one arrives at an upper limit for the width of the 665-kev excited state of Mo⁹⁷, $\Gamma \leq 5 \times 10^{-4}$ ev, and at a lower limit for the lifetime of this state of 1.5×10^{-12} second. This lifetime is one order of magnitude longer than the one expected from the Weisskopf formula. Thus, the M1 transition in Mo⁹⁷ shows the same behavior as the low-energy M1's.

It should be mentioned that the Mo⁹⁷ transition, as well as most of the low-energy transitions measured by the Canadian group, involve a change of two units of orbital angular momentum, whereas the Li⁷ gamma ray presumably leads from a p_{1} to a p_{2} state.

[†] Assisted by the joint program of the U. S. Office of Naval Research and the U. S. Atomic Energy Commission.
¹ M. Goldhaber and R. D. Hill, Revs. Modern Phys. 24, 179 (1952).
² W. Kuhn, Phil. Mag. 8, 625 (1929); P. B. Moon, Proc. Phys. Soc. (London) 63, 1189 (1950).
³ V. Weisskopf, Phys. Rev. 83, 1073 (1951).
⁴ L. G. Elliott and R. E. Bell, Phys. Rev. 76, 168 (1949).
⁵ R. L. Graham and R. E. Bell, Can. J. Phys. 31, 377 (1953).
⁶ Obtained from Y-12 Plant, Carbon and Carbide Corporation, Oak Ridge. Tennessee.

Ridge, Tennessee.

Production of V_1^0 Particles by Negative Pions in Hydrogen*

W. B. FOWLER, R. P. SHUTT, A. M. THORNDIKE, AND W. L. WHITTEMORE Brookhaven National Laboratory, Upton, New York (Received July 16, 1953)

HE photograph reproduced in Fig. 1 is one of two obtained in a hydrogen-filled diffusion cloud chamber exposed to a beam of 1.5-Bev negative pions (π^{-}) from the Cosmotron. The hydrogen was at a pressure of 18 atmospheres, and a field of 11 000 gauss was applied. The picture is believed to represent the production of a V_1^0 particle by a π^- interaction with a proton. Track a is the incident π^- , the end point of which is to be called A. Tracks b and c are the decay products of the V_1^{0} . A single neutral heavy meson also may have been produced at A, which would travel in the direction indicated by d.¹

Since track a is short, its momentum can only be estimated to lie near the nominal π^- beam momentum of 1.63 Bev/c. This track is parallel to the other beam tracks and thus probably is not due to a secondary particle. The line connecting point Awith the vertex of b and c, to be called G, forms an angle of 26° with a. The distance between A and G is 0.65 cm. Tracks a, b, and c are coplanar, while only coplanarity of A, b, and c is necessary for the tracks to be associated. In addition, the components of momentum of b and c perpendicular to line AG balance. Track b forms an angle of 16° with a; b is caused by a positive particle with a measured momentum of 480 ± 80 Mev/c and an estimated ionization density of $3 \times$ minimum. Thus b is identified as a proton track. The angle between b and c is 37°. Track c is negative, with a momentum of 210 ± 70 Mev/c and estimated ionization density of less than $1.5 \times \text{minimum}$. An upper limit of 410 m_e is inferred for its mass, indicating a π^- . Assuming that b and c represent the decay of a $V_1^0(\rightarrow p + \pi^- + Q)$, one finds a Q-value of 51 Mev from these data.² Assuming the generally accepted Q of 37 Mev one would find that, for the given angles, the momenta should be 460 Mev/c for the proton and 180 Mev/c for the π^- . These values fall within the errors given for the measured values and have been used for the further computations. The lifetime of this V_1^0 is 4×10^{-11} sec.

The total energy of the V_{1^0} is 1.26 Bev, and its momentum is 610 Mev/c. To conserve energy and momentum at least one other neutral particle must start at A. Assuming a single particle, its total energy would have to be 1.31 Bev and its momentum 1.11 Bev/c, leading to a mass of 1350 ± 70 m, for a kinetic energy of 1.5 Bev for the incident π^- . For an energy of 1.2 Bev instead of 1.5 Bev one would obtain a value of 1150 m_e . However, such a low value for the incident energy is improbable. In any case, if only one other particle had been produced in addition to the V_1^{0} , this would have to be a heavy meson. Its direction of flight is

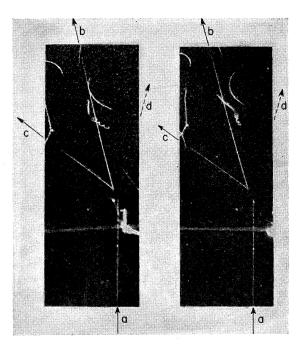


FIG. 1. Stereoscopic photograph of a V_{1^0} (tracks *b* and *c*) produced in hydrogen by a negative pion (track *a*) of an energy of 1.5 Bev. If one heavy meson of a mass of about 1350*m*₀ has been produced in addition, its line of flight is indicated by *d*.

indicated by d in Fig. 1, and its lifetime must have been longer than 4×10^{-10} sec since no decay was observed in a path of 23 cm in the chamber. A threshold energy of 870 Mev is necessary for the process discussed, while 1.06 Bev were available for a 1.5-Bev incident π^- (including the rest mass of the π^-).

The other photograph is quite similar to the one described, except that no momentum measurements can be obtained. However, the measured angles and estimated ionization densities are quite consistent with a V_1^0 . Its direction of flight forms an angle of 30° with the incident π^- . If it is assumed to be a V_{10} one calculates that its total energy is 1.33 Bev, its momentum 745 Mev/c, and is lifetime 3×10^{-11} sec. Assuming again that only one other neutral particle leaves the event, its mass would be $1280\pm80 m_e$ (for a 1.5-Bev incident π^{-}) and its lifetime longer than 3×10^{-10} sec.

Of course, instead of one heavy particle several lighter ones (for instance two π^{0} 's, or a π^{0} and a V_{2}^{0}) could originate from the events in addition to the V_1^0 . However, the present results are consistent with the possibility of production of V_1^0 together with one other heavy unstable particle.3

Work performed under the auspices of the U.S. Atomic Energy Com-

* Work performed under the auspices of the U. S. Atomic Energy Commission. ¹ It is not likely that the interaction of the π^- at A involved carbon or oxygen in the alcohol rather than H₂, since (1) there is at most one molecule of alcohol per 800 molecules of H₂ and (2) an interaction with C or O would most probably give rise to charged prongs. ² Leighton, Wanlass, and Anderson, Phys. Rev. **89**, 148 (1953). ³ A. Pais, Phys. Rev. **86**, 663 (1952). References to previous work are cited in this article.

Effect of the Electric Quadrupole Interaction on the $\gamma - \gamma$ Directional Correlation in Cd¹¹¹. III

H. Albers-Schönberg, K. Alder,* O. Braun, E. Heer, and T. B. Novey† Swiss Federal Institute of Technology, Zürich, Switzerland (Received July 16, 1953)

N previous letters^{1,2} we showed the effect of an interaction be-L tween the nuclear electric quadrupole moment of the intermediate state and an extranuclear inhomogenous electric field on

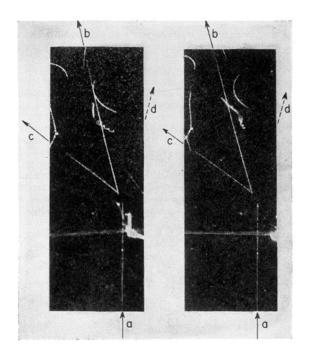


FIG. 1. Stereoscopic photograph of a V_{1^0} (tracks b and c) produced in hydrogen by a negative pion (track a) of an energy of 1.5 Bev. If one heavy meson of a mass of about 1350m_e has been produced in addition, its line of flight is indicated by d.