expression, consisting of a multiple of b(p) plus a
numerical Coulomb term obtained by using &=6.75
&((41/A)i Mev and c=0.35 Mev. The calculated dif-
ferences are listed in the last column of Table VI.

The experimental binding energy differences are
gotten chiefly from beta-decay observations. They are
obtained by the equations:

(& E )final (& E )initial= (K. E )max

+2iisec'+ (sic' —iH') for p+ decay,
(13)

(~ E )final (il E )initial= (K.E.)max
—(se' —iH') for P- decay,

where (K.E.) is the observed maximum kinetic
energy of the beta particle. Some additional binding
energy differences are found in the mass spectroscopic

data at A =48 and 50, the successive beta decays from
ssFe ~2sMn ~Q4Cr", and the (p, e) threshold on V".
Unless otherwise noted, the data are taken from refer-
ences given in the National Bureau of Standards Circu-
lar 499. They are listed in the 6rst two columns of
Table VI, and the experimental binding energy differ-
ences obtained by using nese'= 0.51 Mev and (se' —iH')
=0.78 Mev are given in column three.

By equating the experimental values to the calculated
binding energy difference expressions, one obtains points
for a curve. of b as a function of A. As can be seen from
Fig. 3, the points give b a magnitude of about 1.2 Mev,
and show a tendency for b to decrease with increasing
A. The transitions from T= 1/2 to T=3/2 all have the
term 3b in the calculated binding energy difference;
similarly the T=O to T=2 transition contains 6b.
These are the lowest nonvanishing multiples of b that
occur in odd-A and even-A transitions respectively,
and as will be shown later, the proportionality co-
efFicient would be the same for weak spin-orbit coupling.
The points arising from these transitions are the crosses
of Fig. '3. The extent to which they scatter about a
smooth curve, which is well beyond the average experi-

+1.6-
b(p)

(Mev)
l.2-

0.8-

0.4-

+ 0 +

o ~ o—y---~
FIG. 3. Plot of

b(p) as a function
of A from the last
two columns of Table
Vt. Broken line is
a fitted theoretical
curve.

4$ 45 47 49 51 55
A

mental error of about 1 percent, is an indication of the
degree of approximation of the model used. The points
arising from differences between states of greater T are
encircled in Fig. 3. The fact that these points make the
scattering no worse is an indication that the propor-
tionality constants of b are given correctly by (11).
The signihcance of these proportionality constants for
strong spin-orbit coupling as against weak spin-orbit
coupling will be discussed in Part B of this section.

The experimentally determined results for b(p) can
be used to estimate some nuclear parameters in the
theoretical expression. The expressions for b(p) in the
four central force cases are given in Appendix I; they
depend on the parameters in the spatial dependence of
the interaction potential Ao, r~ and on the oscillator
parameter rf in the wave functions. Ao and ro are re-
lated by the solution of the deuteron problem with in-
verse Gaussian potential, while from comparison of
oscillator and square-well functions it was found that
rf=3.0)&10 " cm. The value of ro is expected to lie
between 2.0&10 "and 3.0& 10 "cm; numerical values
of b(p) for the four exchange potentials are given in
Table VII using these parameters. It is evident that as
long as there is a preponderance of potentials involving
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G=2Ao ~ Rf'(r)r'dr=0. 865Ao/rr'. (15)

For the delta-function case the expression. b(p) =0.4G,
which is seen to be proportional to rf ' and hence in-
versely proportional to the mass number. The best
6t to the experimental points is the curve b= (57.3/A)
Mev. The three cases evaluated give substantially the
same curve for b as a function of A as is drawn in Fig. 3.

The theoretical binding energy difference resulting
from use of the curve of Fig. 3 is generally a value that
is small compared to the quantities which contribute
to it, since the Coulomb term and the potential energy
term have about the same magnitude but opposite
sign. These values are listed together with the experi-
mental binding energy diGerences in Table VIII: the
agreement is generally quite good, as would be expected
from the agreement in Fig. 3.

B. Symmetry Properties of the Wave Functions

space exchange (P»), it is possible to fit the experi-
mental magnitude of b(p) with reasonable values of the
nuclear parameters. Since all the expressions show a
decrease of b(p) for increasing rf and constant ro, this
feature of the experimentally obtained points of Fig. 3
will be present.

For example, the potentials (9) and (10) with J(rts)
=Ao expL —(rto/ro)'], Ao=35.6 Mev, ro=2 25X10 "
cm will give curves for b(p) as a function of mass number
that present a reasonable fit to the points of Fig. 3 for:

rg ——3.16(A/53) t&&10 "cm for (9),
where A is the mass number;

rq 2.65(A/——53)&)&10 "cm for (10),
(14)

where A is the mass number.

To observe the effect of a spatial dependence having a
singularity at the origin, the delta function, J(r»)
=Aors(rts) is treated. In this case, P, s is unity, so the
two exchange mixtures (9) and (10) coincide. All
energies of 1fr~s interactions in the delta-function case
are proportional to the integral

TABLE VII. Numerical values of the expression b(p) for the
central force potentials. In both cases rr 3=X10 "cm, p=rf/ro, .
in case 1, A0=42 8 Mev, r0=2.0&&10 "cm; in case 2, A0 ——23.1
Mev, r0=3.0X10 "cm.

Exchange potential

1
+12
~12Q12
Q12

b for p=i.S

0.59 Mev
1.06 Mev
1.18 Mev
0.30 Mev

b for p=1.0

0.41 Mev
1.44 Mev
2.24 Mev
0.20 Mev

TABLE VIII. Comparison of theoretical and experimental
binding energy differences.

designated by the notation:

oo({12)3) is a function antisymmetric to exchange of
1 and 2 and is a function with the symmetry property
A (2+1).

1o($1 2j3) is a function symmetric to the exchange of
1 and 2 and is a function with the symmetry property
5(2+1).
The theory of the permutation group says that in order
to be able to obtain a completely antisymmetric product
wave function, the two components of the product
must have adjoint symmetry character. The functions
with symmetry properties A(Xi+As) and S(At+As)
have adjoint character.

The component wave functions are formed so that
they give irreducible representations of the permuta-
tion group on n particles, where Xi+As ——e represents
a given partition of e. This means that if one tries to
change a wave function of symmetry A (2+1) by per-
mutation and combination to form A (3),

p({1 2)3)—p({3 2)1)—ip({1 3)2)=f({12 3)),
one will find that /=0. The general statement is that
if the P's of a partition are arranged in order of non-
increasing magnitude, then if the wave function belongs
to an irreducible representation, one cannot increase
any of the X's by permutation of particles and combina-
tion of terms.

The isotopic spin variable is two-valued; hence a
many-particle isotopic spin function cannot be made

The expression b(p), which occurs in the binding
energy diBerences of isobars, has coefFicients which
can be shown to result from the symmetry properties
of the wave functions. The following discussion is
based on articles by Hund' and Wigner. "

The total wave function is antisymmetric to ex-
change of any two nucleons. Since the isotopic spin is
assumed to be a good quantum number, the wave func-
tion is separable into the product of an isotopic spin
function with a space-spin function. Under the assump-
tion of strong spin-orbit coupling, the space dependence
and the ordinary spin dependence are not separable.
The symmetry properties of the wave function are

Isobars

Sc4'(p+) Ca4'
Sc43(p+) Ca43

Ti45(p+) Sc4'
Ca4'(p )Sc4'
V4'(p+) Ti"
Sc4'(p )Ti4'

r o(p+)V
Sc"(p )Ti"
Mn»(p+) Cr»
Cr» (~)V51
Fe53 (p+) Mn 53

Ca"—Ti4'
Ti5 —Cr'
Fe52 Cr52

Theor. B.E. differencea
(Mev)

+ 6.75
+ 6.65—3.90=+2.75
+ 6.90—3.80=+3.10—6.55+ 6,30= —0.25
+ 7.00—3.65=+3.35—6.80+ 6.10=—0.70
+ 7.25—3.55=+3.70—6.70+ 8.25=+1.55
+ 7.35—3.40=+3.95
+ 7.15—5.70=+1.45
+ 7.60—3,30=+4.30—13.15+16.80=+3.65—14.05+11.60= —2.45—14.95+ 6.70= —8.25

Exp. B.E.
difference

(Mev)

+6.74
+2.92
+2.80—0.525
+3.45—0.17
+3.25
+1.6
+3.8
+1.534
+4.3
+2.7—2.8—8.36

"F. Hund, Z. Physik 43, 788 (1927); 105, 202 (1937}.
mo E. Wigner, Phys. Rev. 51, 105 (1937);51, 93& {193&). a Theoretical values are given to the nearest 0.05 Mev.
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e(e—1) r
2 I

ki*V»A
2

(18)

A representation for a particular group can be chosen
so that all of its wave functions are either symmetric
or antisymmetric to exchange of the particular co-
ordinates 1 and 2. In this way (18) may be split into

e(e—1) ~ r

V»4'i+ 'Z t4'i V»4'f (19)
2f i=1 Ii j=s+1 6

TABLE IX. Symmetry properties of the component wave
functions for seven 1frgs nucleons.

Element
Isotopic spin
component

Space-spin
component

antisymmetric in more than two nucleons. This is
equivalent to saying that when the isotopic spin func-
tion is written in its S(At+As+ +Xi) form, there
can be only two parts, X& and X2, to the partition of e.
The diBerence A~ —X~ is twice the isotopic spin quan-
tum number T. Therefore, since the space-spin part
of the wave function must have adjoint character if the
total wave function is to be antisymmetrized, its sym-
metry properties are determined by T. This is illustrated
in Table IX for the case of seven 1f7(s nucleons, that is,
mass number 47.

The central interaction potentials involve only the
space and spin coordinates, so the symmetry properties
of the space-spin functions are the relevant features.
With respect to simultaneous permutation of the space
and spin coordinates, a given space-spin wave function
of e particles Ps belongs to an irreducible representa-
tion of the permutation group D(E),

P~AI:(»~)t, . (X ~).j
f=2 D'(&)AL(X, ), (X, )] (16)

Here I'~ is a definite simultaneous permutation of the
space (X) and spin (o) coordinates of the e nucleons;
D(E) is the matrix representing this permutation; 11,
is one of the wave functions representing the group
(the P; are an orthonormal set); f is the dimension of
the representation (it equals the number of independent
wave functions needed to represent the group); 1&&,
j&f. The potential energy of an interaction using this
wave function is

I Ps*V.pcs.
a&PJ

By using the group properties as defined in (16) in
the same way that Wigner" proceeds, one obtains

TABLE X. Coefficients of b in the potential energy
expression for isobars of mass number 47.

Element

Ca 7

Sc4'

Ti4'

+47

Space-spin
symmetry

A (7)

A (6+1)

A (5+2)

A(4+3)

n(e —1) 2s
2 f'

i5b

Difference

~
P; VP, =V =cS,

so the proportionality constants are all alike. From the
value of S in this limit, one finds c= 1/9. Thus we can
write (19) as

e(e—1) sS—+ 2 4~*V»A (19a)
2f 9 i ~+»

Section IV shows that only b occurs in the differ-
ences of VI,I,'s for isobars; so what we seek is the co-
efficient of b in VI, I,. Since 6 occurs only in S, this co-
efficient is:

where the first sum contains all the functions sym-
metric to exchange of the coordinates of 1 and 2, there
being s such functions. Therefore VI,I, contains two
terms, the 6rst of which remains unchanged if the
interaction V» is replaced by V»P»Q», whereas the
second term will change sign under such replacement.

The result of calculating the 1fr/s potential energy
contributions is given in Sec. IV, where it was found
that all the V~I, depend on three expressions D, d and
b. For configurations of nucleons of like charge, where
the operator PisQts has the eigenvalue —1, only D and
d occur; so these both change sign when V~2 is replaced
by VtsPisQis. Since b has no such simple symmetry
properties, the second sum must be a linear combina-
tion of D and d. There is only one linear combination
of D, d, and b which does not change sign under re-
placement of V» by U»P»Qis .'

S= ( D+Sd+18—b). (20)

Therefore, all the integrals in the first sum of (19) are
proportional to S. From the fact that PisQ»p, =p; for
all wave functions on the erst sum, plus the fact that
in the limit of delta-function range dependencefP;*V»P»P, =fP,*V»P, the proportionality con-
stants can be shown to be independent of the type of
exchange. In the limit of infinite range interaction and
no exchange, the integrals are all alike,

Ca4v
Sc4~
Ti4&
Q4?

7/2
5/2
3/2
1/2

S(7)
s(6+&)
S(5+2)
S(4+3)

A (7)

A (5+2)
A (4+3)

e(e—1)
(2s).

' E. signer, Phys. Rev. SI, 947 (1937).
The coeKcient of b depends on the ratio 2s/f, which

is simply connected to the characters of the repre-
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TAME XI. CoeScients of b' in the potential energy expression
under the assumption of separability of space and spin dependence
for isobars of mass number 47.

Element

Ca"

Sc4'

Ti47

Spatial symmetry

S(2+2+2+1)

S(3+2+2)

s(4+2+ 1l

S(4+3)

n(n —i) 2sb'
2 f

20b'

27b'

DifFerence

5b'

3bI

sentation:

X(t)
n(n —1) =P X P —2q+1). (»)

X(E)

For wave functions in the A(hi+As+ +lip) form,
the sign of the left-hand side of (21) is changed, and
with only two X's the term of V» which involves b
becomes

-', n(n —1)(2s/f)b
= s fn(n —1)—Xi (lj,i—1)—Xs (Xs—3)gb. (22)

Substitution of Xi+As ——n and Xi—Xs ——2T in (22)
shows that this term agrees with the term containing b
in (11); however, the form (22) shows its origin more
clearly. The resulting isobar diGerences for mass riumber
47 are listed in Table X.

If instead of assuming strong spin-orbit coupling, one
. assumes the opposite extreme of negligible spin-orbit

coupling, with space-dependent interactions dominant,
one has the first approximation" in Wigner'. s super-
multiplet theory. Here the wave function is separable
into the product of space dependence, spin dependence,
and isotopic spin dependence. The symmetry property
of the space™dependent component of the wave func-
tion is the determining feature in this approximation.
The ground states have been classified, '4 and are 'F
for odd-A nuclei, and '50 for even-even nuclei. The
potential energy differences will again depend on the
coefficient isn (n—1) (2s/f), where (2s f)/f =X(t)/—
X(E). The space wave function can have at most four
X's in the partition and is written in the form S(Xi+Xs

2s —f X(t), the character of a transposition

f=X(E), the dimension of the representation.

Th««io X(t)/X(E) can be obtained' from the sym-
metry properties of the space-spin wave functions,
A(Xi+As). Murnaghan" gives a general formula' for
the result when the wave functions are in the form
S(Xi+lj,s+ . .+lb.i):

+Xs+X4). From Eq. (21) one obtains

-', n(n —1)(2s/f) =-', [n(n —1)+X, (X,—1)
+X (X —3)+X (li —5)+lb. (X —I)]. (23)

For isobar differences, the coeKcient (23) times a
function b'(p) will be all that is involved" in the poten-
tial energy differences. The case of mass number 47 is
listed in Table XI.

In a Hartree model, the potential energy difference
is the only difference in the binding energy of isobars
aside from the Coulomb diRerence. The isobar difI'er-

ences for odd-A and even-even nuclei as given by the
two models are summarized in Table XII.

The strong spin-orbit coupling model was compared
with experiment in Fig. 3. If the coe%cients predicted
by the weak spin-orbit coupling model were used in-
stead to plot b' as a function of A, the points for T= 3/2
and T= 2 would be unchanged since the coeS.cients are
alike in the two models. However, for greater T's the
weak coupling coeKcients are smaller; so the encircled
points of Fig. 3 would all be raised to values between
1.4 and 1.68 Mev. 'Fhe points would then be badly
scattered, and no smooth dependence of b' on 2 would
give a good fit to the data.

The dependence on the coeKcients can be tested
without involving b and b' for mass numbers where
more than one nonmirror decay is present. By taking
ratios of non-Coulomb part of the binding energy dif-
ferences, the b (or b') cancels. The comparison of the
models with experiment is given for the four experi-
mentally measured cases in Table XIII.

The experimental values provide a measure of the
degree to which space and spin dependence are sepa-
rable in the wave functi'on for a Hartree model. The fact
that the experimental values lie closer to the values
obtained from the approximate functions of the jj
model provides a good argument for strong spin-orbit
coupling as an approximation preferable to that of
weak spin-orbit coupling.

VI. TOTAL BINDING ENERGY OF STABLE NUCLEI

Mass spectroscopic results for nuclei as large as
those of the if'/s shell are generally not so reliable as
the results for light nuclei. When comparing the re-
sults of various laboratories, the measurements of dif-
ferences between nuclei are often in much better agree-
ment than the absolute masses. For this reason, it is
very fortunate that all the masses in this shell have

TAar.E XII. Binding energy differences for isobars, aside from
the Coulomb difterence, as given by the strong spin-or'bit coupling
and weak spin-orbit coupling models.

2' See reference 3, footnote on p. 98."F.D. Mnrnaghan, The Theory of Grogp Represerttation (Johns
Hopkins Press, Baltimore, 1938), p. 140., Eq. (5.6)."B.H. Flowers, Proc. Roy. Soc. (London) A210, 497 (1951).

TtoT —1
TtoT —2

2Tb
(4T—2)b

Change of isotopic spin Strong coupling Weak coupling

(T+ 3)bi
(2T+2)b'
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Ratio
Exp.
value

Strong
coupling

Weak
coupling

TABLE XIII. Ratios of binding energy differences in
the 1fzzz shell (Coulomb contribution removed).

of 1fz/9 nucleons. These include spin-orbit-coupling
energy, kinetic energy, and potential energy of inter-
action with the core nucleons.

- 4. The total binding energy of the 2OCa" core.
LT145 (p+) $c45/CR4 (p-) $c
Lv4?(p+)Tj47/$e47(p )T147
EC 49(p+)+49/$49(p )T 49

fMn" (P+) Cr "/Cr" (E)V57

0.68
0.54
0.48
0.63

0.60
0.60
0.43
0.60

0.75
0.75
0.60
0.75

The Coulomb contribution is that obtained in Sec. V.

Coulomb term (Mev)
= LZ —20jL23.28A ']+0.35k, (25)

been measured recently at one laboratory. "The calcu-
lations had been completed before these results were
available, and it was gratifying to discover that agree-
ment with the calculation, particularly in regard to the
even-Z isobar diGerences at mass number 48 and 50, is
better for the new data than for that which was previ-
ously available.

The experimental binding energies are obtained from
the mass spectroscopic data with the following con-
version formula:

B.E.(Mev) = 0.931(1.008146A+0.000840 (A —Z)
—mass of neutral atom], (24)

where B.E. is binding energy, A is the mass number,
and Z is the charge. The values are listed in Table XIV,
and the points are plotted in Fig. 4. The only deviation
from a smooth function of mass number A for the bind-
ing energy curve is the variation for even and odd iso-
topes found in the isotopes of Ca, Ti, and Cr. The mag-
nitude of this variation is found to be about 1.7 Mev,
in good agreement with the term from the semi-
empirical Bohr-Wheeler mass formula, which gives this
variation as 33.53 ' Mev, or 1.8 Mev at A =49.

In calculating the total binding energy with Hartree
wave functions constructed according to Sec. II, one
can separate the contributions as follows:

1. Coulomb interaction of 1fz/9 protons with them-
selves and with the other closed shells of protons.

2. Potential energy of interaction of 1fz/9 nucleons
with themselves, exclusive of the Coulomb interaction.

3. Contributions directly proportional to the number

where Z is charge, A mass number, and k is the coeffi-
cient of c in Table V. The contribution from nuclear
forces among 1fz/9 nucleons is given by (11). This is
based on the assumption that odd-3 and even-even
nuclei have ground states of I= 7/2 and I=0, re-
spectively.

The remaining binding energy contributions, 3 and
4, while contributing the bulk of the absolute value,
are expected to give a smoothly varying function of the
mass number A. Calculations of absolute values with
product wave functions, done chief in the p shell,
have been quite unsuccessful, but they have been able
to account. for the structure of the binding energy curve
that is superimposed on a smoothly varying function
of A. The procedure of this investigation is to see
whether the first two terms can account for the Quctua-
tions of the experimental curve g,nd then determine the
uniform function of A needed to give the absolute
values of the experimental curve.

The even-odd variation in the binding energy for a
given Z is the only irregular dependence on 2 that is
experimentally evident. Among the terms of the calcu-
lation for a fixed Z, only the nuclear 1fz/9 contribution
(11) exhibits such behavior. We can rewrite (11) in
terms of Z by using the fact that it was assumed that
T= Tz for ground states and that 2Tz ——A-2Z. Since
A=e+40, where n is the number of 1fz/9 nucleons,
(11) becomes

V =
t (Z—20) (I+21—Z) gb

r/ I/(7/2) r/, (n —2)+I/(7/2)—
+ D+ d. (11a)

Nucleus

Ca40
Ca4'
Ca42
Ca48
Ca'4
Sc4'
Tj46
Ti4'
Ca48

Binding energy

341.9
350.2'
361.7
369.7
381.1
387.9
398.4
407,0
415.9

Nucleus

Tj48
Ti4'
Tj50

Cr50
V51
Cr"
Mn53
Fe54
Co55

Binding energy

418.7
426.6
437.6
434.8
445.4
456.2
462.6b
471.5
476 5c

TABLE XIV. Experimental binding energy in Mev.
The even-odd variation is given by the second diBer-
ence of Eq. (11a) with Z constant. The small changes in

b, D, and d arise from changing the mass number by
one are neglected, and in the second difference only the
terms involving I or those quadratic in e can con-
tribute.

tv.„—v„7—
Lv.—v„,3

I„+,+ I„, 2I~ d —2D—
a From Ca4' —Ca4o mass di8erence. V. L. Sailor, Phys. Rev. VS, 1836

(&049) .
b Related to Cr»(p, n)Mn» threshold. Lovington, McCue, and Preston,

Phys. Rev. 85, 585 (1952).' Related to Mn» by radioactive decay data. All other values taken from
reference 25.

7/2

+D for odd 95

—D+d for even n
(26)

'5 Collins, Nier, and Johnson, Phys. Rev. 84, 717 (1951); 86,
408 (1952). The experimental points within the shell give a nu-
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merical value for this second difference:

+2 V
+3.3 Mev for odd e
—3.3 Mev for even n

d= 0.6ds+ (M B)(dM dg ), — —
D= 0.6Dg + (M B)(Dsr Dr/—). —

This indicates that in order to obtain agreement with
experiment, one must have

~
d1&&1D1, and D=3.3 Mev.

So far no particular central force interaction has been
used. Before investigating particular potentials, some
further properties of d and D will be used to show what
properties a potential must have to provide agreement
with experiment.

The expressions for D and d are given in Appendix I
for the four types of exchange with central forces.
These expressions occur in calculating interactions for
configurations of identical nucleons; wave functions of
such configurations are antisymmetric to simultaneous
exchange of space and spin. Therefore, D and d have
the property that if the interaction P»Q»V» is used
instead of V», the result is to merely change the sign
of D and d. If one uses the coefficients 8', M, 8, and 8
to represent the amount of exchange of type 1, P»,
P»Q», and Q... respectively, the general expression for
d or D is a linear combination of the expressions listed
in the Appendix with these coeKcients. Using the fur-
ther result that from the deuteron problem one expects
W+M=0.8 and B+H=0.2, the general expressions
for D and d become

(Mev}

I20

O

O

80

La.
O
Lh
L/L

Lst
O
X

40
z

C5

4Lz
LLL

(9) (M=0.8, B=0.2) gives

D=0.8 Mev, d= —0.8 Mev;

(10) (M=0.4, B=0.1) gives

D=1.5 Mev, d=+0.4 Mev.

From these sample cases the indication is that in
order to have simultaneous quantitative agreement with
isobar differences and with the even-odd variation for
isotopes in the binding energy curve, the delta-function
limit is the best approximation. This means that the
use of a range dependence like the Yukawa potential
would improve the agreement of the 6nite range cases
considerably since its results are expected to lie closer

Furthermore, the Appendix shows that d~= (—1/2) ds,
so that

COz 0bz
LLL

4R 44 46 sp 52 54
A

Finite range

Dg =3.8 Mev
D~=1.3 Mev
d~=2.6 Mev

Delta-function range

Dg =6.0 Mev
D~=6.0 Mev
dg =0

From these magnitudes it is clear that in order to satisfy
the requirement

~
d1&&1D1, the coeKcient of ds must

be small in the finite range case. This would give
M—8=0.4 and consequently D=1.3 Mev, too small
a value for the other requirement, D=3.3 Mev, re-
sulting from comparison with experiment. On the other
hand, the case of delta-function range gives d=0 and
D=3.6 Mev and is independent of 3f—B.These values
will give an even-odd variation term quite similar to
observation.

The values resulting from the particular finite range
potentials (8), (9), and (10), are the following:

(8) (M=0.8, B=O) gives D=0.3Mev, d= —1.5Mev;

d = [0.6—1.5 (M —B)]drt .

With the nuclear parameters that were determined
from the isobar differences in Sec. V, the magnitudes of
D~, D~, and d~ are the following:

—. 4p

Fro. 4. Binding energy of stable nuclei in the (1f7/&) shell:
(1) Coulomb contribution; (2) (1f7/2) interactions from Eq. (11);
(3) (A —40) times the smooth function W(A)=353A ' Mev;
(4) Sum of these contributions. The circles are the experimental
values.

to those of the delta-function dependence than the in-
verted Gaussian range dependence.

The even-odd variation discussed above is the only
irregular contribution to the binding energy for a given
Z. In general, for the nuclei in the shell the Coulomb
contribution and the contribution due to the 1fr/s in-
teractions cancel each other's irregularities. The con-
tribution 3 directly proportional to the number of
1fr/s nucleons can, therefore, be represented by a smooth
function of A, namely (A —40)W(A), where W(A) is
obtained by fitting the experimental points. The sepa-
rate contributions and their sum which represents the
binding energy in excess of that of Ca" are presented
in Fig. 4, for the delta-function case where W(A)
=8.6(41/A) Mev gives a good fit. This dependence on
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VII. FT VALUES AND MAGNETIC MOMENTS

A. ft Values

The allowed ft values in the shell can be calculated
for a Gamow- Teller interaction by evaluating the
nuclear matrix elements of the operator P,e'r, '. Here
r, is the isotopic spin operator which changes the
charge variable of a nucleon, and e is the Pauli spin
vector. The transitions are assumed to be between
states of I=7/2, and the matrix element. is averaged
over initial states and summed over the final states
with diferent magnetic quantum numbers. The square
of the matrix element is listed in the second column. of
Table XV; the decays are listed by pairing each decay
with that of its hole image since their theoretical
matrix elements are the same.

The decay Sc4'(P+)Ca4' is a mirror decay, namely
from T,= —1/2 to T,=+1/2. The square of its GT
matrix element is seen to be from two to ten times as
great as those of the nonmirror decays. Experimentally,
mirror decays have very low ft values and are called
super-allowed; if only the GT matrix element were in-
volved, the ratio of squared matrix elements should be
about 30:1 to account for the difference between ob-
served ft values in allowed and super-allowed transi-
tions. However, the mirror transition can have Fermi
interaction as well as the Gamow-Teller interaction
contributing to its matrix element, which is not true
for the allowed transitions. The matrix element for the
Fermi interaction P,r,' is unity for the mirror transi-
tion and zero for all the rest. Therefore, the lack of a
difference between calculated allowed and super-
allowed transitions comparable to that observed ex-
perimentally is the result of the omission of the Fermi
interaction and possibly also to lack of cancellation in
the matrix element by the many-particle wave functions.

If the calculated GT matrix elements are assumed to
be correct, the relative strength of Fermi interaction to
GT interaction must be about 20:1 to account for the

TABLE XV. Comparison of calculated and experimental ft values.

Decay

Sc41(p+) Ca41
Sc43 (p+) ( a43

Fe"(p+) Mn53
Ca4'(p )Sc4'
Cr51 (+)+51
V47 (p+)Tj47

Cr49 (p+) +49
Sc49 (p

—
)T149

gc47 (p
—

)TI47
TI45 (p+) Sc45
Mn»(p+) Cr»

1.28
0.57
0.57
0.46
0.46
0.30
0.30
0.25
0.$8
0.11
0.11

(log ft) theor

49a
4.9
5.0
5.0
5.2
5.2
5.3
5.4
5.6
5.6

(log ft)...
3.45
4.9
4.9
5.9
5.2
4.6b

&4.5b
6.0
5.6

Q4 4b
&5.1b

a Fitted to experimental value of Sc43(P+) Ca43."Lower limit for log ft since branching ratio for K,capture is unknown.

A is reasonable since one expects the terms which it
represents to depend on A to some negative power
around unity. For two-thirds of the points agreement
is within 0.4 Mev and all are within 1.0 Mev.

low ft of the super-allowed transition. This is not com-
patible with recent interpretations" which indicate an
upper limit of about 1:1 for this ratio.

Therefore, the discrepancy must lie in the calculated
GT matrix elements. That this is likely is indicated by
the results of Appendix III, where the secular deter-
minant is solved with delta-function interaction in the
case of Sc4'. While the energy of the resulting ground
state di6'ers little from that obtained with the approxi-
mate wave function constructed according to Sec. IV,
~M ~oT' for the Sc4s(p+)Ca4s transition drops by 60
percent. The value of the matrix element is thus quite
sensitive to the wave function and hence to the type
of interaction used when solving the secular deter-
minants; so calculation throughout the shell is not
feasible. The fact that the magnitude drops when wave
functions resulting from solution of secular deter-
minants are used is expected since these should not
have so much similarity as wave functions constructed
according to Sec. IV.

A reduction of the calculated
~
M

~
oT' by a factor of

about ten is needed to give the magnitude of the ob-
served log ft's for allowed transitions. If a constant
reduction factor is assumed and, incorporated by fitting
the calculated log ft for Sc4s(p+)Ca4s, the resulting
relationship is

log I M ( o T'ft =4.66. (29)

Values obtained by using (29) on column 2 of Table XV
give column 3. There is still little semblance of any
correlation with column 4, so the wave functions of
Sec. IV are inadequate for calculating ft values. The
fact that these wave functions are nevertheless suitable
for energy calculations is not surprising since such
calculations are an order of magnitude less sensitive to
chariges in the wave function.

B. Magnetic Moments

The magnetic moments obtained for the stable nuclei
with the many-particle wave functions are listed in the
second column of Table XVI. Comparison with the
experimental determinations given in the third column
shows that the theoretical values are considerably
higher. Still, the experimentally observed tendency for
the moment to be reduced when going from a nucleus
like V", which has only protons outside closed shells,
to Sc4', which has both neutrons and protons outside
shells, is given by the model, as has been pointed out
by Flowers. '7 As in the case of the beta-decay matrix
elements, the magnetic moment is considerably more
sensitive to the nuclear wave function than is the en-
ergy, so that nuclei having approximate wave functions
are affected as is shown in Appendix III.

However, there is no ambiguity in the construction
of the wave function for V" whose moment is predicted

' G. L. Trigg, Phys. Rev. 86, 506 (1952); J. M. Blatt, Phys.
Rev. 89, 83 (1953).

27 B.H. Flowers, Phil. Mag. 43, 1330 (1952).
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to lie on the Schmidt line. There have been proposals"
that the spin contribution to the magnetic moment is
suppressed from its free particle value when a nucleon
is in the field of other nucleons. If one follows this sug-
gestion and uses the V" experimental moment to esti-
mate the amount by which the anomalous spin moment
of both neutron and proton is suppressed, the results
are p,„=2.15@0 and p„=—1.27po. Magnetic moments
calculated with these values are listed in the last column
of Table XVI.

VIII. CONCLUSIONS

In summary, the following conclusions can be drawn
from comparison of the jj-coupling model with experi-
ment, in the 1do/g and 1f7/s regions.

For identical nucleons, even configurations give the
observed order of I=0, 2. Odd configurations give the
I of the single odd nucleon, although the (1fr/o)' con-
figuration has leve1s of smaller I that are calculated to
lie close to the ground state in energy.

For odd-odd nuclei, the coupling of a single particle
with a single hole is given in agreement with experi-
ment. For coupling of two nucleons or two holes, calcu-
lation does not always agree with experiment.

For other 1fr/s shell nuclei, the wave functions con-
structed according to the assumptions of Sec. IV seem
suitable for obtaining binding energy differences. They
can account for the kinks in the binding energy curve
of the stable odd-A and even-even nuclei if the range
dependence of interaction is closer to the delta function
than the Gaussian. They also account for the binding
energy di6'erences of isobars within the Hartree model,
which the wave functions of the weak spin-orbit cou-
pling model do not."The 1f7/s shell is peculiarly suited
for such a comparison, since it is the only section of the
periodic table where isobars of su%ciently great dif-
ferences in neutron excess have both neutrons and
protons within the same she11. This makes the binding
energy difference of neighboring isobars a single, simple
quantity, directly related to the symmetry properties
of the wave functions.

Although the approximate wave functions are good
for energy calculations and give reasonable values for
the few measured magnetic moments, they are not ade-
quate for calculation of allowed ft values. The results
indicate that while the wave functions formed according
to Sec. IV are good first approximations, they are not
sufFiciently exact for the sensitive test of ft values.
Furthermore, if the configuration (lfr/s)s/s ', which is
the ground state of »Mn", is involved in any of these
decays, it would seriously affect the ft calculations.

-" F. Bloch, Phys. Rev. 83, 839 (1951); H. Miyazawa, Progr.
Theoret. Phys. (Japan) 6, 263 (1951);A. de-Shalit, Helv. Phys.
Acta 24, 296 (1951)."E.signer (reference 21) accounts for binding energy differ-
ences by using a model with potential energy from the Hartree
model with negligible spin-orbit coupling and kinetic energy calcu-
lated with the statistical model. For the nuclei considered here,
the use of two models is not necessary if jj coupling is assumed.

TABLE XVI. Magnetic moments for odd-A nuclei in the 1fr/2 shell.

Nucleus

Ca4'
Sc"
Ti47

Ti49
+51

Calculated"

—1.91
+5.11—1.57

—1.67
+5.79

Experimental

~ ~ ~

+4 75'

—1.10d

+5.15e

Calculated b

—1.27
+4.58—0.99

—1.01
+5.15

a Calculated with tM,„=+2.79, p& = —1.91.
b Calculated with suppressed moments to fit V»; tMp

——+2.15, ttt&
——-1.27.

e W. G. Proctor and F. C. Yu, Phys. Rev. 78, 471 (1950).
d Jerries, Loliger, and Staub, Helv. Phys. Acta 24, 643 (1951) (isotope

uncertain).' W. D. Knight and V. W. Cohen, Phys. Rev. 76, 1421 (1959).

On the other hand, the energy differences would not be
seriously affected since the (1f&/s)&/o

' coniiguration
which was assumed to be the ground state in the calcu-
lations should lie very close to the (1fr/Q) 5/Q

' in

energy. "'
The author wishes to express his gratitude to Pro-

fessor M. G. Mayer for suggesting the investigation
and providing liberal amounts of discussion and guid-
ance during the course of the work.

APPENDIX I. EVALUATION OF INTERACTION
INTR GRALS

The potential energy of interact. ion caused by nuclear
forces is obtained by calculating the matrix element for
two-body interactions using the many-particle spin-
orbit coupled wave functions. This is a sum of integrals
involving the individual particle functions with co-
e%cients determined by the wave function of the par-
ticular nucleus in question. The individual particle
integrals can be integrated over ordinary spip, and are
then linear combinations of the fundamental integrals

(abt V lcd)

=)" )~ u,*(1)ub*(2)Visu, (1)ug(2)drtdrs, (A1)

where u=R„~(r)e~ (8)4 (q), the subscripts on the u's
referring to the set of quantum numbers e, l, and m.
The functions are normalized so that

R'r'dr = i.
J

The fundamental integrals all involve the spatial
dependence of the interaction between pairs of nucleons.
This is taken to be the negative Gaussian:

&(ris) =~o exp' —(r»/ro) j
=A o expt —(ri'+rs' 2//r&rs)//ro' j. (A2)—

" Pote added in proof:—Recent experimental data indicate
that odd-A nuclei having the configuration (1f719) have a ground
state of 5/2 with the state 7/2 a few hundred irilovolts higher,
whereas this situation is reversed for the configuration (1f7/2)'.
The new data also provide closer agreement with the binding
energy differences for 7/2 states calculated in Sec. IVA). See
L. S. Cheng and M. L. Pool, Phys. Rev. 90, 886 (1953);B.Crase-
mann and H. T. Easterday, Phys. Rev. 90, 1124 (1953); C. D.
Jeffries, Phys. Rev. 90, 1130 (1953) and Bull. Am. Phys, Soc. 5,
24 (1953).
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TABLE XVII. Direct and exchange interact'ion integrals for
1frlo nucleons. The general expression io Pno+nrx+nsx +cx3x')A,
~here x= p /4(1+ p ) E =' (A 0/735) (1+p )~i' and p =rf/r0.

Wigner interaction
ap al a2 ag

Majorana interaction
ap a1 a2 a3

77D 735 8820 22 050 14 700 735 8820 22 050 14 700

75D 735 6930 14 490 8400 105 3150 10 710 8400
E 0 ,1890 7560 6300 630 5670 11 340 6300

73D 735 5670 11 340 6720 0 1260 6930 6720
E 0 630 4410 4620 525 3780 7560 4620

the angular part of the integration. These coefficients
are the same as for the atomic case and are tabulated
in reference 30. For the 1f shell, the Slater integrals
are the following:

+1f (rl)+rf (r2) exp[ —(r1 +ro )/ro )J, ~,
Xak(rr r2)rr r2 drrdr2

The values of k are 0, 2, 4, and 6 with the following aA. ..

71D 735 5040 10 332
E 0 0 2268

71D 735 5040 10 332
E 0 0 1134

73D 735 5670 11 340
E 0 0 0

75D 735 6930 14 490
E 0 0 0

6216
3AAA

6216
2772

6720
2100

8400
2100

77D 735 8820 22 050 14 700
E 0 0 0 0

6216
3fIAf1

6216
2772

6720
2100

8400
2100

0
0

0 14 /00
0 0

0 3/8 4914
420 2772 5796

0 0 3402
315 2268 4536

0 0 1890
210 1890 3780

0 0 0
105 1260 3150

ao ——(1/y) sinhy,

ao ——(5/y') [(3+y') sinhy —3y coshy),

a4= (9/y') [(105+45y'+y') sinhy
—(105y+ 10y') coshy),

(A4)

ao= (13/y') [(10395+4725y'+210y'+y') sinhy
—(10395y+1260y'+ 21y') coshy),

where y= 2r,r,/r, '.
The radial functions for the 1f shell are the harmonic

oscillator functions

55D 735 6660 16 650 11 820 555 5580 15 570 11 820 u= rf'r' exp[ —(r/rf)') (A5)

51D 735 6390 12 494
E 0 1350 4266

51D 735 6390 12 492
E 0 0 1296

53D 735 6480 14 580
E 0 0 2430

7296
4428

7296
2868

8520
3540

55D 735 6660 16 650 11 820
E 0 0 0 0

53D 735 6480 14 580 8520
E 0 1440 5220 4980

180 2610 9090
480 4860 10 260

0 1404 5778
405 3780 6696

0 864 3618
330, 2610 5796

0 0 1890
255 1620 4320

8520
4980

7296
4428

7296
2868

8520
3540

0 0 3240 11 820
180 1080 1080 0

The Slater integrals are evaluated with these functions,
giving the expressions,

F&'i= [105+9(105)x+9(11)(21)x'
+9(11)(13)x')7E,

F&"= [0+9(63)x+9 (11)(18)x'

+9(11)(13)x')35E,
F&4l = [0+0+9(11)(11)x'+9(11)(13)x'763E,
F&ol = [0+0+0+9(11)(13)x'791E,

9456 The integrals desired involve the spin-orbit coupled
3612 . individual particle functions, and since the integrals

225 2790 7542
390 4158 10 476

0 1008 4464
345 3132 5886

31D 735 7290 16 362
E 0 450 2664

31D 735 7290 16 362
E 0 1800 6768

9456
3612

are linear combinations of the Slater integrals, they
can be expressed as polynomials in x. The formulation
in terms of x is convenient since the limiting cases of

9456
5844

9456
5844

0 1080 5400 11 340
300 2160 3240 0

33D 735 7020 15 930 11 340
E 0 0 -0 0 zero range and infinite range of interaction are im-

mediately evident as x goes respectively to infinity or
11D 735 7740 19 026 13 068 375 4068 10 818 13 068 zero. The integrals for nucleons in the 1f&/o shell are

given in the form,240 3096 9360 13 068
360 3672 8208 0

11D 735 7740 19 026 13 068
E 0 0 0 0

t [7(1)5 (2))*V]o[7 (1)5 (2))dr]dr o

= 75 direct= 75D.Following the method applied to the case of Coulomb
interaction in atomic physics, " the interaction is ex-
panded in a series of Legendre polynomials of argument
p= cosO:

(A7)

J [7(1)5(2))*v»[5(1)7(2))d»dro

= 75 exchange= 75K.J(r») =Ao exp[ —(rq'+re')/ro )Peas(rq, ro)Fo(p). (A3)

7p2p 15 93p tl 34p 435 4g6p t269p li 34p where x=p /4(1+p ), E= (Ao/735)(i+p'), p=rf/ro

The fundamental integrals are then linear combina-
tions of Slater integrals with coefficients obtained from

"E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectre (Cambridge University Press, Cambridge, 1951), Chap.
VI.

Here U&2 is. the two-particle interaction potential, and
7(1)5(2) means that particle 1 is in the state with s
component of angular momentum nz=7/2 and that
particle 2 is in the state no= —5/2. The integrals are
given for the interactions V~o

——J(rro), the Wigner
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interaction, and for V» ——J(rt2)P», the Majorana or
space exchange interaction. The integrals for Heisen-
berg interaction can be obtained from the signer in-
tegrals since the Heisenberg operator PtsQts merely
exchanges particles 1 and 2 in the space-spin function.
Thus the direct integral with Heisenberg interaction is
the exchange integral of Kigner interaction and vice
versa. The same relationship holds between Bartlett
(Q») and Majorana integrals.

The resulting integrals which allow calculation with
any type of static central-force interaction are given
in Table XVII. There the coeKcients of the powers of
x in the polynomial (ns+ntx+422x'+nsx')E are listed.

The quantities arising in the expression fo|' potential
energy within the 1f&/2 shell (11) can naturally also
be expressed as polynomials in x. For the four inter-
actions these are:

8'i gner Interaction

Drr = (105+1620x+5346x'+5148x')7E,
d B

——(210+1440x+1980x +0)7E,
b vr (0+2——00x+968x'+ 1144x')7E.

where

Fis'= L15+70x+63xsjEg,
F isl = LO+49x+63x235E&

F i4) = L0+0+63x ]9Ed,

(A10)

x=ps4/4(1+pqs); ps=ran/rs, ' Eg= (As/15)(1+pcs)

For mixed 1fr/2 and 14Esf2 configurations the integrals
are:

where

Fisi = PS+30w+33wsjQ,

F"'= [0+21w+33ws jSQ,
F&4l =LO+0+33ws)9Q,

(A11)

1 /' 2pf'ps'
I;Q=(256~o/5)(2+p")(w/p sp")"'

4 (2+pf'+ ps')

as well as the parameters ry, A0, and ro defined in the
evaluations of Appendix I.

For 1d3/2 configurations the Slater integrals are:

M ajorana Interaction

Dsf = (+15+324x+1782x'+5148x')7E,
d Ar = (—105—720x—990x'+0)7E,
b Ar (+60——+536x+1232x'+ 1144x')7E. A8

where

F&"= $35/3+42y+33ys j3C,
F&si = L0+27y+33y2$7C,

Ft"=$0+0+33y2$11C,

(A12)

Heisenberg Interaction

DH Dw) dH dR')

bff = (+105+820x+1474x'+572x') 7E.

Bartlett Interaction

DB——DM) dB= —dM)

bB (0+100x+4——84x'+572x') 7E.
APPENDIX II. ENERGY EXPRESSIONS FOR

ODD-ODD NUCLEI

The Slater integrals for configurations of 1d3/2 nu-
cleons and for mixed 1dsf2 and 1frfs nucleons involve
the parameter rd from the radial 1d wave function

Rtq=E&sr2 expL —(r/rs)sj (A9)

Pf P~

(Pf +P& ) (Pf +P& +2Pf Pd )

(256+ 2/5)p&2 (y/p 2p 2)2/2

In the limit pf=pd=p, one obtains the simplification
y=m=x. The level crossings given in the text are ob-
tained for this particular case.

The expressions for the level order of the various
odd-odd nuclei are given in Tables XVIII, XIX, and
XX. In this polynomial form it is easy to see the order
in the limit of delta-function interaction since in this
limit y=m =x and x))1.The in6nite range interaction
case is also obvious since here x, y, +&&1.

TABLE XVIII. Energy level order for Id3/2 con6gurations. The expressions are in the form (ns+n&x+n2xsj(Xd/25),
where x= /p44(1 p+4 ), p4=rs/rs, and E4= (A4/15) (1+ps ) '~2. The level I=0 is set at zero as a reference level.

Majorana
Ci34t (id3/2) (idg/2) J and K»f(id3/2) (id3/2)

Heisenberg Wigner
0 4X I, CX2 ao tX1

Bartlett

330—90
180

1930—70
280

0

—1260—2520—1260

750
0

750

4970 5040 0
1960 2520 0
4970 5040 0

0

—980—1960—980
0

—1260—2520—1260

180 1580 5040
90 70 2520
30 —70 5040

0

Majorana
I ap 4X I 4X2

3 750 3470 1260
2 750 3010 2520
1 600 1820 1260
0 0

ao

750
750
750

Wigner
CX1

3010 2520
2030 1260
3010 2520

0 980
0 1960
0 980

0

Cl"I (id3/2) (id3/2) 'j
Heisenberg

411 4X2 ap

1260
2520
1260

30—60—120

Bartlett

850 2520
320 1260—800 2520

0
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TABLE XIX.Energy level order for (idzis, 1fpis) configurations. The level I=2 is set equal to zero as a reference level. The expressions
for Majorana and Heisenberg interaction are in the form Pns+niy+niy')(C/35), where y= (pr'pd'/pr'+pd')(pIs+pP+2pisp/) ' and
C=(256AO/5)ps'(y/pr pds)'ts. The expressions for Wigner and Bartlett interaction are in the form LPO+Pizp+tl&wsj(Q/35), where
rp= prrpd /4+2pj +2pds and Q= (256A0/5) (pcs+2) (w/pr ps )

Majorana
CigoL(i do/2) (1f7/2) g

Heisenberg
CX I F2 po

Wig ner
PI po

Bartlett
PI

432—168
72

1884 —440
84 —i540

264 —1100
0

0 60
0 210
0 —210

0

—i840—i540—i540

—280—980—700
0

—440—1540—i100

—i20—70—30

—i256—i i06—746
0

—i840—i540
i540

672
672
672

Majorana

2484
2184
1764

0

440
i540
iioo

po

0
0—360
0

—1400
0—440

&"I (idg/2) '(if7/2) j
He'isenberg

4X2

Wigner
P1

280
980
700

0

P2

440
1540
iioo

—120—70—30

Bartlett
P1

—976—i26—46
0

—1400
0—440

APPENDIX III

The nucleus Sc4' is treated as an example of the con-
struction of wave functions. This nucleus has one
proton and two neutrons in the 1frts shell so that there
are several states with the same total angular mo-
mentum I and isotopic spin T. Therefore, the approxi-
mate wave function is constructed in accordance with
the assumptions discussed in Sec. IV, and an exact
wave function is also found by solving a secular deter-
minant. The expectation values of various observables
are calculated with the approximate function, and the
exact function and the results are compared to check
the validity of the approximation method.

The individual particle states are represented by
symbols like 7p and 3n. The first of these symbols
represents the state with s component of angular mo-
mentum nz= 7/2 and isotopic spin projection t, = —1/2
(proton); similarly, the second state has nz= —3/2 and
t, =1/2 (neutron). The general wave function for Sc4'

with 3II=+rrz'=7/2 and T,=gt, '=1/2 is the linear
combination:

i/=A Q 7p(1)7n(2)7n(3)+8, p 7p(1)5n(2)5n(3)
+Bs Q 7n(1)5p(2) Sn(3)+Bs p 7n(1)Sn(2)Sp(3)
+C, Q 7p(1)3n (2)3n(3)+C, p 7n (1)3p(2)3n(3)
+Cs p 7n(1)3n(2)3p(3)+Dr p 7p(1)1n(2)1n(3)
+D, p 7n(1)1p(2)1zz(3)+Ds p 7n(1)1n(2)1p(3)
+Fi p Sp(1)3n(2)1n(3)+F& p Sn(1)3p(2)1n(3)

Majorana
I ao (X1 CX2

$&"E(if7/2) (if»2) j
Heisenberg

CX1 CX2

7 630
6 —630
5 240
4 —300
3 —30
2 -90
1 —180
0

6552—4788—468—4392—576—2628—3492
0

9576—13 104—4464—13 896—9432—17 424—15 048

21 336—33 936—27 576—31 824—27 144—27 456—17 160

1470 20 160 59 472
0 6300 30 492

1470 15 480 47 772
0 6300 26 928

1470 18 180 49 176
0 2520 18 612

1470 21 780 66 924
0

50 736
33 936
44 496
31 824
44 928
27 456
54 912

Wigner

0 —2520 —15 372
0 —6300 —30 492
0 —7200 —27 072
0 —6300 —26 928
0 —4500 —25 668
0 —2520 —18 612
0 -900 —7920

0

—21 336—33 936—27 576—31 824—27 144—27 456—17 160

Bartlett
840 11 088 34 524
630 4788 13 104
450 4068 20 484
300 4392 13 896
180 3960 15 516
90 2628 17 424
30 1044 9900

0

50 736
33 936
44 496
31 824
44 928
27 456
54 912

Majorana
iXI 2

$e48 p (1f7/2) (1f7/2) -1$

Heisenberg
tX1 CX2

momenta

I+i/rr, sr = [I(I+1) 3II(It/I+1)—j*fr, M+1 (A13)

Similarly, operating with T = T,+i T„should give zero.
Q, ,The procedure for obtaining the approximate wave
function according to Sec. IV is to set the coefficients
F&, Ii&, Ii3, G, H, and J equal to zero. Then applying
the conditions I+iP=O and 7+i/r=0 will determine the
other coefficients. These are 3= —3, Bi———Ci=ai

TABLE XX. Energy level order for if»2 configurations. The
expressions are in the form Lno+niz+o~zs+nazajEr, where
x=pr'/4(1+p/i), pr=rr/ro, Kr=(AO/735)(1+pr') 't' The level
I=0 is set equal to zero as a reference level.

+Fs p Sn(1)3n(2)1p(3)+G p 3p(1)3n(2)1n(3)
+IIp Sp(1)5n(2)3n(3)+I p Sn(1)1p(2)1n(3).

4
A component +7p (1)7n (2)7n (3) represents the sum

over all particle permutations in the three individual
particle states 7p, 7n, and 7n with appropriate signs to
make the function antisymmetric to exchange of any
two nucleons.

The arbitrary coefficients are then determined by . 4

requiring the desired values I=7/2 and T=1/2. This 2

means that operating on iP with I=I,+iI„should give
zero because of the general equation for angular

2940 26 460 58 012
2940 26 460 58 012
2940 26 460 50 992
2940 26 460 54 448
2940 22 896 46 132
2940 22 680 46 132
1680 13 608 28 112

0

Wigner

2520 15 372
6300 30 492
7200 27 072
6300 26 928
4500 25 668
2520 18 612
900 7920

0

21 336
33 936
27 576
31 824
27 1.44
27 456
17 160

21 336
33 936
27 576
31 824
27 144
27 456
17 160

840
630
450
300
180
90
30

Bartlett
13 608 49 896
11 088 43 596
11 268 47 556
10 692 40 824

8460 - 41 184
5148 36 036
1944 17 820

0

5880 52 920 116424
5880 52 920 116424
5880 52 920 116 424
5880 52 920 109 296
5880 52 920 116424
5880 45 360 92 664
5880 52 920 116 424

0

72 072
67 872
72 072
63 648
72 072
54 912
72 072

72 072
67 872
72 072
63 648
72 072
54 912
72 072



jj-COUPLING MODEL

=+2, Bs=Bs=—Cs= C—s=Ds=Ds= —1 with nor-
malizing factor (27)—&.

If one does not set coeS.cients equal to zero as in the
approximate case, the I+ and T+ operators will lead to
equations reducing the number of arbitrary constants
from 16 to 3. This indicates that there are three states
with I=7/2, 7= 1/2, which can only be resolved by
solving a secular determinant of the matrix elements
for nuclear interactions. Three arbitrary wave func-
tions are constructed, consistent with the I= 7/2,
7=1/2 requirements and mutually orthogonal. The
secular determinant is solved for the case of a two-
particle delta-function interaction

Vis ——As(0.8+0.2Qis)3(ris), (A14)

where Q» is spin exchange. The various physical quan-
tities calculated with the resulting wave. functions are
given in Table XXI and compared with values ob-
tained by using the approximate wave function.

TABLE XXI. Expectation values with the approximate
and exact wave functions for Sc4'.

Wave function
1fv/2 shell

energy
Mag. mom. )~(GT2 for (MtGT~ for

nm Ti4g(P+) Sc4g Sc4g t,'P+) Ca43

P (approximate) 2.400 G
2.516 G

fs 1.313 G
$3 0.981 G

+4.08
+4.82
+1.03
+0.02

0.40
0.72

0.57
0.24

From Table XXI it is evident that the lowest energy-
solution of the secular determinant fi represents a
state with about the same energy as the approximate
state. However, while the energies agree within 5
percent, the magnetic moments and Gamow-Teller
matrix elements for beta decay are considerably dif-
ferent. This indicates the degree of validity in using
the approximate wave functions and is satisfactory for
energies.
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The Linear Combination in p Decay*
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Empirical evidence on the shapes of 6rst- and second-forbidden spectra is surveyed to determine the
linear combination of invariants in the p-decay interaction. Absence of 1/W terms in allowed shape first-
forbidden spectra excludes combinations SA and VT. Spectrum shapes for II=2, no, transitions exclude
VA and indicate that for negatron emission the relative algebraic sign of the terms is (S T). These spec—tra
also indicate the need for considerable correction of nuclear matrix element estimates because of the presence
of pseudoscalar-coupled forces in the nucleus. Extrapolation of these empirical corrections to the case of
RaE shows that the full linear combination should be LS—T+(1/B)P], where 4 is positive and of order
unity. Arguments based on symmetry principles indicate that the correct interaction should in fact be
(S~T+P), where ~ refers to P emission. The effects of the difference in sign of the T term should in prin-
ciple be observable. This law for p decay is compared with the decay of the p, meson, and. it is found that jf
the linear combinations are the same, the coupling constants also have identical absolute values. The mean
coupling constant is

~f ~

=1.44XO 04X10 " erg cm'. The chief experimental doubt concerns the ii-meson
spectrum, which is expected to go through zero at its end point if the p and p interactions are identical. It
appears possible to deduce the combination (S—T+P) uniquely from the postulates that the neutrino
field is (1) unique; (2) massless; (3) part of a universal four-particle interaction.

I. INTRODUCTION AND SUMMARY

=HE shapes of forbidden P spectra are analyzed to
provide information about the linear combination

of invariants, SVTAP, in the P-decay interaction. It is
assumed as a basis throughout that (1) the interaction
contains equal parts of Fermi (S, V) and Gamow-Teller
(T, A) invariants; and (2) that there is no appreciable
(&10percent) mixture of S and V or of T and A in the
interaction. These assumptions are indicated by the
most recent analyses of allowed spectra. ' '

*Work performed under the research program of the U. S.
Atomic Energy Commission.
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In forbidden transitions only those spectra involving
a mixture of diferent nuclear matrix elements can give
information about the linear combination; by assump-
tion (2) this implies that the only useful spectra are
those with a spin change AI &rs+ 1, where e is the order
of forbiddenness. To extract the parameters X of the
linear combination, it is necessary to have some inde-
pendent estimate of the ratios of nuclear matrix ele-
ments, which always occur in combination with X.
Section II attempts to form such estimates for the
general matrix element, extending a procedure previ-
ously given' for 6rst-forbidden matrix elements and

s T. Ahrens and E. Feenberg, Phys. Rev. 86, 64 (1952).


