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The equations of motion for a quantized electromagnetic field subject to the influence of a classical electron
of arbitrarily prescribed velocity are solved by a simple method involving the corresponding difference
equations. The solution yields some results which are contrary to those of an earlier theory. An expression for
the transition probabilities between a high-energy state and neighboring states of the field inside a resonant

cavity is obtained.

HE behavior of a quantized field which is sub-
jected to the influence of a classical electron with
prescribed motion has been discussed by several
authors.'™* One of the treatments? is not correct, and
contradicting results are obtained below. Two of the
other treatments!:? are mainly concerned with the case
in which the electron velocity is independent of the
time and also are not very suitable for calculating
transition probabilities between quantum states of the
field. Another treatment* makes use of methods de-
veloped by Schwinger® to obtain an expression for the
state of the field in terms of the initial state. This
expression is then used to derive transition probabilities
between the lowest-energy state and higher states of an
unconfined free space field. In the present note, the
above-mentioned expression is derived briefly by ele-
mentary methods and is then used to obtain transition
probabilities between a high-energy state and neigh-
boring states of the field inside a resonant cavity.
The system under consideration is the radiation field
inside a cavity resonator described by the vector poten-
tial operator A and its conjugate P. In the usual way,$
we expand

A=Y a()u(®), P=Y pr(Ous(r),

where the subscript & refers to the kth normal mode of
the cavity, uwx(r) is a normalized function describing the
spatial dependence of the field, and ¢ and p are the
coordinate and momentum operators of the radiation
oscillators satisfying the commutation relationship
[gx, prl=1k; all other commutator pairs vanishing.
Considering the effect of the electron as an external
influence, the nonrelativistic Hamiltonian for the field
is
H=Ho+ (e/c)v-A(xy),
where
Ho=3[2mpi+ (on?/ 8c?) i,

wy, is the angular frequency of the kth mode, r, is the

* Parts of this paper were presented before the 1952 Annual
Meeting of the American Physical Society.

L F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).

2 L. P. Smith, Phys. Rev. 69, 195 (1946).

3 W. Thirring and B. Touschek, Phil. Mag. 42, 244 (1951).

4R. R. Glauber, Phys. Rev. 84, 395 (1951).

5 J. Schwinger, Phys. Rev. 75, 651 (1949).

6 See, for instance, Schiff, Quanium Mechanics (McGraw-Hill
Book Company, Inc., New York, 1949), Sec. 50.

position of the electron, and the components of v are
ordinary numbers, since the electron is treated clas-
sically. In a representation in which H, is diagonal, the
vector with components a(f)ny, s ---, which describes
the state of the radiation field at time ¢ (with the sth
index referring to the ith mode), is given by the equation
of motion,

a(t)=S(1)a(0), (1
where S(f) is a matrix with elements
‘ S(l)n1, ng:r i ny’, ngl e,
The only nonvanishing elements of .S are
Sny-- Mgty oMkl = (e/iﬁc)[qj:]n, »,L:|.:1V‘l.lj(l‘o)e:Fi“’“l

Lgidn nir=c[2xh(n+1)/0; =[q;]ni1, n-

It can be seen by a straightforward calculation that the
commutator [S(4), S(f2)] is a pure imaginary mul-
tiple of the unit matrix. )

In order to solve Eq. (1), we consider the following
difference equation:

Caltan) —a(t) )/ Ati=SEa(t),

(2
where
Abi=tip1—t:.
A solution of Eq. (2), to the first order in A¢, is
a(ti) = S (ti—1)Ati~1p8(ti—2)Ati~2 oS (t0)Atog (0) (3)

Using the fact that if the commutator of two matrices,
Ay and A, is a multiple of the unit matrix, then

eAlgde—= 6A1+A26%IA1,A2]’ (4)
and applying it successively to the right side of Eq. (3)
(and bearing in mind that all commutators may be
treated as numbers) we obtain

7—1

a(t:)={exp 2 S(t,)At}

7=0

X(exp T 5 [S(), S ()AL a(0).

p=1 q=0
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Taking the limit as A#—0, we have

a(t)= Iexpf t S(tl)dtl}

X{exp j; tdtl fo " aLsw), sw1le©). ©

This is the solution of Eq. (1). A simple check of this
solution may be obtained by evaluating the expression
[a(t+Af)—a()]/At, using Eq. (4). The limit of this
expression, as A-—0, reduces to the right side of Eq. (1).

We apply the above theory to the problem examined
by Smith.2 He considers the effect of only one mode of
oscillation, of angular frequency w, and takes u(ro) as
constant inside the cavity along the path of the electron.
We ask for the probability of the emission or absorption
of a given number of photons by the field when the
transit time of the electron is an integral number of
cycles of the frequency of oscillation, and the electron
velocity is constant. For ¢=2mm/w, m being any integer,
all the matrix elements of fofS(#1)di; vanish, and
expJSot S (#1)dt; is the unit matrix. Since [S(t1), S(t2)] is
a pure imaginary number, the absolute values of the
elements of a(¢) are the same as the absolute values of
the corresponding elements of @(0). Thus the prob-
ability that the state of the field will be changed is zero.
This contradicts the results of Smith, and necessitates
a different interpretation of the experimental work of
Shulman.”

We consider, finally, the situation where a mode of
the field is.initially in a high-energy state, that is, the
cavity contains a large number of photons, and ask for
the probability of absorption or emission of a number
of photons, small compared to the initial value. We
neglect all but the oscillating mode, assuming that all
the other modes are in their lowest-energy state, and
that the probability of their absorption of quanta
(virtual or real) is negligibly small.? We write only the

7 C. Shulman, Phys. Rev. 82, 116 (1951). Smith’s results imply
that transitions are produced when the electron transit time is
an integral number of cycles, and Shulman measured this supposed
effect, interpreting his results by Smith’s theory. The main error
in Smith’s paper is the use of-ordinary probability theory instead
of quantum theory to obtain the probability of a transition in-
volving more than one quantum. Another aspect of Smith’s
treatment has been criticized by D. Gabor, Phil. Mag. 41, 1180
(1950). However, Gabor’s own quantum-mechanical analysis does
not seem to be correct.

8 This is the case if the coupling between the electron and the
nonoscillating modes is negligible. However, irrespective of the
coupling, our interest is in the transition probabilities of the
oscillating mode, regardless of the transitions made by the other

modes. We can therefore sum over all the quantum states of the
other modes. Setting

Snyecong-- symyccmge =3 Snim: @ 1T Snjmj,
T i#e

we have S expressed as a sum of commuting matrices. Then,
exp (Sof S(t)dt;) becomes a preduct of terms, each one of which
refers essentially to one mode. Summing over all the quantum
states of the initially nonoscillating modes makes all the factors
referring to these modes equal to unity. The subsequent treatment
is applicable, therefore, even when the absorption probabilities
for the nonoscillating modes are not negligible, provided the
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index referring to the oscillating mode, considering all
the others to be zero. We take ¢(0),,=0u,. Then, from
Eq. (5) we obtain

|0 = [ A/#) B, ©)
where " \ |
B= f S(t)d.
Now, ’

(B™)kp= 2. BriiBiyis: - - Bin_1p, O
iyige e

and since the only nonvanishing elements of B are
By, m—1 and B,._1,m, m being any positive integer, we
have, setting r=|k—p|, (B")ip=0 for n<r, or for
n—r being odd. For #2> 7 and n—7 even, the number of
nonvanishing terms on the right side of Eq. (7) is
equal to the number of possibilities of going from % to
p in n steps, each step being =1, namely,

nl[Gn+3n) ! Gn—137) T

Each of these terms has a common factor, corresponding
to the creation (if 2> p) or destruction (if <p) of »
real photons. The remaining factor in each term cor-
responds to the creation and destruction of §(n—7)
virtual photons. Because of the convergence of the right
side of Eq. (6), we can neglect all terms in it with
n>N (7), say.

We consider the case p>>r and p>>V (r). This means
that the initial number of photons is large, and that the
change in the number of photons is small compared to
the initial number. Then, the B; ;11’s occurring in the -
sum of Eq. (7) do not differ much from By, p11, since
p—r<i<p-+r in the common factor (corresponding to
emission or,absorption of real quanta), and p—3(N—7)
<i<p~+3(N+r7) in the remaining factors (correspond-
ing to emission and absorption of virtual quanta). The
common factor is, therefore, approximately (Bp, p+1)7,
the upper sign holding for p>% and the lower sign for
p<k. The remaining B; ;11’s in each term of the sum
in Eq. (11) can be considered in pairs. For each Bj; ;1

-there is a B;y1,; in the same term, and their product is

~—.| B3, i41]%. We therefore have

(B)1 (— )i=n]

X[ ft—-_i-_?’) '(E) !]_ (B, p21)"| By, pia | ™"
2 2

for n—r even and positive, and zero otherwise. Sub-
stituting in Eq. (6) we obtain as the probability that
the field absorb or emit 7 quanta,

fa(t)ngrlZg]Jr(lep,p%ll)IZ; (12)

where J, is the Bessel function of the rth order. If we
take u(rg)=uo, a constant, along the electron path
inside the cavity and zero outside the cavity, and if we

notation is understood to mean that a summation is taken over
all the quantum states of these modes.
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take the electron velocity to be constant, then

2 gl t/2
.B,,,,,+1|=edu0(1f) sin(u/2)
(wt/2)

hw
where d is the distance of electron path in the cavity.
If we set

E0= 2110 (prﬁw)%

(this may be considered the amplitude of the corre-
sponding classical field), Eq. (8) becomes

9
ho  (wt/2) ®

la(®)per|*=

; (edEo sin (w#/2)
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Equation (9) is identical with one obtained by Ward,®
as the approximate probability that a quantum-me-
chanical electron will absorb or emit 7 quanta in passing
through a cavity containing a classical field of amplitude
E,. The similarity of the two results is due to the fact
that the approximations made in going from Eq. (5) to
Eq. (9), as well as Ward’s approximations, reduce the
problem to one of the absorption or emission of energy
according to essentially classical rules except that the
change takes place in discrete quanta. \

The author is indebted to Professor Julian Schwinger
for enlightening discussions related to the foregoing
subject matter.

9J. C. Ward, Phys. Rev. 80, 119 (1950).
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The infrared absorption of injected carriers in germanium has been observed by a modulation technique.
For injection into low-resistivity material, the data indicate a linear relationship between injected carrier
density and injection current. For injection into high-resistivity material, departure from a linear relation-
ship is indicated. The absorption spectrum of injected carriers resembles that of extrinsic carriers.

HIS note describes some preliminary observations

on the infrared absorption of injected carriers

in germanium.! The process was studied for two cases:

injection into almost intrinsic material (40 ohm cm,

7 type) and injection into doped material (0.5 ohm cm,
? type).

The experimental technique was as follows: A dc
light source was focused on a small region of a grown
p-n junction diode cut with plane parallel faces. The
diode was masked by a slit so that only a 15-mil region
immediately adjacent to the barrier on the low-con-
ductivity side was exposed. A 50 percent on-off square-
wave generator pulsed the diode at about 360 cps and
injected carriers. The latter modulated the transmission
of the light through the germanium. After dispersal
by a monochromator (Perkin-Elmer) the modulated
portion of the dispersed light was detected by a dry-
ice-cooled PbS cell used in conjunction with an L-C
tuned regenerative feedback amplifier and recording
potentiometer.

Where extreme sensitivity was not important, an
ac thermocouple was employed as a detector. The
diode current was then modulated at 13 cps by a
mechanical switch operating in conjunction with the
synchronous rectifier of the thermocouple amplifier.

If the dimensions of the region of the diode that is
studied are small, compared to characteristic decay

1 K. Lehovec, Proc. Inst. Radio Engrs. 40, 1407 (1952).

lengths for injection, then the modulation in light level
at some particular wavelength is

AT =1,Ty(1—¢*D9), »
Here I, is the incident light intensity, T is the trans-
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F16. 1. Absorption signal at 2.3u as a function of diode current
at 25°C for injection into 0.5-ohm cm material.



