
PEIVSI CAL REVIEW VOI UME 91, NUMBER 5 SEP TEMBER 1, 1953

Logical Relations among the Principles of Statistical Mechanics and Therrisodynamics*

JQHN S. THQMSEN

Rudiution Luborutory, The Johns Hopkins University, Bultimore, 3furylund

(Received May 29, 1953)

Five propositions used in thermodynamics and statistical mechanics are formulated: detailed balance,
microscopic reversibility, the ergodic hypothesis, the Second Law, and a restriction on the transition proba-
bilities which will be termed the '9 hypothesis. "It is shown that the last three propositions are equivalent.
The ergodic hypothesis and detailed balance together are proved to be equivalent to microscopic reversi-
bility. This shows that microscopic reversibility is a stronger condition that the Second Law. The results are
discussed in connection with Onsager's principle.

INTRODUCTION

I THERMODYNAMICS and statistical mechanics
have been developed from a number of diferent

starting points. Classical thermodynamics is a theory
of equilibrium based on the First and Second Laws,
while statistical theories of equilibrium have depended
largely on the ergodic hypothesis. Statistical theories
of irreversible processes, on the other hand, have gen-
erally made use of the principle of microscopic reversi-
bility in some form. The macroscopic theory of irre-
versible processes also depends to a great extent on this
principle, which is the basis of Onsager's reciprocal
relations. Examples are found in the work of Cox, '
de Groot, ' Denbigh, ' Onsager, ' and Prigogine. s

At 6rst glance these assumptions appear quite dif-
ferent, but a number of logical relations between them
can be demonstrated. In the present paper, five basic
propositions employed in statistical mechanics and
thermodynamics will be formulated, and all possible
relations between them wiB be investigated. Some of
the resulting theorems are rather obvious when properly
formulated, and several have been previously proved.
However, all are included for the sake of a complete
but concise summary of the possible relations.

I. DEFINITIONS

The following de6nitions will apply.

(1) System. —The system under consideration will

be taken as one of an ensemble of X identical systems.
Each one is considered isolated and each has the same
energy E.

(2) States. —Each system is assumed to have W pos-
sible quantized states accessible to it. Since the energy
is 6xed, W may be taken as finite.

*Based on a thesis submitted in partial fuÃ11ment of the re-
quirements for the degree of Doctor of Philosophy at The Johns
Hopkins University.' R. T. Cox, Revs. Modern Phys. 22, 238 (1950).

'S. R. de Groot, Thermodyrsamics of Irreversible Processes
(North Holland Publishing Company, Amsterdam; Interscience
Publishing Company, New York, 1951).

e K. G. Denbigh, The Thermodynamics of the Steady State
(Methuen and Company, Ltd. , London, 1951).

4 L. Onsager, Phys. Rev. 37, 405 (1931);38, 2265 (1931).
~I. Prigogine, Ztlde thermodynumiqle des Phenomenes irre-

eersibles (Desoer, Liege, Belgium, 1947).

(3) Probabilities. The —probability that a system
chosen at random will be in state i will be denoted by
p; where 1(i&W. The probabilities must, of course,
satisfy the restriction:

p;= P;(P;X;;—P;)i.g). (2)

(5) Equilibrilm The nece.—ssary and sufFicient con-
dition for equilibrium is that all p; vanish. By Eq. (2)
it follows that

P;(p,A;;—p,)„;.) =0 at equilibrium,

for every i.
(6) Entropy. The usual stat—istical definition of en-

tropy6 will be used, namely,

S= —k P;p; lnp;, (4)

where k is the Boltzmann constant. It might be possible
to argue that this definition applies at equilibrium, but
does not properly describe irreversible phenomena.
However, this possibility will not be explored further,
and Eq. (4) will henceforth be considered axiomatic.
An expression for 8may easily be obtained from Eq. (4).

8= —k Q;p; lnp; —k Q;p;.
' See, for example, R. T. Toltnan, The Principles of Statistical

Mechunics (Oxford University Press, London, 1938), Sec. 122, for
a discussion of this de6nition.

(4) Transition, Probabilities. )„;wil—l denote the con-
ditional transition probability per unit time of a system
going from state i to state j, i.e. , p;)i;sdt is the prob-
ability of a system originally being in state i and going
to state j within the small time interval dt. X;; will be
defined as zero for all i. The X;;, taken collectively, may
be considered as a transition matrix. All X;;are assumed
to be independent of time

From this de6nition it follows that the probability
of some transition out of state i in time dt is found by
summing P;X,,dt over all j. Similarly the probability of
a transition into state i is obtained by summing p,A;,dt
over all j.Thus the net change in p; is

dp;=P;pA, dt P;p;)„;d—t
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The last term vanishes, since Eq. (1) holds identically
for all time. Thus

8= —h /de; 1np;.

(7) Interconnection of States. ~ T—wo states will be
said to. be interconnected if it is possible to go from
one to the other in both directions. (This does not
mean that all X;; are non zero. For example, although
X;; may vanish, it will be possible to go from i to j if
X;&QO and X»+0.) In the systems to be considered it
will be assumed that all states are interconnected.
Mathematically this is equivalent to saying that the
states of each system form an irreducible Markov chain.

II. PROPOSITIONS

Five logical propositions will now be stated; these
will be denoted by letters to distinguish them from
ordinary equations. It should be noted that there are
some discrepancies among various authors as to the
meanings of the terms used, e.g., microscopic re-
versibility.

(1) Microscopic Reversibility. —(M) states that the
transition probabilities between two states are the same
in either direction, i.e.,

(M)

for every i and j.This means that the transition matrix
is symmetric. The definition is the same as that employed
by Cox'

(2) Detailed Balance. (D) requires —that transitions
between any two states take place with equal fre-
quency in either direction at equilibrium. Thus, for
everyi and j,

p;X,;=p;X;; at equilibrium. (D)

p;= 1/W at equihbrium. (E)

This principle is also referred to as microscopic reversi-
bility by some authors, but in the present paper it is
important to distinguish it from (M) as given above.

(3) The Ergodic Hypothesis (E) assu.—mes that all
states are equally probable at equilibrium, i.e., for
every i,

Two simple lemmas, to be denoted. by (L&) and (L&),
will now be proved. These follow directly from (L) and
may be used wherever (L) is assumed. Let f, be any
factor or product of factors which depends only on the
index i. Then, by (L),

Hence
Z~f'&a= Z~f'&~*.

Consider next a double summation and apply (Lq).

Q;P;f;X;;=P;g;f;X;;.
Interchanging the summation indices on the right gives

PiP jfi&ij= PiZ jfj&ij.

The above propositions appear quite different at
6rst glance. They may be placed in three categories.
(D) and (E) give symmetry conditions involving the
equilibrium probabilities; (L) and (M) imply certain
symmetry relationships

satisfied

by the transition
matrix; (S) is a thermodynamic statement of irre-
versibility.

IG. THEOREMS

The various possible logical relationships between the
above propositions will now be considered. It will first
be shown that (E), (L), and (S) are equivalent proposi-
tions. It will then be proved that (M) is equivalent to
(D) and (E) taken together. Finally, counter examples
will be given to show that neither (D) nor (E) by itself
implies (M). These relations may be represented
schematically as follows:

C— )

(M)~l:(E)+ (D)j
Thcorcm f: (E) implies (L). At equilibrium there are

W equations of the form of Eq. (3), i.e.,

gi(p;X;;—p,:A;i) =0.

However, (E) requires that all probabilities are equal
to 1/W at equilibrium. Hence

(1/W) P;(X;;—X,;)=0.
(4) The Second I.ew of Thermodynamics. (S) states—

that the entropy of an isolated system never decreases,
It foBows that

(L)
i.e.,

8&0.

(5) The X Hypothesis. —(L) assumes that the sum of
all elements in a given row' of the transition matrix is
equal to the sum of the elements in the corresponding
column. This means that, for every i and j,

(L)
~ It will be noted that this restriction is used only in Theorems

2, 3, and 5; actually it is not essential in Theorem 2.
8 See W. Feller, Ae Introduction to Probability and its Applica-

tions. Qohn Wiley and Son, New York, 1950), p. 327 for a dis-
cussion of doubly stochastic matrices, which are closely related
to (L). Let A be a matrix which gives the probabilities at time

This proves the theorem.
Thcgrcm g: (L) implies (S). An extreme value of S

wj].1 6rst be found subject to the normalization condi-
tion of Eq. (1), This will be done by the method of
Lagrange multipliers, which gives 8' equations of the
form

a8 a
+~ (Z p' —1)=o.

~p~ i1 p~

t+At in terms of those at t, i.e., p;(t+ht) =Z;3;;p;(t). For smal1
At, it may be shown that A;;=);;At+8;;(1—Zl,);~6,t). If (L)
holds, then 2;Ag= i=3;A;;, which is the definition of a doubly
stochastic matrix. The converse holds also under appropriate
conditions.
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With the help of Eq. (5), this becomes

Bp; kp„—k Q — lnp; — +@=0.
~pe pr

(6)

t'Pi 1 t'P~
~=&Z &.~»I —I+I —1 I»

Ep& (p„
(8)

Assume for the moment that all probabilities are not
equal when 8 attains its extreme value. Let I' be the
probability of the most probable state or states. Since
all states are assumed to be interconnected, there must
be at least one state with this probability connected to
a state of lesser probability. In other words, there must
be an r such that p„=I',X„,+0 for at least one j with

p;&P. When this p„is substituted in Eq. (8), (p;/p„)&1

for all j, and thus p, is clearly nonpositive. However,
there is at least one j described above for which

X„ln(p;/p„) &0. Thus p&0.
The state or states of minimum probability may be

treated similarly. At least one p„can be found which

gives p&0. Thus a contradiction is reached unless all
probabilities are equal to 1/W at the extreme value.
In this case Eq. (8) gives p=O for every r, and the
I agrange condition is satisfied. Hence at most one ex-
treme value exists.

When all probabilities are equal and (L) holds, Eq.
(2) shows that all p; vanish. It is then clear from Eq.
(5) that 8=0; it only remains to show that this value
of 8 is a minimum.

To investigate the region near equilibrium let the
probabilities be given by

1

p, = (1/W) (1+~,),
with the provision that

I
A, I,„&(1.Then lnp; may be

approximated by
lnp;= —1nW+6;.

Substitution in Eq. (5) gives

8= —k Q;p, L
—lnW+6;].

Since lnW is independent of i and P,p;=0 as a conse-
quence of Eq. (1), this reduces to

(10}

Since p; is given by Eq. (2), it follows that

—k Q;(X„;—5„;P,Ag) lnp;
—(u/p„)p;(p;X;,—p„l~„)+&=O. (7)

Rearranging the first term and applying (Li) to the
second gives

—0 Q;X„;lnp;+0 Q,A„lnp„
(I/p. —)Z~(p ~~. P.&~.)—+~=0

Vfhen the first summation index is changed to j, p is

given by

BPs—k Q lnp;+p, = 0.
8

This can be evaluated as in the last theorem, yielding

(Pi't'
~=&Z l~:»I —I. (12)

Assume now the probabilities are not all equal, and
let r be a state of maximum probability. Then it is
evident that p,&0. By the same argument previously
used, based on the interconnection of states, it is clear
that at least one p„can be found which gives p&0.
Similarly, there is at least one p„for a state of minimum
probability for which p, &0. Thus a contradiction is
reached unless all probabilities are equal and p=0.
Thus all p„=1/W at equilibrium and (E) holds.

Corollary: Propositions (E), (L), and (S) are equiva-
lent.

By Theorems 1—3, (E) implies (L), (L) implies (S),
and (S) implies (E). It follows that any one of them
implies any other; thus they are completely equivalent. "

~ A more general form of this theorem, using the concept of a
doubly stochastic matrix, is given in Hardy, Littlewood, and
P61ya, Inequalities (Cambridge University Press, Cambridge,
1952), pp. 88—91; Messenger of Mathematics 58, 145 (1929).

"The equivalence of (E) and (L) is also proved in Feller
(reference 4) p. 327 and in M. Frbchet, Trite du calcll des proba-
biHtes et ses applications, Emile Sorel, Tome I, Fascicule III,
Second Livre, Theoric des evenements en chaine dans le cas d'mn

nombre fini d'etats possibles (Gauthier-Villars, Paris, 1938), p. 37.
It is obvious that (E}furnishes a possible equilibrium solution if
(I.) holds. However, the uniqueness of this solution involves a
longer argument based on the interconnection of states. Since
Theorems 2 and 3 furnish an indirect proof, the direct one will be
omitted.

Successive use of (Li) and Eq. (9) in Eq. (2) yields

p, =g, (p, p—,)X,,= (1/W)P, (~;—~;)Xg,.

This expression is now substituted in Eq. (10); thus

8= —(u/W) P,P;(a;~,—aP) X;;.

Application of (L2) to the second term yields

8= —(&/W) 2 Z(~~~' —~P) li~'

The last two equations are now added to obtain

8= (k/2W)Q, Q;(6,—5;)9,;,&0.

Consequently the only extreme value is a minimum and
8=0 at this point. Thus the Second Law (S) results. '

Theorem' 3: (S) implies (E). Equation (5) shows that
8=0 at equilibrium since all p; vanish. It follows from

(S) that 8 must have an extreme value at equilibrium.
The method of Lagrange multipliers may again be used;
Eq. (6) applies since it was obtained without making
any use of (L). The extreme value occurs at equi-
librium; hence all p„vanish and it follows that
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(a) (b) (c)

PIG. 1. Types of equilibrium for a system witb three states)
(Length of arrows represents number of transitions per unit time. .
(a) Equilibrium given by Eq. (14), a special case of (L). (b) Equi-
librium required by (M). (c) General type of equilibrium per-
niitted by (L).

Theorem 4: (E) and (D) together imply (M). (D)
states that p;)I,;;=p,A;; at equilibrium. However, the
probabilities are equal at equilibrium by (E); hence
X;;=X;;and (M) holds.

Theorem 5: (M) implies (E) and (D). (M) is clearly
a special case of (L). However, (L) is equivalent to
(E); hence (M) implies (E). Since all probabilities are
thus equal at equilibrium and X;;=X;;by (M), it follows
that

p;X,;=p,A;; at equilibrium. (D)

This proves the theorem.
The relations stated at the beginning of this section

have now been proved. It might still be thought that
there are other relations which have been overlooked.
Such a possibility will be disproved by means of
counter examples in the two succeeding theorems.

Theorem 6: (D) does not imply (M). Let pi= —',,
ps 3 and ps ——s, and let the transition matrix be

0 2
3 0
.3 2 0.

(13)

0 1 0
A= 0 0 1

0 0.
(14)

Each row and column adds to unity, thus satisfying
(L). However, obviously (M) does not hold.

Equation (3) is satisfied, showing that the distribution
represents a condition of equilibrium. (D) is seen to
hold, but (M) is obviously not satisfied. Actually it
will be possible to find a )t matrix which satisfies (D)
for any given set of equilibrium probabilities; (M) will

not hold true unless the probabilities in this set are all
equal.

Theorem 7: (L) does not imply (M). Consider the
transition matrix:

CONCLUSIONS

It is interesting to compare the types of equilibrium
given by (M) and (L) respectively. It has been shown
that (E) holds in both cases. If the matrix of Eq. (14)
is taken as an example of (L), the equilibrium picture
will be that indicated in Fig. 1(a), with all transitions
occurring in the same direction. This equilibrium, which
may be termed "circular, " has been discussed by On-
sager4 and Denbigh "

A symmetric matrix, i.e., one which satisfies (M),
will give detailed balance (D), as proved in Theorem 5.
The equilibrium situation for three states is shown in
Fig. 1(b). If a symmetric X matrix is added to that of
Eq, (14), (L) is still satisfied by the sum. This gives the
most general type of equilibrium consistent with (L)
and is represented in Fig. 1(c).

Obviously (M) is a stronger requirement than (L) or
(S) and may thus yield valuable information not
obtainable from classical thermodynamics. Micro-
scopic reversibility is frequently referred to as an
auxiliary to the First and Second Laws. " However,
when (M) is stated in the form given here, it includes

(S) as a consequence, without involving any additional
assumption except the statistical definition of entropy. "
Clearly, it is also possible to postulate (S) and (D)
and reach the same conclusions as obtained by as-
suming (M).

There is one disconcerting question raised by these
results. It might appear, on the basis of quantum me-
chanics, that (M) should hold under all circumstances. "
(Since the definitions employed are not necessarily
valid for all quantum-mechanical problems, this con-
clusion may not always be true. ) According to Onsager, '
microscopic reversibility as he dehnes it cannot be
expected to hold in the presence of a magnetic or
Coriolis 6eld. It is not obvious just how this feature of
Onsager's principle is to be reconciled with quantum
mechanics. This point may be discussed further in a
future paper.

The author wishes to thank Professor Richard T. Cox
of The Johns Hopkins University for suggesting the
problem discussed here and for giving many hours of
help toward the preparation of this paper. He is also
indebted to Professor Theodore H. Berlin, Dr. Albert J.
NovikoG, and Mr. David B. Lowdenslager, all of The
Johns Hopkins University, for advice and assistance.

u Reference 3, pp. 31—34.
~ See, for example, reference 3, p. 96.
'3 See Cox, reference 1, for a more direct proof of this statement.
'4 See, for example, P. A. M. Dirac, QNuetgm 3/Iechaeics (Oxford

University Press, London, 1947), third edition, pp. 172-74.


