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The application of the "causality condition" to the S matrix for nonrelativistic particles encounters
several diKculties: (a) there is no maximum velocity; (b) the interference of ingoing and outgoing waves
has to be taken into account; (c) wave packets with a sharp front do not exist. The condition is therefore
reformulated as follows: At any time the total probability of 6nding the particle outside the scattering
center shall not be greater than 1, for every form of the incident wave packet. From this follows for spherical
waves that S, as a function of the momentum P, is analytic and holomorphic in the erst quadrant and
that e "&S(P) (where a is the radius of the scattering center) has an imaginary part &~l. That suffices to
give an explicit integral representation and a product expansion for S, but these permit a more general
form for S than is usually envisaged. If, however, the usual symmetry relation S(—p) =S(p)* is assumed
in addition to the causality condition, more speci6c equations can be derived, which are direct generaliza-
tions of those in Part I. In particular, integral relations between the real and imaginary parts of S, and the
properties that signer found for the E matrix can be deduced.

' 'N part I' the consequences of the causality condition
~ ~ for the scattering of a Maxwell field by a fixed
scattering center or "core" of finite size were investi-
gated. It was assumed that outside a sphere with
radius a the free-field equations hold but that nothing
is known about the interior of the sphere. The causality
condition was formulated as follows: If at a large
distance r1 from the center of the sphere the ingoing
wave packet is zero for all t &$1, then the outgoing wave
packet shall be zero at ri for all t(ti+2(ri —a)/c.

Obviously, for nonrelativistic particles a modification
is necessary, since no maximum velocity exists, and
one is inclined to postulate: If at any distance rj the
ingoing wave packet is zero for all t&ti, then the out-
going wave packet must also be zero for t&$1. This
wouM have to be true for all ri&~ a, but it is su%.cient
to take the strongest form, namely rl =a. This formu-
lation of the causality condition was indeed used by
Schutzer and Tiomno, ' who treated the same problem.
However, as mentioned in I, there is a serious objection.

The difhculty is that there are no iegoieg or oltgoieg
wave packets that are rigorolsly sero Np to a certain time,
as can be seen as follows. All (spherically symmetrical)
superpositions of ingoing waves have the form

where E=p /2m, h= 1, and A (p) is an arbitrary square
integrable function. At a given point r=ri this is a
Fourier expansion of rIP;„(ri, t) with respect to t, but the
frequency E only runs from 0 to ~. This puts a severe
restriction on iP;„as a function of t, and in particular

' N. G. van Kampen, Phys. Rev. 89, 1072 (1953). This paper
will be referred to as I; the formulas contained in it are denoted
by (1, ")

2W. Schutzer and J. Tiomno, Phys. Rev. 83, 249 (1951).The
difhculty becomes apparent~yn their Eq. (7),"in. which the lower
limit of integration should be 0 instead of —.

it can be shown that ip;„(ri, t) cannot be zero over any
length of time. s This difficulty can be overcome by
formulating the causality condition in the following
way: The probability of 6nding an outgoing particle at
r& prior to t& cannot be greater than the probability of
finding an ingoing particle at r1 prior to ti.

A second difhculty, however, arises. At any finite
distance r& the total probability cannot 'be uniquely
decomposed into an ingoing and an outgoing part,
because there is an interference term corresponding to
a rapidly oscillating probability current. In the case of
relativistic particles this second de.culty can be over-
come by letting r& go to infinity, but that is not possible
for nonrelativistic particles. For, owing to the absence
of a maximum velocity, the above condition becomes
weaker as r& increases; and if it is only postulated for
r1= ~, it leads to practically no restrictions on the
S matrix. One is thus forced to the following formula-
tion: The outgoing probability current, integrated from
t= —~ to t=ti, cannot exceed the integrated ingoing
current by more than the absolute value of the integral
of the interference term. The presence of the inter-
ference term makes the condition considerably weaker
than in the electromagnetic case and will turn out to
be the reason why the S matrix can now have singu-
larities on the positive imaginary axis.

goo
The condition can be given a more familiar form by

rip;„(r t)= A(p)e '"" 'e'dp, (1) considering the behavior of f as a function of r rather
0 than of I. It is then readily seen to be equivalent to

postulating that if the ingoing wave packet is so normal
ised as to represent at t= —eo one incident particle, the
total probability at t = ti of finding a particle oltside of
any sphere of radigs ri~&u cannot be greater thun l.

' According to (1) P is analytic in the lower half of the complex
t plane; if it were zero in an interval on the real axis, it could be
continued by Schwarz's reflection principle (E. C. Titchmarsh,
TIN: Theory of Iilnctzons (Clarendon Press, Oxford, 1939), second
editiong, which would give an analytic function vanishing in an
interval. For this simple proof I am indebted to Professor N.
Levinson; a more general result is mentioned in L. Bieberbach,
Lehrbuch der FNnktionentheork, Vol. 2 (B. G. Teubner, Leipzig,
1931), second edition, p. 159.
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Clearly we get the strongest condition by choosing
r&=a and do not lose anything by taking t&=0. Our
final form of the causality condition thus becomes

We now use (6) for the right-hand side of (2) and
substitute (1) and (4) on the left. On inverting the
order of integration such terms occur as

J
4rrs

I tp;„(r, 0)+it«& (r 0) I
'dr ~ 1

~

a
(2) e'&" &'&'dr =2~e't~&'&~o (p —p')

f being normalized by —~s(~&')a
, + ~(p-p') .

i(p P)

47rr'~P;„(r, —~) ~'dr=1. (3)

Obviously this condition is satisfmd whenever it is
possible to de6ne a probability density (obeying a
conservation law) in the interior of the core.

The scattering process is described by an S matrix in
the usual way. We shall assume that the core is spheri-
caHy symmetric and we consider only s waves. Then,
similarly to Eq. (1),

rP. (», &) = — 73(p)'~" '~'dp, («-« ~), (4)
0

8~s " )~(p)(sdp (6)

and, of course, the same value is found for (3). This is
the physical reason for imposing on A (p) the restriction
of square-integrability. The integrated outgoing current
is given by the same expression with B(p) instead of
A(p); as we shall assume that no particles can be ab-
sorbed by the core, both expressions must be equal, so
that S must be unitary:

fS(p)I=1 (0&p& ). (7)

It should be emphasized that in physically meaningful
scattering states only positive values of p occur, so that
any extension of the definition of S(p) to negative p is
purely conventional. One may postulate, for example,
the familiar equation

S( p) =S*(p), —

or, alternatively, one may de6ne S(—p) as the analytic
continuation of S(p) (if it exists and is unique). It is
knowns that if the interaction inside the core can be
described by a potential 6eld, both these definitions
lead. to the same values for S(—p) but there is no reason
to assume that they will also coincide in the general
case treated here. We shall therefore consider S(p) as a
function de6ned a priori for real positive p only.

4 R. Jost, Helv Phys Acta 20., 256. (1947).

and S(p) is de6ned by

~(p)=S(p)&(p) (0&p& )

The irigoing probability current, integrated with respect
to t from —eo to +«, is

The terms with the 8 functions cancel owing to (7) and
only the principal-value terms remain. The exponentials
can be absorbed in A and 8 by putting

e '"4(p) =~.(p), e+'"'J3(p) =& (P)

J3 (P) =S (P)~.(P) S (P) =e""S(P)

One is then left with

(9)

~ t &.(P)&.*(p')—~.(p)~.*(p')
dpdP

'(P-P')
0 0

r
I

&.(P)~-*(P') ~.(p)&.*—(p')
~) JI J

dPdP'. (10)
s(p+P')

0 0

The causality condition requires that this inequality be
satis6ed for all square integrable functions A, (p), the
function 8,(p) being related to A, (p) by (9).

From this condition we shall deduce in Sec. II that S
has an analytic continuation without singularities in the
6rst quadrant of the complex p plane and in Sec. III
that the imaginary part of this analytic function is
bounded from above. These results are used in Sec. IV
to derive the integral representation (24) and the
product expansion (28), which, however, still contain
the undetermined functions P and a. In Sec. V the
consequences of the additional assumption (8) are in-
vestigated, and the representations (30) and (35) are
derived. In that case it is possible to find integral
equations and sum rules similar to those -in Part I
and to derive the properties of Wigner's R matrix.
Some of these equations are not new and others might
have been conjectured as generalizations of the results
in I. The purpose of the present work, however, is to
show that they actually follow rigorously from general
assumptions. Unfortunately, the use of some rather
unfamiliar theorems about complex functions is in-
evitable. It has been attempted to present the mathe-
matical arguments in no more detail than is necessary
to make a reconstruction of the rigorous proofs possible.
In Sec. VI the physical significance of the resulting
equations is discussed, and it is emphasized that the
use of the analytic continuation of 8 should be regarded
merely as a mathematical procedure, which happens to
be the adequate tool for treating certain properties of
the physically signi6cant function S(p) on the positive
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f+00

tanhs r(8(r)8*(r)—5(r)$*(r))dr
++00 $

{8()8*(r)—5*( )8( ))d . (14)
cosh' v.

II. ANALYTIC CONTINUATION OF S

An essential difference with the electromagnetic case
shows up in the range of integration in (10), which is
now (0, ~) rather than (—oo, + oo). This makes it
impossible to cope with the integral kernel i(p —p') '
by using the theory of Hilbert transforms, but fortu-
nately it is still possible to find its eigenfunctions.
Indeed, one easily veri6es

If S(r) and 8(r) are Ls functions connected by (13),
the same is true for 5(r—p) and 8(r—p), for any real
constant p. Hence one may write tanhs. (r+p) and
coshsr(r+p) in (14). Also one may subtract from the
left-hand side,

real axis, and not for instance as a means of computing one 6nds
bound states.

~oo (p~) ir—l
dp'= (sr tanhur)p'

"s s(p' —p)

whence it follows that p" & (—~&r&+oo) are im-

proper eigenfunctions with eigenvalues m tanhxv. The
expansion in eigenfunctions amounts to a Mellin trans-
formation5:

( I +(r) I'—
I @(r)I')dr

which vanishes according to (12) and (7). The result is'

~+00 e—27( (~+P)

(I @( ) I'- l(r) I'&d.
1+s sr (r+u)—

~.(p) = 8(r)p' &dr,
~+00 e-m (r+Itt)

~l 8*(r)8(r)]d.. (15)J 1+e sr(r+o—)

g(r) = (1/2sr) A, (p)p ' &dp.
~o

p+" le "@(r)I'
2&@ JT~

1+e sr(r+o)—

This inequality must be satis6ed by any square
integrable 5(r) and for all real p, . We choose for g(r)
a function that vanishes so fast for r-+—~ that

Th; t bl; h „ t „„d„ f ll
e '@ r isalsosquareintegrable, andletp, tendto+oo.
The first term on the left can be written

5(r) of the class Ls(—oo, +~), and

I~.(p) I'dp=2~ l@(r) I'd .

When B,(p) is similarly transformed,

&.(p)= ~(r)p" 'dr,

(12)
and is of order e ' & because the integral is clearly
bounded. Similarly, the right-hand side of (15) becomes

I.+" e '$*(r)8 (-r)
2de 8T

1+e—2r(v+o)

V 00

the relation (5) between the ingoing and outgoing waves
takes the form

~+00

g(r) = S(r—r')g(r')dr'. (13)

The inequality (10) can now be transformed; using
the identity

A&&—$

cosh%'T

5 See, for instance, E. C. Titchmarsh, Introduction to the Theory
of Four jer Irttegrals (Clarendon Press, Oxford, 1937).The formulas
in the text can also be found by putting p=e'.

6 That is the class of functions for which the square integral in
the interval (0, ~) exists (in the Lebesgue sense); see Titchmarsh,
reference 3.

and is therefore of order e &. The remaining term must
also be of order e~&, i.e.,

I'" ls '"+()I'
coshsr(r+ p)

must be bounded. Consequently, for any positive T,
the expression

II
—o+ T

cosh7t'T
le 'ts8(r) I'dr

I rs —r~l ~&&.
J~~

~ 8 denotes the imaginary part, I, the real part.

must be bounded, which implies that there is a constant
E depending on T such that
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From this it follows that

~
e~'8(r) ('dr( ~ for 0&~8&-,'ir.

exists and is square integrable over p, for every value
of 8 between 0 and x. Moreover, the square integral
has a uniform bound for 0~& 8 ~& x.'

[A (pe") t'dp=2ir
~

5(r)e-"
(
'dr

l

(5(r) ('dr+ 2x
0

~0

) 5(r)e ~')'dr,

so that A ()),) is a regular analytic function of l), =pe"
for 0&8&ir and tends to the boundary function A, (p)
for almost all p as 8 goes to zero. ' Conversely, when

A, O)) has these properties e '5(r) is I&(—~, +~) for

0 ~&8 (~ir. Thus the above theorem becomes: When A, (P)
is the boitndary flnction of a flnction A, P) analytic in
the angle 0&8(m. and satisfying

(A (pe") ~'dp~&/V for 0&~8~&m. ,

then 8 (p) is the bolndary flnction of a fUnction 8 (X)
analytic in the angle 0&~8& ~1m. and satisfying

~8, (pe") ~'dp&~1Vi for 0&~8~&-',ir —8,
40

with arbitrary positive b. By a slightly more sophisti-
cated argument one can show that it is sufFicient to
assume for A, (X) the same properties as are concluded
for 8 (X), 1/is. , regularity for 0(8(2ir and uniform

square integrability for 0~& 0(2x—8.
It is now possible to define the analytic continuation

S(l1) of S(p) in the first quadrant by means of

8 (l1)=S (X)A,(g=e'"S(X)A.(X).

It has no singularities and the behavior at infinity can
be specified as follows. One may choose

A. (l1) = (l1+iP)-';

since the corresponding outgoing wave packet,

8.(X)=S P.)/(X+iP),
On substituting ) =e' these assertions reduce to well-known

theorems about analytic functions in a strip, see, e.g. , R. E. A. C.
Paley and ¹ Wiener, Folrier Transforms irl, the Complex Domczn
(American Mathematical Society, New York, 1934).

This result has to be translated in terms of Ao(p) and
It, (p) by means of the transformation (11). If both
5(r) and e '5(r) are L2,

)+QO

(pe/))) e ////2 — 5 (r)e //rp/r //—dr—

III. BEHAVIOR OF 8 ON THE IMAGINARY AXIS

The fact that a part of the boundary of the domain
in which S couM be continued analytically had to be
excluded, makes it impossible to arrive at a product
expansion and integral relations by a method similar to
that in I. Our next task is therefore to And more in-
formation about the behavior of S(X) on the imaginary
axis. It may be expected that the interference term on
the right of (15) is important for this purpose, because
that was the term which prevented us from extending
the analytic continuation of S beyond the i axis. The
result will be that dS is bounded from above, which in
Sec. IV will be seen to contain implicit information
about the behavior on the boundary and to be as useful
as a more explicit specification.

Let us choose for 5(r) a function such that, for
some 6)0,

e "5(r) is I.i for 0&8&-;x+g. (17)

According to the result in the previous section one then
has certainly

e 8(r) 1s 12 fol' 0&~8&~2il —A.

Because of (17) the first term on the left in (15) is of
order e ' +'~», whereas the second term may be omitted
since it is negative. After multiplying through by e"
and putting t/=+ ~, one finds for the right-hand side
of (15) the condition

e—(~/&+&)r5@(r) .e (~/2 il)rp—( )d
—& 0

which by means of (11) and (5) can be written

~A. ('p"') j*A.(ipe ")S.(ipe ")dpi&0 (»)
0

It, is clear that the special choice,

A(X) = P,+ s*)-'

(z* complex conjugate of a point s=x+iy in the f)rst
uadrant) satlsfles the restriction (17), prov)ded p 1s

taken less the 2m. —args. With this choice, (18) can be

must be square integrable, it follows that for large
~
X ~,

S.(l).) = e'""S(lw) = o(jl), ~) (16)

in the angle 0(argX&-,'x. The analytic continuation
can be extended to the fourth quadrant by putting

s( *)=
I sp, ))*-',

which reduces to (7) for real positive l1. The only
possible singularities are poles corresponding to the
zeros above the real axis. In this ioay SP.) is defined as a
meromorphic fUnction in the right half of the complex
l), plane, excluding the imaginary axis.
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written
o0 eXp [2(m/2-8)] S ()t)d)t

() +z*)(—) +s)

Hence we get

S.(p)&p—gS.(s) & (R.

(p+s*) ( p+z)—
t." S,(p) ' r" dp

dp.
p+z* "o

I p sl'

r+ dp sr

"-- p'+y' y
so that

aS.(s) & ~/y. (19)

This shows that the imaginary part of S,(s) is bounded
from above in any angle 0&5~&args&-', x. Now con-
sider the function,

F(s) =expI —iS,(s)j,
in an angular region 0&» args&~ 8, where 0&8&~x. It has
an upper bound e on the real axis, and on the radius
args= 0 it is bounded by exp(cote). Also

log+
I
F(pe"')

I
sin (7rft'/ll) dft'

is bounded as ~~, so that according to Phragmen-
Lindelof's theorem" IF(s) I

attains its maximum value
on the boundary of the region. By letting 8 go to ~x one
thus finds

I
F

I
&~e in the whole quadrant, or

gS, (z) &~1 for 0~& argz& tszr. (20)

This result will be used in the next section to derive
an integral representation and -a product expansion,
but we remark here that it implies that

I
S

I
is bounded,

except in the neighborhood of the i axis. Indeed, since
(20) followed from the causality condition for a core
with radius u, it must also be fulfilled for any u'& e, i.e.,

de"~"S.(s) & 1 for n')~0.
9 That there is no contribution from the circular are at infinity

can be shown in much the same way as for functions in a strip
(Paley and Wiener, reference 8). The origin too has to be cut oif
by a small arc, but there is no difhculty in showing that this con-
tribution also vanishes.' This formulation of the theorem is due to F. and R.
Nevanlinna, see, e.g., L. Bieberbach, reference 3, p. 129. (log+x
is defined as logx for x&1, and 0 for x&1.) In order to apply it
to the present case the right half-plane had to be mapped onto
the angle 0~& argz &~8, which is the reason why sin(21-8'/8) appears
rather than cos8'.

On shifting the integration path to the real axis, the
integral becomes'

S,(p) dp S,(s)+2'
"o (p+z*) (—p+s) z+z*

Or, if 4=argS,
e—'o'oIS. (s) I

sin(2o. 'x+4) &~ 1.

For each value of x, y it is possible to choose an a' be-
tween 0 and s/u for which the sine takes the value 1.
so that

IS.(s) I
&e- l*. (21)

We summarize the results: S ()t) zs rnerorlorphic izz

the right half Plane -01)i&0. IN the first qgudrurzt it is
regular urzd its irrzugimury purt bus the ztpper bozzrzd I
(which is attained only on the positive real axis). The
ubsollte vulle IS,(X) I

is bozerzded Zrz every urzgte 0~&arg)i

t+" 1+Eu
S,(ztt) i = 0——

~
dP (E),

E—m
(22)

where 0' is a real constant and P(E) is some bozzrzded

rzorzdecreusirzg real function. P is connected with the
boundary values of the imaginary part of 5 by"

~S.(E) 1=—~(1+K')P'—(E).

This equation is valid for all (real) E for which S is
analytic and therefore certainly for E&0. For E&0,
however, P(E) may have discontinuities with a positive
juIllp:

P =P(E +0) P(E 0—)&0—
As P is bounded, the E„ form a denumerable set and
Zp„& ~. Denoting by p( E) the co—ntin—uous func-
tion that remains after subtracting the jumps, one
obtains

1
l
" 1+Etv gS, (E)—1

S,(tv) —z= 0+—
~

dE
E vo 1+E'—
1+E„vo l" Etv —1+ZP„+ dP (E). (24)
vo E„4o E+tv-

n A. Herglotz LBer. Verhandl. K. sachs. Ges. Wise. Leipzig,
Math. -phys. Kl. 63, 501 (1911)g proved this theorem for functions
in the unit circle; see also M. H. Stone, Linear Transformations in
EIilbert Space (American Mathematical Society, New York, 1932),
p. 570. W. Cauer (Bull. Am. Math. Soc. 38, 713 (1932)j and
J. A. Shohat and J. D. Tamarkin /The Problem of Moments,
American Mathematical Society, New York, 1943$ applied it to
functions in a half-plane; J. S. Toll Lthesis, Princeton, 1952$ used
it in connection with the causahty condition for the propagation
of light in a medium. In the actual theorem an additional linear
term 0'm appears on the right, but since 0'=limS (m)/m for
~w~-+oo, S(~argw&~n —S (see Shohat and Tamarkin), it follows
from (16) or (21) that in our case O~'=0.

'2 This can be found directly from (22) by letting zo approach
a point 8 on the real axis {see J. S. Toll, reference 11).

IV. EXPLICIT REPRESENTATIONS OF S

For the derivation of an integral representation it is
convenient to use the variable m= —',t', which on the
real axis reduces to the energy E= ,'p' (we-put from
now on zrz=1). The function S,(w) —i is regular in the
upper half-plane, and its imaginary part is &~ 0. Accord-
ing to a remarkable theorem of Herglotz, " this entails
the validity of the Poisson integral
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&(l.)=II Il--I
n 1—g„e

The third term on the right exhibits the poles of S,(to) known. 'r They can be decomposed in two factors,
on the negative real axis with the positive residues" S (f')=b(f)f, Q'), where

b„=P„(1+8„').There can be no E„equal to zero, 1—l
because S,(E) is bounded for Z) 0. Hence this term
can also be written

1 1 P+——Z—
m —E„E„E

is the "Blaschke-product" containing all zeros f „inside

(25) the unit circle, and f.(f) can be represented as follows

p27f et++ f'

f.(f)=exp . tf~.(s),
Js el+

I

which is a Mittag-LefQer expansion with respect to the
poles E„.The fmite constant ZP„/Z„can be absorbed
in O.

As will be shown in Sec. V, the fourth term on the
right stems from the fact that we have not assumed
the symmetry relation (8). It may contain additional
singularities in S,(ro) on the negative real axis, but they
give rise to a slower increase than the poles. '4 It thus
follows from (24) that S(X) can have no poles of higher
order than the first on the +i axis, which can also be
concluded directly from (20).

Although the integral representation (22) or (24)
lends itself for the study of the behavior of 8 on the
boundary, it has two serious disadvantages. It contains
the arbitrary constant a implicitly in the 0 a,nd P, and
it disregards the information that

~
S(E)

~

= 1 for E)0.
We proceed to derive a product expansion, which does
not suer from these shortcomings, and therefore seems

to be a more natural representation for S.
In order to apply more readily some theorems in

function theory, it is convenient to map the first
quadrant of the X plane onto the unit circle by putting

K= (+'+1)/(&' —1).

The integral (22) then becomes

~2+ PEP(g)
S.g) = O,-2'l

ate

where 0't is now a complex constant. It has been shown's

that one may conclude from this that S,(f) belongs to
the so-called Hardy class" H~ for every p&1, which

means that, for each such p,

[S.(pe'e)
~

~ds

is bounded as p
—&1.

The importance of this result lies in the fact that for
functions of that type a canonical representation is

'3 That the residue must be positive is well known for potential
Selds, see C. Mufller, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 22, No. 19 (1946).

"Let m=E+iv(E&0, v&0) and e-+0; then it can be shown
that the last term in (24) is o(2/e), owing to the continuity of P.
This term may also be singular at E~, in which case E is not just
a pole of S (m).

'~ V. J. Smirno8, J. Soc. Phys. -Math. Lhningrade F, 22 (1929).
&6 F. Riesz, Math. Z. 18, 87 (1923).

(26)

rr (q) being some function of bounded variation. Since
(S (X) (

= 1 on the positive real axis, ( f.(l ) ~

= 1 on the
arcsr&to&2sr of the unit circle and hence ter. (io) =0 for
s-& @&2sr. Translating (26) back to the variable X one
thus finds, putting cot(lO/2) = s',

s9'—
f.(X)=exp t'0') s t', —do.,(s) .

+s)&t

The constant 0' has to be added, as mentioned in
footnote 11, to allow for a possible discontinuity of
n. (to) at q =0 (or y=2s).

The factor e' " contained in S,() ) can be written in
the same form (27) and may therefore be combined
with f P). Hence toe obtain for S(X) the canonical repre
seetutioe

1—X'/X '
S(~)=II

1—X'/X *'

"s'X' —1
)&exp iO''X' —s

~
dn(s) . (28)

s'+X'

This is the counterpart of (I, 16). The right-hand side
does not involve a but is uniquely determined by SP.).
It has been derived only for the 6rst quadrant but it is
clearly valid for aQ ) in the half-plane SX)0.

The Blaschke product in (28) contains only the zeros
and poles on the right of the imaginary axis. The poles
on the imaginary axis itself arise from the (logarithmic)
discontinuities of n(s); that they do not appear ex-
plicitly is reasonable, because they have no special role
among all the singularities that may occur in the half-
plane RA&~0. From the fact that the product converges
one Ands a sum rule for the X„; in terms of the cor-
responding energies to„=st„+is„=-',X„' (I resonance
energy, 2s„ level width) it takes the same form as in I:

Zs„/(to„('& ~.
The exponential factor in (28) corresponds to some

sort of potential scattering. Instead of the single con-

'~See references 15 and 16. I am indebted to Professor A.
Beurling for the remark that this is a special case of Nevanlinna's
theorem for "beschranktartige" functions LR. Nevanlinna, Fin
eteutfge Arsalytische FNssktionsn (J. Springer, Berlin, 1936)g, be-
cause (S,(f)—2i} ' is bounded in the unit circle.



S MATRIX AN D CAUSALITY CONDITION

stant n in (I, 16) it contains an undetermined function
n(s) and in addition the constant 0'', owing to our
ignorance about the analytic behavior in the left half-
plane. They are not completely arbitrary but have to
be such that (20) is satisfied. We shall not derive the
explicit form of this restriction, but mention only that
8' must not be negative, as can also be seen from (21).
The physical meaning of O~' is clear from (4):Combined
with the time factor e 'z' it gives expL —isP'(f —20')],
so that it simply delays the outgoing wave packet—
which does not violate the causality condition.

S(—V) = PS(X)g*, (29)

and it is therefore a regular function in the second
quadrant and meromorphic for R)«0. On the imagi-
nary axis S(X) is real at all points except the singulari-
ties.

%e shall now make the additional assumption that
there are no other than isolated singularities on the
imaginary axis. Then there can only be simple poles.
For poles of higher order were already shown to violate
(20); if a branch point occurred the analytic continua-
tion would not be unique; and essential singularities
can also be shown" to be incompatible with (20).
Because of (7) there can be no pole at X=O, so that
(29) yields S(0)=&1. For brevity we shall confine
ourselves to the case S(0)=1. In the literature only
8 functions of this restricted class have been envisaged
(for pure scattering), and, indeed, Wigner" showed
that 8 must be of this form if the interaction can be
described by some self-adjoint Hamiltonian. On the
other hand, these additional properties cannot be de-
rived from our causality condition, as is shown by the
following example. Let n, p, y be positive constants and
p)rr. Then.

() +y+ni) (x+y pi)—
S(X)=

(X+y crs) (}+y+ps)—
"Ifi~ is an isolated singularity, S(X) can be split up according

to Laurent's theorem (see Titchmarsh, reference 3) into two terms:
S=g~+g2, where g~ is regular in the neighborhood of za and g~ is
regular everywhere but in ia. Moreover, both are real on the j axis.
Hence 4fg&(@+ay) ~& Cx in the neighborhood, and the same is true
for g2 because of (j.9). Put ) =Afc—i/g and g2() ) =g(f), so that g is
an entire function. Thendg($+ie) (~C(—e)/(f +e'} in the lower
half of the t plane and therefore 8g(f) &0, since it cannot have
a maximum. It has been proved in I that from this follows
g(f')=ail'+a&, which means that S(X) has a simple pole at is
Instead of (19) one can also use (20) and the Phragmsn-Lindelof
theorem."E.P. Wigner, Phys. Rev. 70, 15 and 606 (1946}.

V. THE SYMMETRY PROPERTY

In this section we shall show how the above results
can be simplified if the symmetry relation (8) is as-
sumed. More precisely, it is assumed that S(X) has a
unique analytic continuation across the positive imagi-
nary axis, which on the negative real axis assumes the
values defined by (8). This analytic continuation must
satisfy

does not satisfy (29) and even' has a pole —y+ns in
the second quadrant, but it can be verified by direct
calculation that it satisfies our basic inequality (10)
(with a=O).

Kith these additional assumptions the integral rela-
tion (24) can be simplified considerably. When w tends
to a point 8&0 (which does not happen to be one of
the poles Z„), one obtains according to (23)

1=m (1+E')P'(—8).
On substituting this in (24), the last term cancels the i-
on the left and the —1 in the remaining integral on the
right. Furthermore this integral can be rewritten in a
fashion similar to (25), because gS,(0) =0. The new
constant 0~ is then obviously S,(0)= 1, so that the final
form becomes

1 t" ( 1 I)
S,(w) —1=——

i +—igS (E) dE
s ~p &w EZJ—

( 1 1)
+Zb.

~
+—(. (30)

(w —Z„Z„I
This equation is valid in the whole complex plane,

but it gives only one branch of the two-valued function
S,(w). It is therefore preferable to use the variable X;
(30) then takes the form

S,P)—1 2 t
" ffS.(P') 2b„

dp' —Z, (31)~., p'(p' —}~') ~ (~ +}t)
where i~„'= 2E„. If now—)t tends to a real value P,
one 6nds a relation between real and imaginary parts
of 8

2p' t
" gS, (p')

(RS,(p) =1+ dp'
~ ~o P'(f"—t')

b—2p'Z (32a)
g2g2 '2

(principal value at p'= p). By inverting this equation
one obtains

2P t" (RS.(p') b.
gS.(p) = —— dp'+2' . (32b)

pcs ps a„~„'

These equations are generalizations of Eqs. (I, 30).
A product expansion for S(X) in the present case

cannot be obtained simply as a specialization of the
general representation (28), because the latter is essen-
tiaQy restricted to the right half of the X plane, e.g., it
involves zeros —X which are not zeros of S(X).Instead,
S(X) should now be considered as a meromorphic func-
tion de6ned in the whole upper half-plane, for which a
product expansion with respect to the zeros end the
poles has to be found.

%e shall 6rst construct a product containing all the
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poles. Since S(iy) is a real function of y, having poles
at y=~„whose residues are all of the same sign, there
must be 'at least one zero v„between ~„and a„+~. The
product

1+)t/i~„1—X/sv„

o-i 1 X-/sa, '1+X/sv
(33)

This function is regular in the 6rst quadrant, and its
imaginary part is not greater than 1 on the boundaries.
By applying Phragmen-Lindelof's theorem to e 'g~&"&,

one finds dgii (X) &~1 in the whole quadrant. Conse-
quently the limiting function S, (X) = limg~(X), which is
regular in the upper half plane and of modulus 1 on the
real axis, has also an imaginary part ~&1 in the 6rst
quadrant. Hence it satishes an equation of the type
(30) or (31) without the term containing the poles:

S,s(X)—1 1 r
+" dS, '(p')

gp/
p'(p'-x)

From this it follows, as in I, that S,'P,) =0(1X1) and
therefore necessarily bounded, "and subsequently, that
S,s(X) can be expanded into a product of the form

1—X/A„1+)/ft „* 1—X/sL
S. ())=. '-+'II " "

II ", (34)
o 1—X/A * 1+X/A ~ 1+X/sL

where again cz'~& 0.
The iL are the zeros of S(X) on the imaginary axis

that were not yet included in the v„. As the distinction
between the zeros iv and iI. depends on an arbitrary
choice, it is desirable to write the expansion of'S(X) in a
unique way, e.g., as follows:

1—)t/~„1+)~/X„* 1—)~/sP„
S(&)=e ""II, II . (35)

1—X/4„* 1+X/A 1+X/iP„

Here n~& u and iT runs over all zeros on the imaginary
axis, taken in the order of increasing absolute value of

~This proof seems somewhat shorter than the one given by
P. I. Richards, Duke Math. J. 14, 777 (1947).

"This point was treated too summarily in I, because it does
not follow from (I, 39) that (X+fP) 'S(X) is Ner'forroly bounded
in the upper half-plane. Rather than the ordinary Phragmen-
Lindelof theorem one should therefore use Nevanlinna's formu-
lation (see reference 10).

contains all the poles of S in the upper half-plane, has
modulus 1 on the real axis, and can readily be shown to
be convergent. For" the (absolute) convergence of the
product depends on the convergence of the sum

1 1 (1 1q 1
Q ——(Q1-

&a vm (Ko Co+11 Kl

Now put
1+$/sKo 1—g/svo

g~Q) =s.(&) II
~=i 1—X/sir„1+X/sv„

I'; a positive I' corresponds to a zero on the pos-
itive imaginary axis, a negative I' to a pole.

This product expansion is the direct generalization
of (I, 16). The same formulas for the cross section in
the neighborhood of resonance follow from it. The sum
rule (I, 19) carries over:

'1'
o (0)=4' —n+2Z +Z

1 S,(X)—1
E(u) =- (w =-,'X'),

9. S.(X)+1
(36)

the general properties by which Wigner'4 defined the
class of "Efunctions. "It is clear that 8 is meromorphic
and real both for m&0 and m (0. We proceed to show
that R(ro) is holomorphic in the upper half-plane, i.e.,
that S (X)+1 has no zeros in the first quadrant.

First let n'=0 in (34) and let the products consist
of N and L factors, respectively, and let (33) consist of
E factors. Then S is a rational function of order
2N+2E+L and has the limit +1 at infinity (because L
is necessarily even). Hence it assumes the value —1 in
21V+2E+L points of the X plane. Now on the imagi-
nary axis 5, is real and has 2E poles whose residues have
the same sign, so that it takes the value —1 at least 2E
times. On the real axis S has modulus 1 and the phase
changes 2N+L times 2m, so that it takes the value
—1 at least 2N+L times. There can be no other points
where S ()I,)+1=0. In the second place let n') 0 in (34) .
Take a large rectangle in the ) plane whose vertical
sides intersect the real axis at +vrh/a', where h is some
large integer. The variation of the phase of S,(X)+1
around the rectangle will be the same as for e" '"+1,
that is 2h 2s., since the rational factor in S ()I) tends

~
¹ Levinson, Kgl. Danske Videnskab. Selskab, Mat. -fys.

Medd. 25, No. 9 (1949).
~'A similar argument shows that a must be positive; for ex-

amples see C. Mgller (reference I3) and D. ter Haar, Physica 12,
So& (&946).~ E. P. Wigner, Ann. Math. 53, 36 (1951).

provided the signs of the I' are takeii into account.
The generalization of the integral relations in I has
been given above. The relation (I, 25), for the case n =0,
goes over into

~( )—~(0) =w(2Nym —Z),

where S is again the number of zeros A.„ in the 6rst
quadrant, and M and E are the numbers of zeros and
poles on the +i axis. However, Levinson" showed that,
if the interaction is caused by a potential field, if(0)

r)(~) =r—rE, so that ne'cessarily N=M=O. But this
cannot be true, because there must be a zero between
any two successive poles on the imaginary axis. Conse-
quently it is not possible for a potential field of finite
range that n=O in (35) "

We shall again derive for the E matrix
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to 1. That means that the factor e" '" gives rise to 2h
new zeros of S ())+1;but they lie necessarily on the
real axis, because the phase between —~h/n' and
+eh/n' now changes 2N+L+2Ir times 2~. Finally let
X, E, and L tend to infinity: according to a theorem of
Hurwitz (see Titchmarsh') the zeros of the limiting
function must also lie on either the real or the imaginary
axis. Hence in the w plane R(w) can only have poles on
the real axis.

To show that gR(w)) 0 for drrt) 0 let us first return
to the case g, K, L finite, n'=0. In a point on the
+i axis of the X=x+ ry plane where S,(iy)+1 vanishes,
one must have dS, (iy)/dy) 0, because otherwise there
would be at least three zeros of S,(X)+1 between the
neighboring poles, which would result in more than
2N+2E+L zeros in total. It then follows from (36)
that R(w) has here a simple pole with negative residue.
The same is true for the poles on the positive real axis
of X, because there one must have dry, /dx)0. Conse-
quently all poles in the m plane may be cut oft from the
upper half-plane by small semicircles on which SR&0.
Moreover, for large ~w~ one has E(rr) X ' so that
dR(to) vanishes uniformly at infinity. It thus follows
that 8E is nowhere negative, since it cannot have a
minimum. If now n'&0 there is an infinity of poles on
the real axis, but by using a large rectangle as before,
one can prove the same result. Finally, if S, E, and L
tend to infinity, SR(w) cannot, of course, become nega-
tive; neither can it become zero in any point, because
that would be a minimum.

This completes the proof that the properties of the
S matrix which were found from the causality condition

(2) together with the symmetry relation (8), imply the
known properties of the R matrix. In another paper (to
be published in Rev. Mex. Fis.) we shall show that the
converse is also true.

VI. DISCUSSION

The representations (24) and (28) of S, which
followed from our causality condition alone, contain an
undetermined function and are therefore of little prac-
tical use. Only by making the additional assumption

(8) was it possible to obtain the more specific repre-
sentations (31) and (35), which are similar to those in
the electromagnetic case, but for the presence of poles in
the upper half-plane. The main eGect of these poles is
that S(X)—for complex X—is no longer expressed in its
values on the real axis alone, but one also needs the
poles and their residues in (31). This seems a poor
result, because an analytic function is already deter-
mined by its values in an arbitrarily small interval, but
the following has to be borne in mind.

%hen two analytic functions take the same values in

a small interval, they are identical throughout the
region where they are de6ned. However, if one only
knows that their difference in the interval is less than e,

then, no matter how small e is, their values in any other
point of the region may vastly diGer. In other words, if

the function S(p) is given in a small interval on the
real axis, its analytic continuation S(X) does not depend
on the given values in a continuous way. It follows from
this remark that it is impossible to express S(X) ex-
plicitly in terms of the values in a certain interval on the
real axis; Nor is it possible to 6nd an algorithm for
computing the values" in the complex plane. Although

. S(X) is unique when S(p) is given, the problem to
construct the actual values of S(X) from S(p) is not a
correctly set problem. "

On the other hand, if a function is holomorphic in a
r'egion, the problem of 6nding, its values in the interior
from its values on the boundary (or even only from its
real or its imaginary part on the boundary) is correctly
set and an explicit expression is possible, namely the
Cauchy integral (respectively, the Poisson integral). If
this region is the upper half-plane, the values on the
whole real axis are required and in addition some in-
formation about the behavior at infinity; this was the
basic idea of I. In the present article S(X) may have
poles, but if they are known together with their residues,
they can be subtracted and the remaining holomorphic
function can again be expressed by means of a Poisson
integral in terms of its imaginary part on the boundary.
This is the underlying idea of (31); the roundabout
derivation was necessary because of the in6nite region
and the in6nite number of poles.

An interaction that decreases rapidly with increasing
distance is physically not very different from an inter-
action of 6nite extent. But our mathematical derivation
is no longer valid; in fact even an exponentially de-
creasing potential 6eld can give an S with other singu-
larities than just simple poles. 4 Let such an interaction
be cut oG at some large distance; that may alter the
values of S in the complex plane considerably, but not
the values on the real axis, because they are directly
connected with physically measurable quantities. It can
therefore be asserted that equations like (32), connect-
ing physical quantities, are approximately correct if the
interaction is approximately zero beyond a certain
distance. One might even say that they are as correct
as the whole idea of an S matrix, because applying
S matrix theory to any actual experiment implies that
one regards the scattered particles as free when they
reach the observing apparatus.

It has been suggested that the bound states can be
found from the scattering data by analytic continuation
of the S matrix. "That turned out to be true if the
interaction is caused by a field of 6nite extent, but not
for instance for the potential e ". This distinction be-
tween sharply cut-oG and rapidly decreasing potentials

2'Actually the only way to give the values of S(p) in the
interval with infinite precision is by means of some analytic
representation. It is a common procedure to use that representa-
tion (or a derived one) for an explicit de6nition of the analytic
continuation. However, this has to be done for each case sepa-
rately and does not solve the problem of 6nding a generally valid
explicit expression of S(X) in terms of S(p)."W. Heisenberg, Z. Naturforsch. 1, 608 (1946).
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seems unnatural to a physicist. According to the above
considerations it has, indeed, no physical meaning,
because the analytic continuation is not determined in a
constructive way so that it is eever possible to compute
the energies of the bound states from the phase shift.

Jost and Kohn" showed that the potential can be
calculated from the scattering phase shift, when, in
addition, the energies and the normalization factors of
the bound states are given. If it is known u priori that
the potential has a 6nite extent, these constants are
already determined by the analytic continuation of the
scattering phase shift. Nevertheless, there is again no
abrupt diGerence between the case of potential fields
of 6nite extent and rapidly decreasing potentials, be-
cause the constants are determined in a nonconstructive
way, so that for actual calculations they still have to
be given explicitly.

%hen the interaction at large distances arises from a
potential that does not fall off rapidly, Eqs. (32) are
still practically valid, as mentioned above, provided
that 'u is chosen very large. However, for large u a11

'~ R. Jost and W. Kohn, Kgl. Danske Videnskab. Selskab, Mat. -
fys. Medd. 27, No. 9 (1952).

terms on the right tend to zero except the contribution
of the singularity in the integral, and the equation
reduces to a triviality. It is therefore preferable to
solve the wave equation explicitly as far as possible
and enclose in the sphere with radius c only the inter-
action which is unknown or cannot be treated explicitly.
That amounts to replacing e+'~" with the explicit solu-
tions in the outer region, in the manner of %igner and
Eisenbud. " It will then be possible to generalize the
present treatment, provided the analytic behavior of
these solutions (as functions of p) has roughly the same
features as that of e~@'". Presumably a sufhcient condi-
tion is that the potential is a regular analytic function
of r for

~
r

~
)o, including the point r= ee. A special case

is the centrifugal potential /(1+1)/rs which comes in
when the higher multipole waves are treated.
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