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Fourth-Order Radiative Corrections to Atomic Energy Levels*f
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In this paper the fourth-order radiative corrections to the elastic scattering of an electron in the 6eld of a
fixed potential are examined, using the Dyson S-matrix formulation of quantum electrodynamics. The
result can be represented as an addition to the interaction energy density of the electron with the external
potential:

—'&()~ &()Ci'/'~ ()r('/4 ')(052~021)j
plus the anomalous magnetic moment already known. The contributions that arise from the vacuum-polari-
zation currents are omitted. This term calculated contributes to the level shift in a hydrogenic atom an
energy of

(u4Z4/r4') Ryb&, 4L(4/s') (0.52&0.21)].
For the 2S level of hydrogen this is 0.24+0.10 Mc/sec.

INTRODUCTION

VIDENCE that fourth-order terms may well be
~ of experimental significance comes from the re-

cently completed precise measurements of the fine
structure of the n= 2 levels in hydrogen and deuterium.
The application of the second order of quantum electro-
dynamics to the interpretation of atomic energy level
shifts has met with very great success. The more pre-
cise measurements make possible a more severe test
of the theory.

A crude estimate of the order of magnitude to be ex-
pected is easily obtained. The main part of the second
order level shift is given by the term'

(4rsZ4/Ns) Ry ln(mC'/E).

The leading term of the fourth-order contribution
may be expected to be of the form

(4r4Z4/444) Ry ln (4Ncs/E)
or simply

(u4Z4/Ns) Ry,

according as there is or is not a logarithm. ' Thus the
fourth-order eGect might amount to a part in a hundred
or a part in a thousand of the second-order eGect, and
these are experimentally significant magnitudes.

METHOD OF CALCULATION

In the evaluation of second-order radiative correc-
tions to atomic energy levels two approaches have

~ The results of this calculation have been reported previously
by Bersohn, Weneser, and Kroll, Phys. Rev. 86, 596 (1952).
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been used. One of these consists of an evaluation of a
formula for the self energy obtained in a straight-
forward manner from second-order perturbation theory,
while the other consists of an evaluation of the second-
order radiative corrections to elastic scattering, from
which one infers the level shift. The relationship be-
tween the two methods is quite apparent if one com-
pares the formulas of French and%eisskopf3 with those
of Feynman. 4 Thus, for the intermediate states of the
electron, French and Weisskopf use plane waves cor-
rected by a single Born approximation rather than the
exact states of the external potential. This approxima-
tion corresponds essentially to the scattering approxi-
mation. For transitions involving low-energy photons
both the scattering approximation and, accordingly,
the above-mentioned treatment of intermediate states
fail in the second-order calculation. This failure mani-
fests itself in the appearance of an infrared catastrophe,
and makes necessary a modified treatment for the low

energy photons,
The scattering method, while possibly less straight-

forward, is actually much the simpler of the two, par-
ticularly for the higher-order corrections. Accordingly,
this paper will be devoted to a discussion and evalua-
tion of the fourth-order radiative corrections to elastic
scattering in first Born approximation. It is easily seen
that the result may be represented as a modification in
the interaction energy density of the electron with the
external potential of the form:

Ctg(x)o.„.g(x) )' fr(x x')F„:(x')d4x'—

(
+C,

~

—zcg(x)~„l((x) '
~ f, (x— )xa„( )xd'4~

E.

r
fr(x —x')d'x'= fs(x x')d4x'= 1. —

3 J.B.French and V. F. Weisskopf, Phys. Rev. 75, 1240 (1949).
4 R. P. Feynman, Phys. Rev. 74, 1430 (1948).
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FIG. 2. The Feynman diagrams corresponding to U&&4&.

Expressed as in Eq. (1), the two terms correspond to
an extra magnetic moment interacting with a modified
external 6eld and the interaction of the electron current
with a modified external potential. The level shift
may be obtained by including Eq. (1) in the interaction
energy of the bound electron and evaluating its eGect
using 6rst-order perturbation theory. The scattering
approximation is expected to be valid to order o.4Z4 Ry,
at least for high energy photons. The functions f&(x—x'),
f&(x x') are charac—terized by a range of the order of
the electron's Compton wavelength, and will be re-
placed by 8 functions. The eGect on the level shift of
this replacement is at most of order n~Z' Ry. In view of
the approximation involved in the use of the scattering
method, a more precise representation of these functions
is, in fact, unwarranted.

The evaluation of the fourth-order level shift re-
quires, therefore, merely the calculation of the con-
stants C~ and C2. C~ represents the fourth-order con-
tribution to the anomalous moment and has already
been calculated. We shall be concerned here with the
closely related but considerably more involved problem
of evaluating C2. It should be mentioned that C2 turns
out to be Gnite in the infrared. This suggests that for
the fourth-order corrections the scattering approxima-
tion is valid to order n4Z4 Ry even for the low-energy
photons. '

~An explicit proof that the fourth-order level shift is given
correctly to order a4Z Ry by the scattering approximation has

THE SCATTERING CALCULATION

The calculation was carried out using the Dyson
S-matrix formulation of quantum electrodynamics and
the Dyson renormalization program. ' We are here con-
cerned only with the fourth-order, single-interaction
with the external Geld, one-electron part of the S-
matrix. This has been discussed by Karplus and Kroll, '
and called by them V&(4).

The Feynman diagrams that describe V~~4& are re-
peated in Fig. i. The sum of the diagrams 17 and 18
is just zero by Furry's theorem. The diagrams of
group IV and diagram 7 give rise only to renormaliza-
tions of lower order scattering processes, and so can be
dropped from further consideration. The diagrams of
class III are vacuum-polarization effects; these terms
have been calculated by Baranger, Dyson, and Sal-
peter. ' This leaves the diagrams 1 through 6, and it is
seen later that only 1 through 5 actually contribute.

The integrals corresponding to diagrams 1 through 6
are, in fact, given explicitly by Karplus and Kroll. The
procedure for reducing these expressions to integrals
over Feynman's auxiliary variables has been fully
discussed and will be reviewed only briefIy. The essen-
tial problem here is one of organizing the calculations
in such a way as to keep the computational labor in-

volved within manageable limits. Therefore, in the dis-
cussion to follow, emphasis will be placed upon the
procedure used. As the procedure differs from diagram
to diagram, the various diagrams will be discussed

separately. Diagram 1, being irreducible, is the best
organized and so the easiest to discuss. It is also the
most complicated one to evaluate, and, therefore the one
for which organization is most necessary. Therefore,
we consider it first and in some detail.

The Evaluation of the Irreducible Diagram

Diagram 1 (see Fig. 1 for the labeling) gives rise, im-

mediately on application of Dyson's prescription, to
the integral

8 n~x~ t'+
My = ——

I
d $04 syd xgd $3d $4

hc 4~„
X fA„'(xp)Dp(xp —x~)Dp(x4 —xp)f(xi)

Xy,Ss'(xp xi)pySz(xp xp)v„Sp (xp xp)— —

Xy,S~(x4—xp)v~4 (x4)). (2)

On inserting the Fourier transforms and carrying out

been given by one of the authors (NK) and. R. L. Mills. The
corrections to the scattering approximation are of order n'Z'Ry.
A note on this subject is in preparation.' F. J. Dyson, Phys. Rev. 75, 486, 2/36 (1949).' R. Karplus and N. M. Kroll, Phys. Rev. 77, 536 (2950).' Baranger, Dyson, and Salpeter, Phys. Rev. 88, 680 (2952);
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the trivial integrations, M~ becomes

Mr ——(e/kc) (ns/s') )
d'kd'k'd'Prd'PsA '(Pr —Ps)

y(p, )7„[s7 (p,—k) —.]7,[s7 (p,—k—k') —.]7„[.7 (ps —k—k)—.]7,[s7 (p.—k) —]7.4(ps)
X (3)

[(pt k)s+&s][(pr —k —k')s+xs][(ps —k—k')'+xs][(ps —k')'+x'][k'+'As][k"+'A']

A photon rest-mass has been used to control the infrared divergence; it will be considered later. Denominators
are combined by the Feynman identity

p 1 duzdsw'dwx'dxy'dy
(4)

abcdef & s [(a b)y—xwsu+ (k c)y—xwz+ (c d)y—xw+ (d e)y—x+ (e f)y+—f]'
The form of the Anal integrals over the auxiliary variables I, s, m, x, y depends on the choice of assignment of
denominators in this identity. The assignment used here —and by Karplus and Kroll in the magnetic moment
calculation —is

o= [(ps—k—k')'+ x']
b= [(pt—k—k')'+x']
c= [(p,—k)'+x'],

d= [ks+V],
e= [(p,—k')'+), ']
f= [k"+As].

This choice of a and b, together with the fact that a=b for pr ——ps, will be seen later to make one of the auxiliary
variable integrations, the e integration, trivial. Then

Mr = 120( —
~ )

—
(

d'kd'k'd'p d'tp As„'(pt —ps) dusdsw'dwx'dxy'dy
&ac) I ~ ) ~ kp

f (pl)7@[$7 ' (pl —k) —K]7K[17' (pl —k k ) K]7p[s7 ' (ps k k )—K]7y[s7 ' (ps k )—K]7glp(ps)
X , (6)

{k'xy+ k"(1—xy+xyws)+ 2k. (—6pyxwsu —p,yxw

+2k. k'yxws+2k' (—»yxwsu —pryxws —pry+ psxy)+&'(1 —y+xy(1 —w)) }'
with»= (ps —p,), where use has been made of
p syKs=p 2+K2 0

Further manipulation is greatly facilitated by intro-
ducing new variables E, E', linearly related to the k, k',
that diagonalize the denominator to the form'

{nlt2+P(+1)2+7x2+g(+P)2+eg2} (7)

wheren, P, 7, 8, care

@=ay,

P= [1—xy (1—ws+ w's')]

[1—x+xws (1—w) ]'
7=w'xy+y'

[1—xy(1—ws+ w's') ]
8=w'xyus (1—us)

[1—x+uxws (1—w) )[1—w —u(1—ws) ]
+y xws

[1—xy (1—ws+ w's']
e=1—y+xy,

and where further use has been made of Prs+xs=Pss
+xs=0. In terms of these new variables, E and E',

'Note that the definition of 6, 7 is such that (S/v)(1. This
means that after the E', E' integration an expansion in Ap/~, for
small (np/sl, is valid for all values of the auxiliary variables.

the numerator can be brought into the form:

&(Pr) {( ) (&')'7.+ ( )I."(E-')'7.+ ( )&'x'7.+ ( )"7.
+ ( )(&')'(»)'7.+ ( )I."(»)'7.+ ( )"(»)'7s
+ ( )E'xa „.»„+( ) (E')'xo„.hp„+ ( )xso „.d p,
+( ) "~P.(~p)'+( )7.(~P)'+( )It" ~P.

+ ( ) (E-')'x~p.+ ( )x'~pu}4 (Ps)As' (8)

where the factors are functions of the auxiliary vari-
ables. Terms containing E, E' to odd powers have been
dropped since they vanish on integration over E, E'.

On separating oG the renormalizations and carrying
out the E, E' integrations, the result immediately takes
the form:

0(pr) {f((»/x)')A: (»)~"~p /x

+g((»/ )')7.A. (») (»)'/"
+h((a p/x)')»„A „'(»)
+~((»/ )') ..~p.(»)'A. (»)

+~((»/ )')7K.(»)'A: (»)8 (Ps).

In this calculation terms of higher order in (»/x) than
the second are discarded. This corresponds to replacing
the functions ft(xr —xs), fs(xr —xs) appearing in Eq. (1)
by 6 functions, as previously discussed. This leaves the
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terms

$(P)(f(0)A '(IkP) aP /+g(0) A '(aP)(IkP/ )'
+k(0) (6p /K)A„'(hp)) p(ps). (10)

Now, the term h( 0)hp„/ xA„'(b p) is gauge variant; it is,
then, to be expected that if all terms of this form are
carefully collected, the coefficient, h(0), will vanish. In
this problem A „'= (0, 0, 0, V(r)), and so I4 p„A „'(I4 p) =0
in any case. The f(0)A„'(Ap)o„„I)p./» term is just the
fourth-order contribution to the anomalous moment
of the electron. 4 The problem here is to calculate the
g(0).

The terms in the numerator, (8), that contribute to
g(0) are those in which Ap appears as (Ap)' or (Ap)s.
The terms contributing to f(0) are the significantly
less populous group involving only the terms xE'o„„I4p„,
a(E')'4r„„hp„, x'o„„t)p„The. VariOuS SpinOr prOduCtS ap-
pearing originally in the numerator are reduced to the

form Eq. (8) using a number of identities, of which a
particularly simple example is

~(p,)~,~ p v.~ p.~.~(p.)
=~(p ){-2"v.—».(»)')&(p )

In obtaining these identities free use has been made of
the fact that P(pi), f(ps) are free particle spinors; all
terms depending on dp otherwise than as (Dp)' or
(d,p)' have been dropped.

As written, g(0) is a sum of integrals over the five
auxiliary variables, and is a function of X, the photon
mass. The result is of physical interest only in the limit
X~O. In the very great majority of integrals, called
group g', there is convergence uniform with respect
to the X. In these terms it is, then, quite correct to put
X=—0; in doing this, only terms that go to zero as ) goes
to zero are dropped. However, in a particular group of
integrals, putting X=—0 makes the integrals divergent;
these are discussed later, calling this group g".

The set of integrals g' is discussed 6rst. A particular system of classi6cation was used; this classification appeared to us to be crucial
to the feasibility of the calculation. The g can be written —after the trivial integration —as

g'= Zc(k, m, n, s, t)I(k, m, n, s, t), {11)
where the c's are numerical factors and

1 zs+1~t+sxn, +8k-3~yn+Q~
I(k, m, I, s, t) = dzdmdxdy $1—x(1—wz+w'z) j"+'7'

1 zs+lw4+sx44+ss —3~y44+t-2L1 x(1 ws+wzz) j444

0
dzdmdxdy

[1—xy(1 —wz+w'z') g"Lw'x+y{ (1—x+xwz(1 —w))s —wsx'(1 —wz+w'z') }js'

with k, m, n, s, t positive integers such that 0&m&n+2k —3. Terms that actually appeared are given by

(12)

~=1 m=0 "='(™=44

~=0 m=o „,Jm=it
]m=0)

m=2t
n=2 m=1t

m=O

m=37
n=3 m=2t

m=1
„ 4(

-4.

@=0 m=3"=2
2

various
higher I

each with a range of values for s, t.
This system of classification in terms of the I's was first used

by Karplus and Kroll in their magnetic moment calculation; in
the terms marked by t the expressions after the x, y integrations
were furnished us by these authors. It is not surprising that the
same type of integrals appear in g(0) as appear in f(0). However,
the evaluation of g(0) is a much more formidable task than that of
f(0) First, there .are simply a greater number of terms present
after the E-space integration that must be rearranged into this
classification system. We have already seen that the magnetic-
moment terms came from a smaller group of terms in Eq. (8).
The second and more important source of difhculty is the appear-
ance of terms in g(0) of higher k, n than are present in f(0). For
given k, n the labor involved in evaluating I increases sharply
with decreasing m. There is an even sharper increase with increase
of k and rl,. The appearance of increased difhculties can be seen
directly from Eq. (7). The terms

(E')'(r P)'7z E'(r P)'vz «'(t P)'vz

will give rise' to I's of k equal to those arising from

(E ) K4r44yr4py4 E K4r444 Apy4 IPo'zpdp44.

However, in addition there are the other terms that contribute
to g(0). Thus, z y44 terms are the k=3 integrals. The (E')s44'y„,
E a'y„give rise to k=2 integrals as compared to the k= 1 integrals

coming from the (E')s(t44p)'y„, E'(tip)sy„. Further, even when the
two terms being compared give integrals of equal k the coeKcients
are much more complicated in the terms associated with g(0).
Also, even for equal k, g(0) contains I's of higher e, lower m.
Finally, the appearance of the higher s, t terms multiplies the labor.

The I's are computed by carrying out the integrations in the
order x, y, z, z. Actually, it was found sufhcient to carry out the
x, y integration; there then remain for any I a small number of
double integrals. A series of tables for these double integrals then
completes the evaluation. ' The values of a large number of I's
for the k, e m indicated were obtained and are available. All of
the integrals can be evaluated analytically and can be expressed
in terms of the same set of transcendentals as those of Karplus
and Kroll.

The integrals marked by an * were not evaluated. Instead the
terms that contained these I's were estimated by rigorous upper
and lower bounds. This was done for the I's of higher k, n, lower
m where the labor was very large and the computed contributions
quite small. The fact that these quantities were not evaluated
exactly leads to a small uncertainty in the final result; the stated
uncertainty represents outside limits; the actual error is probably
much less.

1O These tables coincide in part with those developed by Karplus
and Kroll, and these parts were made available to us.
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Next the set g" is discussed. All the terms that are after the removal of the renormalization terms an.d
)I.-divergent come from the quantity obtained on put- integration over the photon momenta, this gives rise
ting k, k' equal to zero in the numerator of Kq. (5); to the integral

~l
A)tEMxlp .{w'xy+ y'(L1 —x+xws (1—w) 7'—w'x'L1 —ws (1—ws) 7)+) '(1—y+ xy) L1—xy(1 —ws+ w's') 7}'

~1—4sw'xy' dui usw'(1 —us) xy7i 1—xy(1 —ws+w's'7)+xwsy'51 u w(1 us) X1 *+ xwsu(1

(13)
{w'xy+y'(i 1—*+xws(1—w) 7'—w'x'L1 —ws(1 —ws) 7)+) '(1—y+xy) L1—*y(1—ws+w's'7}'

A deficiency in powers of s and m makes the integrals
divergent if we put X—=0. The presence of the ) makes
evaluation appreciably more diKcult, as the above
discussed procedure fails. However, a more roundabout
procedure proved sufficiently simple to be carried out.
Thus, writing the integrals as

simultaneously. There is left, then, only a definite
integral without any dependence on parameters. It is
possible to carry these integrals out more or less straight-
forwardly. Only terms that go to zero with ) have been
dropped in this whole procedure.

The Gnal result for this diagram is

~1 1 1 ~1
dx dy ' dz dwF(x) y, s, w, X/K))

"o "o "o "o

the identity

(e)
(14) Mg= —8''i —in' d'pid'pop(px)VIA( '(~p)

(he&
X (&p/s) V(po)uoi,

m~ ———(13/9) ink —4. 42& 01 .0

dx dy ds dwF(x, y, s, w, X/~)
"o "o ~o go

1 pl 1

= «x I dy ~ ds dwF(*, y. .. w, o)
~ 0 0 ~o ~(x/c)

+ dx dy ds dw{F(x, y, s, w, X/z)
f

o o o 0/~~

p (X/a)—F(x, y, s, w, 0)}+ dx dy ds dw
o "o ~o "o

XF (x, y, s, w, X/s)

provides a useful separation. The 6rst term is easily
integrated over x, y, s by the same procedure that was
used in the I's. The remaining m integration is also
easily carried through, since, as can be shown rigor-
ously, it is correct to put ) =0 throughout except for
the integration of a simple rational fraction. It is only
this first term that gives a X-divergent dependence.
The second and third terms give a result that is 6nite
as ) goes to zero. For these terms it is very useful to
use the new variables

w= ()I,/s) W, 1—x= ()I./It:)X.

The explicit dependence on X occurs in two ways: X

still appears in the integrand after cancelling out com-
mon powers of ) between numerator and denominator,
and X appears in the limits as ~/X. It can be rigorously
shown that it is correct to put X=O in both places

The Evaluation of the Reducible Diagrams

The other diagrams are all reducible; these require
the use of the modified 8p, DJ, or I'„ functions. Since
the form of the modified functions is sufficiently more
complex than that of Sp, Dp, y„, the organization of the
terms is less unified. This tends to prevent a simple
description of the calculations. Since only diagram 2 is
of appreciable diKculty, further comments are limited
to a few remarks on this diagram.

The diagrams 2' and 2" lead to equal contributions and we
understand M2 to mean 2''. Then:

Mg=smi —a d4PId4P2A„' aP d4k

oy(pg k) ~ — — i
XP(P~)v, ~),+~ rI {f'v(p~ &, Po —&)&—~,+~,P(Po) (is)

The quantity in the brackets is the contribution of the corner
vertex, the renormalization term having already been removed.
This modified function is obtained explicitly in Karplus and
Kroil."

The prescription of the choice of factors in the denominator
combination identity cannot be given simply here. However, by

"There is a transcription error in Karplus and Kroll Eq. (31);
the definition of E„should read:
&&(p', p"; I, ~)

=(j—+)(&v p'+~)vl (&v p"+~)
—(ov P'+~) r~(i u*)vt +o(i I)(i—No) (P'+P"—)P—

o(i u+2—») (i—») (p' p"-)„j-
—pa(i I')v„+o(1-u+Nv) (i--u) (p'+p")y

+o(1—I+») (1+1—2») (p'-p") „$(vy p"+~)
—(i u)~„p(p "++)(i —»)+ (P'"++)(i -I+»)j-

og(p' p")„u—(1+I)-(1—2o)+y (p' —p")'p —u+u'o(i —o)j
+g~„„(p'-p")„1(1—I).
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suitable choices of the order of the factors and by suitable simple
transformations, the auxiliary variable integrals can be made to
fall into a useful classification system. Again, in the great majority
of integrals it is correct simply to put ) =—0. In those integrals in
which X must be kept, the procedure outlined for the analogous
integrals of diagram 1 is applicable here; no further discussion of
these is necessary. Of the remaining integrals, with X=—0, (he
group containing almost all the integrals can be written as

Zc(k, m, u, s, t)J(k, m, u, s, t),

where the c's are constants and J is given by

1 1 I'V'
J(k, m, u, s, t) = du dv

(1 uv) a+s~

X dx dy
1 y yaxn+L-1~(1 ux(1 v) (1 uv) )

Lyv(1 —ux(1 —v)/(1 —uv))'+ux/(1 —uv) j"' I.'16)

the k, m, e, s, t are positive integers such that 0&m&n+k —1.
The integrals that actually occurred are given by

k= 1*,
k=2,
k=3,

Those marked by an asterisk were evaluated before this system
of classification was devised; the others are available. There is a
very great simplification brought about by this system of classifi-
cation, especially for the higher k. The use of a more naive system—say, according to powers of x in the numerator, rather than the
x"+~' P1 —ux(1 —v)/(1 —uv)g is almostprohibitivelylaborious.
The I's are easily evaluated by integrating in the order y, x, I, v;
after the y, x integrations the I, v functions are of the same form
as the two-variable integrals met with in diagram 1, and the tables
used there are immediately applicable here.

Not all the integrals fit into this classification. A few integrals
are found in which the power of x in the numerator is greater
than (u+k). The simple program of integrating in the order
y, x, u, v is then stopped after the y integration by the presence
of the integral:

1 1
(function of u, v) dx In(cx+d);

ux+b

u, b, c, d are functions of I and v. Since the result of the x integra-
tion is not expressible in terms of elementary functions, a more
roundabout and much more laborious technique of integration
must be used. While these integrals can again be carried through
arid expressed in terms of the previously mentioned 'set of trans-
cendentals, the smaller terms of this kind were in fact estimated by
means of rigorous upper and lower bounds.

The final result for diagram 2 is

ms= ——', (in')s —(1/18) ink+4. 86&0.11.

The diagrams 3, 4, 5 were carried out easily and ex-
actly. The integrals were su%.ciently few and simple so
that no system of classification was required. The calcu-
lations in these diagrams were not much more di6icult
than the analogous magnetic moment calculations; in
the case of the diagrams I and 2 the tasks were of a
diGerent order of magnitude. The integrals that were
X dependent were more diKcult here than in the mag-
netic moment case; however, the procedure discussed
above is eKcacious here too.

Diagram 6 is easily dismissed. It consists of two sec-
ond-order pieces joined by a photon line. Since the

photon part is proportional to (Dp/tt)', the vertex part
to (hp/44) at least, the diagram as a whole cannot con-
tribute terms of order (Ap/t4)'.

The results for the five diagrams are

fe)M= —8m'~ —~tr' I d4Ptd4Psf(pt)y„A„'(Ap)
&ae&

X (&p/K)'ll'(ps)m,

mt ———(13/9) 1n)%.—4.24+0.10,

ms ————', (in')' —(1/18) ink+4. 86+0.11,

mo ———(77/432) n'+ (1099/648) = —0.06,

m4 ——ss (Ink)'+ (1/18) (In)t) —(17/36) sr'+ 1109/864
= -', (ln'A)'+ (1/18) in' —3.38,

ms = (13/9) (ink)+ (91/216)sr' —(355/432)
= (13/9) (in')+ 3.34,

m= 0.52w0. 21.

Note that the sum of the five diagrams is infrared
convergent; the use of the X can now be regarded as
completely formal.

This result corresponds to an addition to the inter-
action-energy-density

rsvp+ p[ s/t4sg ej[(trs/2trs)mf

Such a perturbation contributes to the level shift in a
hydrogenic atom an energy:

4r4~4/tt' Ry[(4/v')mfbt, o

For the 25 level of hydrogen this is

0.24&0.10 megacycle per second.

Again it should be remarked that the error indicated
arises from the fact that some of the integrals were
estimated, using rigorous upper and lower bounds, in-
stead of being evaluated exactly. The error stated
represents the outside limits; the actual error is prob-
ably much smaller.

The result obtained is somewhat small in terms of the
order-of-magnitude estimates given in the introduction.
There does not seem to be any particular reason for
anticipating a small coe%cient. In the corresponding
calculation of the fourth-order magnetic moment, the
coeS.cient was large.

For completeness we note that the fourth-order mag-
netic moment contributes —0.70 Mc/sec to the 25;,
+0.24 Mc/sec to the 2P; level, and —0.12 Mc/sec to
the 2Pg levels in hydrogen.


