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The general finite displacement operator in an n-dimensional complex continuum is defined as an arbitrary
superposition of exponential Taylor operators (a Taylor operator yields a Taylor's series). On restriction
to the space-time continuum and four-dimensional time-like intervals of constant length co, the corre-
sponding Gnite displacement operator may be considered as an ordinary function of the operators I (the
partial derivative with respect to x,), and must satisfy a Klein-Gordon type equation in I space. This
equation possesses relativistic invariant and four-vector solutions that in the limit co-+0 reduce to j. and e,
respectively. These operators are combined with the Compton wavelength k and the Dirac or Duf5n p,
respectively, to produce a relativistically invariant correspondence type finite-displacement operator
generalization of the Dirac-Dugan equation. If the fields are charged, the electromagnetic potentials may
be introduced in a manner which leaves the mass spectrum unaltered. The relationship to other nonlocal
theories and to the reciprocity theory of Born is brieRy considered.

INTRODUCTION

HE purpose of this paper is to give a new mathe-
matical formulation of a theory of fundamental

length first proposed in a preceding paper. ' The ap-
proach taken in the present paper arises out of a recent
observation of E. Schrodinger, kindly called to our
attention by Freistadt, ' that our scalar averaging
operator, Eq. (8), considered as a function of the
variables I, is a solution of the Klein-Gordon equation
(2). No knowledge of the former matheinatical methods
is required in order to follow those used here, since the
latter methods are entirely independent of the former.
Furthermore, because of the great dissimilarity of the
methods it seems desirable to restate the necessary
basic postulates of the theory and to make the develop-
ment from them ab initio. %e also treat brieQy the
relationship of this theory to some proposed by others.
However, general field theoretic questions will be left
for a later paper.

For the present purposes, it is appropriate to take
as our point of departure the following set of postulates

A. One new fundamental real constant co with the dimensions
of length shall be introduced into the theory; we shall call it a
fundamental length.

3. The usual differential laws (field equations) shall be replaced
by Gnite displacement laws such that the Geld equations at any
given point involve the Geld quantities at only those points whose
"distance" from the given point satisfies the time-like condition

Z, Sx.2+~=0.
C. There shall be a correspondence principle such that in the

limit as co approaches zero the new laws reduce to the old diBer-
ential laws (in which only the infinitesimal neighborhood of any
given point enters the laws).

D. The laws shall be relativistically invariant.

quantization of space. This continuum is the space-time
continuum of special relativity, and we shall label its
points by x, (o.=1 to 4), where x& (k= 1 to 3) are the
usual space coordinates and are purely real, while
@4=iso=ict is purely imaginary, and I, is the time. The
wave function P(x,) satisfies a certain infinite-order
di8erential equation (9) at all points of the space-time
continuum. It is shown in Sec. I that in virtue of
postulate 8 the infinite-order di8erential operators,
D(ttz), which we call finite-displacement operators, by
means of which the wave equation (9) is constructed,
must be solutions of Eq. (3), vis. ,

LZ hx s+4co'3D(N&) =0.
in this equation D(tti) is to be treated as an ordinary
function of the independent variables N)„and the Ax
are symbolic notations for the operators 8/BN. , i.e.,
hx, = 8/Btt, in (3). We write (3) in this form to bring
out the intimate connection between (1) and (3), which
is such that by setting Ax, =8/BN in (1), it becomes
the operator on D(gi) in (3). Any solution of (3)
furnishes us with a differential operator on replacing
the tc, by 8/Bx, . For the formulation of the theory,
then, we may replace postulate 8 by the postulate that
the finite-displacement operators are solutions of Eq.
(3).

According to postulates C and D, we seek relativistic
scalar and four-vector solutions of (3), f(tt) and g(tt)tt„
respectively, to combine with the scalar k(=rnc/k)
and the Dirac or DufBn matrices y to form the wave
equation,

&~.g(N)u. +kf(u) jr=0,
which in the limit co—+0 reduces to the usual di8erential
laws,

With regard to postulate 8, we must emphasize that (y.tt.+k)f =0.
we use a continuum and not a lattice or any other This is carried out in Sec. II, where it is shown tha

' B.T. Darling, Phys. Rev. 80,. 460 (1950). the above postulates uniquely determine the form of
~ H. Freistadt, Compt. rend. 235, 23 (1952). the wave equation )see Eq. (9)$. The functions f(N)
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and g(N) are even functions of I, where

4 Q2

1 gx 2 jr=1 gxg, 2 /x&2

The wave equation (9) of Sec. II possesses a mass
spectrum in virtue of the time-like intervals assumed
in postulate B.' That a spectrum of masses results may
perhaps be expected from the uncertainty principle
AEht —5 which, for an essential uncertainty in the
proper time, hr = ar/ creduces to Amdt 5/c'—.

In the case of a charged 6eld, the electromagnetic
potentials are introduced so as not to disturb the mass
quantization, and the I, are replaced with n, —(ie/hc)A,
as usual.

I. FINITE DISPLACEMENT OPERATORS

Let x, (a =1, n) be the coordinates of a point in
an n-dimensional space; this space is assumed to be a
continuum and may in general be comp/ex. The indi-
vidual x may range over all complex numbers, or some
may be con6ned to purely real numbers while others
may be con6ned to purely imaginary numbers, etc.
Such restrictions will not invalidate the argument of
this section. Consequently the derivations will then be
immediately applicable to the case of the space-time
continuum for which the space coordinates x, (o=1,
2, 3) are purely real, while x4 (o =4) is purely imaginary
since we set x4= ixo= ict where t is the time.

Now let hx, be the components of some 6nite
vectorial displacement of this space on itself, so that
every point x, is displaced to another point x +Ex .
Let F(x.) be a function defined throughout this space.
Then the value of the function at any subsequent
position may be expressed in terms of the value of the
function at the corresponding former position by means
of Taylor's theorem, which' we express in the well-
known operator form

F(x.+ax,)= exp(Ax, n,)F(x.),

where n, =B/cjx, d.enotes the partial derivative with
respect to x„and the summation convention of repeated
index is understood. We shall speak of exp(hx. g.) as
the 6nite displacement operator corresponding to the
displacement hx . More generally, any linear combi-
nation of such operators corresponding to diferent
displacements hx, will be spoken of as a 6nite dis-
placement operator; in particular, this combination
may consist of a continuous distribution of displace-
ments. With these de6nitions it is to be understood
that the functions are de6ned throughout the space,
and that the operators may be applied to them at
every point.

In the case of one-dimension, consider the following
two finite displacement operators f„and g„:

f„P(x)= [f(x+au)+P(x u)) j/2, —

gA (*)=(4 (x+~)—4 (x—~)1/2~,

associated with the displacements Ax=+co and hx
=-o~. It is clear that the averaging operator f„and
the differencing operator g„have the properties

limf„=1, limg„=l=d/dx,
cia-+0 co-+0

and that
f„=t

e-"+e--)/2= cosh(~N)

g„=fe""—e ""]/2&v= sinh(oiu)/&u.

The operators g„and f„are related by

g„= (1/cu') df„/dec,

where the derivative of f„on the right side is to be
taken in the ordinary way considering f„as a function
of n Both. f„and g„considered as functions of n are
solutions of

Ld'/dn' —ar')D (I)=0.

Returning to the general case, let the displacement
Ax, satisfy

Q, Dx,'+4(o'= 0, (1)

, where &v is a constant (in general complex). Then the
6nite displacement operator . e~ «corresponding to
5x„when considered as a function of the I, treated
as independent variables, is such that

gx 2e»&, ~x = 4~2e»&~i
BQ,

This result makes it apparent that any linear combi-
nation D(u) of operators corresponding to displace-
ments satisfying (1), when considered as a function of
the independent variables I, must obey the equation

LQ. 8'/Bn. '+4v'jD (u) =0. (2)

Here u is the vector with components I,. The last
equation takes a more suggestive form if we convert the
left side of the equation (1) into an operator by the
identification hx,~B/Bn„whence (1) is replaced by
(2) in the form

[P.~x.~+4 '$D(u) =O. (3)

Thus Eq. (1), defining the finite displacements, hx„ is
at the same time the operational form of Eq. (3) which
the corresponding 6nite displacement operators must
satisfy.

From now on we shall be concerned only with the
space-time continuum, for which x, (o=1, 2, 3) are
purely real while x4 is purely imaginary. It is clear
now that if there are to be any 6nite displacement laws
in physics involving one new fundamental constant co

in accordance with postulates A and 3, they must be
formed. from finite-, displacement operators D(u) oper-
ating on P(x,) defined over the space-time continuum
of special relativity, and the D(u) must be solutions of
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(2). From now on the constant co in (1) will also be where Ji(s) is the usual Bessel's function of order one. '
understood to be a positive real number. On setting Thus we see that Lorentz invariance and the corre-
Dx4 iDxp, Zq. (1) takes the familiar form spondence limit alone uniquely determine f(u)

from which it is apparent that the intervals are time-like
as required for mass quantization.

y.u.+k. (5)

It consists of the sum of two scalars k and y,u, the
latter consisting of the scalar product of the 4-vector
differential operator, u, =8/clx„with the Dirac or
DufFin matrices denoted indifferently by the p, which,
of course, must satisfy the appropriate commutation
relations for the respective cases. In order to convert
(5) into a finite displacement operator over the time-like
intervals defined by (1), we must seek a scalar and
vector solution of (2) with the properties:

{a) The scalar operator f(u) shall be relativistically invariant
and shall satisfy the correspondence requirement limf(u) =1.

(b) The vector operator g(u)u, shall be a 4-vector and
limg(u)u =u .

We shall see that the conditions (a) and (b) uniquely
determine the operators.

(a) The Scalar Finite-Displacement Operator

It is a well-known fact that the only I.orentz in-
variant functions of u, are functions of I= [P,I,']1
alone. ' Consequently our scalar operator is a function

f(N) of u alone. On substituting f(u) into the differential
equation (2) there results the ordinary differential
equation,

f"+(3/u) f'+4oi'f =0, (6)

in which the primes denote 6rst and second derivatives
of f(u) with respect to u. By changing the independent
variable to s=2ppu and setting f= J(z)/s, we find that
J satishes Bessel's diGerential equation,

J"+(1/s) J'+ (1—1/s')f =0,

for Bessel's functions of order one, the primes now
denoting derivatives with respect to s. The corre-
spondence condition limits J to the solution regular at
the origin and we And

f(N) =2Ji(s)/z,
'H. Weyl, The Classical &oups (Princeton University Press,

Princeton, 1939), erst edition, p. 27.

II. COVARIANT FINITE DISPLACEMENT OPERATORS
AND THE GENERALIZED LAWS OF MOTION

The operator in the Dirac-DufFin-Kemmer equation,
which we seek to generalize in accordance with the
postulates A to D, may be written

1 r)f SJ's(s)

satisfies (2) and is such that

u, (s)
lim u.=u.,

g2

as required by the correspondence principle. Again the
relativistic property, together with the correspondence
requirement, uniquely determines the solution. It may
be mentioned that the scalar and vector operators and
the relationship between them are precisely the same
as obtained in the first paper.

We may sum up the considerations thus far in the
following theorem:

The only 6nite displacement operators that can be
combined with the scalar k and the four-vector yy to
form the invariant law of motion in which the dis-
placements hx are bound by the time-like relation,

Q. Dx '+4&v'=0,

involving the introduction of ore new fundamental
(real) constant o& having the dimensions of a length,
are the relativistic scalar and vector solutions of

[Q.hx.'+4(u']D (u) = 0,

where Ax = 8/BN; the correspondence principle that
~0 yield the Dirac-DufEn-Kemmer equation re-
stricts the operators to the regular solutions, and we
obtain, uniquely, the generalized wave equation

2Ji(s)
/=0

8
+k

07 8Qo

where s= 2~pu, u= [P u.']'*, and u.= 8/rlx, .

(9)

The wave equation (9) may be written (on remem-
bering hx, =8/r)u, ) in the form

[ y,h +xk ]foi(s)ps—=0

where f(s) =2Ji(s)/s is the scalar solution of

[Z, hx.'+4pp']f(s) =0,
' E. Schrodinger, Proc. Roy. Irish Acad. 47A 1 {1941).

(10)

(b) The Vector Finite-Displacement Operator

Just as the finite difference operator g„of Sec. I is
related to the averaging operator f„ for the one-
dimensional case, so here the vector operator satisfying
(2) is related to the scalar operator deduced under
(a) in the same way. Thus
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and satisfies
limf(s) = 1.

The dot in (9) and (10) indicates that the operations
are to be performed on f(s) first and then the result
converted to an operator on f by the identification
N.= c)/c)x.

with
D()4=0,

D()=L—2J ()+k~ ()]/,

(12)

(13)

in which s= —2&eyicc&, and k=cok=Pe'/hc. ' The dimen-
sionless quantity P is defined by setting co=Pe/mes and
is of order unity. If we define an operator Z by setting
Z= —2cop&U&, then the wave equation including the
potentials and satisfying all requirements is

D(Z)/= 0.

III. INTRODUCTION OF THE ELECTROMAGNETIC
POTENTIALS

When we come to introduce the electromagnetic
potentials into Eqs. (9) and (10) in case the fields are
charged, two conditions presumably should be satis6ed.
First, the resulting wave equation should be gauge
invariant because of the well-known arbitrariness of the
electromagnetic potentials under gauge transforma-
tions; and second, it should not interfere with the
quantization of the mass. The gauge invariance is
obtained in the usual manner by replacing I, by
U, =N, —(ie/hc)A, Wher. eas, the invariance of mass
quantization is achieved by replacing s=2coN in the
operator of Eqs. (9) or (10) by s= —2o&pzgi. That
this is so may be seen by noting that the operator in

(9) or (10) is then a function of s alone. Indeed, either
equation after carrying out the indicated operations
and trivial multiplications or divisions by co may be
written

in the 6rst type of theory there does not exist a corre-
spondence principle. It is furthermore apparent that
there is no means of 6xing upon any spectrum of
masses —this being left arbitrary. But more important,
both types of theories cannot be considered as theories
of fundamental length as such, for they consist of
introducing not just one new fundamental constant
length, but rather, as we shall see, a whole spectrum of
lengths specified by a weight function. In still other
theories' smearing functions of various quantities are
introduced. Here also a spectrum of lengths speci6ed
by an arbitrary function is introduced.

Where smearing functions are used, it is usually
apparent on simple inspection of the function that a
spectrum of lengths is involved, with the smearing
function itself playing the part of the weight function.
In other cases we may express them as Fourier-Sessel
integrals over ce of the averaging operator (8). We

may then forthwith turn our attention to the first-
mentioned theories. 7

%e shall 6nd it convenient to feature the dependence
of the D(s) of Eq. (13) on co. Let x=- —yilq, then
G=G0$~ and

D(s) =D(oix) = $ 2Js(oix)+—kJt (oix) j/~x. (15)

Since no correspondence limit co~o will be involved in
the following we may hold k fixed at its value p(e'/hc).
Our problem then is to express an operator g(x) of one
of the above theories in the form

goo

g(x) = h(co)D(coax)dco.

The weight function, h(~), specifying the spectral
composition of the lengths co involved in the operator

g(x), may be found by means of Mellin transforms. s

If G(s) is the Mellin transform of g(x), then

It is apparent that if s„(a real number)' is a root of
D(s„)=0, and if P„ is a solution of (Z—s„)$„=0,then

f„is also a solution of Eq. (14). and

G(s) = g,(x)x'-'dx,

IV. RELATION TO OTHER THEORIES g(x) = )c+cm

J
G(s)x 'ds.

2m's e —ace

(18)

It has been proposed at various times to make up
operators by taking finite or infinite products of Dirac
operators (5) with any arbitrarily chosen spectrum of
masses, or by introducing (arbitrarily or by other
means) transcendental functions of yilq. r Obviously,

' We wish to call attention to an error in footnote (25} of the
6rst paper, which incorrectly set s=2coyp, lp and gives an incorrect
sign to the Jm term oi Eq. (13) above.' It is not difficult to prove that J,+~(s)+kJ„(s)=0, where k
is real and v is real and greater than minus one, has only real roots.

7 F. Bopp, Ann. Physik 38, 345 (1940};Z. Naturforsch. 1, 53
(1946). A. Land6 and L. H. Thomas, Phys. Rev. 60, 121, 514
(1940); 65, 175 (1944). B. Podolsky and C. Kikuchi, Phys. Rev.
62, 68 (1942); 65, 228 {1944).D. Slokhinzev, J. Phys. U.S.S.R.
11, 72 (1947). D. J. Montgomery, Phys. Rev. 69, 117 (1947).
A. Green, Phys. Rev. 72, 628 (1947). B.Podolsky and P. Schwed,

In the latter integral the path of integration is along a
line parallel to the imaginary axis and at some suitably
chosen distance c to the right of that axis. Taking the
transform of (16) and reversing the order of integra-

Revs. Modern Phys. 20, 40 (1948). L. de Broglie, Compt rend. .
229, 157, 269, 401 (1949). A. Pais and G. E. Vhlenbeck, Phys.
Rev. 79, 145 (1950). W. Heisenberg, Z. Naturforsch. 5a, 251,
367, 373 (1950).

8 F. Bopp, Ann. Physik 42, 573 (1943).R. P. Feynman, Phys.
Rev. 74, 939 (1948).R. Peierls and H. McManus, Proc. Roy. Soc.
(London) A195, 323 (1948).J. Irving, Proc. Phys. Soc. (London)
A62, 780 (1949).

9 E. C. Titchmarsh, Ietrodlctioe to the Theory of Foxier
INlsgrals (Clarendon Press, Oxford, 193'7), 6rst edition, pp.
and 315.
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tions, we obtain where
S(x, p)=S(p, —x)

~C0 00

G(s) =
I

h(~)~ I x~'D((ux)dx.
0

On changing the variable x to e=cox, this becomes

~00 00

G(s)= k(s))(0 'da) ~' 'D(e)dn
kp

From the form of (17) we see that

where
G(s) =H(1 —s) n(s),

a 00

H(s) = t h(co)~'—'d(o
"p

(19)

n(s)=- ~ D(e)e' 'dr,

are the Mellin transforms of k and D. Solving (19) for
H and making use of (18) we have

1 r '+'" G(1—s)
k(~)=,I o- ds,

2vri ~, ;„5)(1—s)

valid when 0(R(p)(R(v)+a, where R means the
real part. By straightforward application of this. formula
we find

2FL (s+ 1)/2 j I' (s/2)
&(s)= +k

2' 'I'L(5/2) —(s/2)3 2' 'I'(2 —as)

valid when 0&R(s)(-', . The constant c in (18) must
of course be chosen in this range.

We next turn our attention to the reciprocity theory
of Born."His position is that the basic laws of physics
are self-reciprocal between coordinate and momentum
space, a self-reciprocal function being de6ned in two
diGerent not exactly equivalent ways" as either func-
tions that are their own Fourier transforms or eigen-
functions F(p) of

S( P)F(p)= F(p),
"G.

¹ Watson, Theory of Besse/ Functions (University Press,
Cambridge, 1922), second edition, p. 391."M. Born, Revs. Modern Phys. 2j., 463 (1949).

'~ E. Schrodinger, Proc. Roy. Irish Aead. 55A2, 29 (1952).

the desired solution.
The Mellin transform of D(v) may be obtained by

use of a formula from the theory of Bessel functions, "
I"J„(t)dh

2" "+'I'(t ——@+1)

is a reciprocal invariant and x~~ i—B/r)pI, The basic
reciprocal invariant function which he introduces is the
eight-dimensional distance in phase space,

S=xgx"+pgp",

which we may write in our notation as

p Ax.'—p B,N.',

(20)

since pI,
———ikey. Note that the x and p in (20) are

dimensionless quantities (see later).
At this point it is clear that our operator (15) is not

self-reciprocal in either sense and that while the so-
called "reciprocal" Klein-Gordon equation (3) plays
an important role in the theory of fundamental length,
it is not reciprocally invariant. We treat the coordinate
space on an entirely diGerent footing than the momen-
tum space. This divergence between the theories be-
comes more apparent when we proceed further. For,
contrary to determining a 6nite displacement operator
in the manner we do from Eq. (1), Born determines an
operator F (p) from the eigenvalue problem, "

r) /riPkr)P +pkp jFl (PX) lFl(PX)

Thus, the eight-dimensional distance (20) takes on a
spectrum of eigenvalues s~ with their corresponding
eigenoperators Ii &. Consequently, Born's theory in our
opinion is not a theory of fundamental length, but is
rather a spectral theory of "distance" in phase space.

Finally, in Born's theory there is no correspondence
principle such as our a&—+0 limit. The x and p in formula
(20) are dimensionless quantities in terms of a length a
and momentum b, where ub = k. The masses are given by

p = bk/c= kk/ac,

where c is the velocity of light and k= (pqp~)1 is a root
of F~(pq)=0. Then as a—+0 (corresponding to our
~—+0) all p—&~. The electron is treated on a different
footing in Born's theory and; so to speak, stands
outside his mass quantization procedure.

We conclude this section with the mention of a
theory of I.and&' which makes use of time-like intervals
obeying the form (1). However, he makes use of (1)
in an entirely different manner than we do, with the
consequence that his theory leads to a spectrum of
charges with one mass whereas we obtain a spectrum
of masses with one charge.
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"One should consult the paper of Schrodinger (reference 12)
for a careful consideration of this eigenvalue problem as well as
the problem of Fourier reciprocity.
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