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Matrix Elements of y-Decay in jj Coupling

EGAL TALMI
Palmer Physical Laboratory, Princeton University, Princeton, Eem Jersey

(Received March 23, 19S3)

Matrix elements of various allowed p-transitions are calculated in the jj coupling scheme. It is found that
for Gamow-Teller matrix elements there is no distinction between favored and unfavored transitions, which
appears to be in contrast with the experimental facts.

HE success of the shell model in explaining the
experimental facts about the low-lying levels of

nuclei is often attributed to the jj coupling scheme.
Yet one could think of a model in which the order of the
single nucleon levels is that of, say, the harmonic oscil-
lator potential well but in which the order of the dif-
ferent states is determined by short-range attractive
forces in the I.S coupling scheme; this model would
successfully explain the spins and parities of the low-

lying nuclear levels. Whereas in the jj coupling model
the strong spin-orbit interaction accounts for the magic
numbers, in an I.S coupling model some assumption is
required which will lead to a break in the energy of the
l shell after the filling of the first 2l+2 (identical)
nucleons. Also, spin-orbit interaction does not lead to
jj coupling unless it is large as compared to the mutua)
interaction. In the light of these facts it seems interest-
ing to test the jj coupling wave functions by using
them to calculate matrix elements of allowed P-transi-
tions in light nuclei. Although it might be argued that
in these cases jj coupling is not fully manifested, it is
not unreasonable to assume that it can already serve as
a good approximation. The results show that jj coupling
is not an adequate scheme in the mass range in which
image transitions occur.

In the supermultiplet theory, which yields an 1.$
coupling scheme, P-transitions are allowed only between
states which belong to the same supermultiplet. ' If
small deviations from tA"igner's first approximation'
take place, supermultiplets will mix and. transitions
which were forbidden will occur; yet their matrix ele-
ments will be smaller than those of the transitions which
were allowed. This can explain the occurrence of distinct
favored and unfavored transitions among those which
are allowed according to the spin, parity, and isotopic
spin selection-rules. (These allowed transitions are
separated into distinct favored and unfavored groups,
characterized by widely separated values of the f1
values. ) In jj coupling there are no supermultiplets
but only charge multiplets, and one cannot see any
selection-rule that will make a distinction between the
Gamow-Teller matrix elements of favored and un-
favored transitions. The Fermi matrix elements between
two states will vanish also in jj coupling, unless the two
states have the same value of the isotopic spin T and

' E. P. Wigner, Phys. Rev. 56, 519 (1939).' E, P. Wigner, Phys. Rev. SI, 106 (1937).

belong to the same charge-multiplet, and will, therefore,
contribute to transitions between ground states only in
the case of mirror nuclei. It can be said that in jj
coupling there is a strong mixing of supermultiplets and
this destroys the distinction between favored and un-
favored transitions, yet it could be hoped that the com-
plexity (in this sense) of the jj coupling wave functions
would yield big matrix elements for the actually ob-
served favored transitions and small matrix elements for
the unfavored. ' The cases in which matrix elements were
calculated before4 did not justify such a hope, and the
calculations presented here show more clearly that
matrix elements of transitions which are found experi-
mentally to be favored are not essentially bigger (and
even smaller in some cases) than those of transitions
with much higher ft values. Also, Feenberg' has carried
out similar calculations and arrived at the same results.
This shows that the jj coupling scheme does not give a
good approximation to the wave functions at least in
the region where the distinction between favored and
unfavored transitions is observed. The highest A for
which this is found in 3=43, which is already in the
region of what is described as the f&/2 shell. For higher
A, image transitions are not observed and no definite
conclusions can be drawn.

In the following, we shall use the isotopic spin
formalism and the method of tensor operators' in the
calculation of the P-decay matrix elements. The operator
which causes the transitions is a double tensor and has
the form

011 (s) —P . 2i (k) (~)

where r„=V2(1+i+t i) and 8,'" is a tensor operator of
3 One has in mind the case of the spin of the ground state which

is the same in the case of short-range forces in LS coupling and in
jj coupling and the example of the magnetic moment of the
ground state in the case of n (odd} identical nucleons. This has
the Schmidt value either in the ground state j",J=j or in the
ground state of l", 2l;. In this case the magnetic moment is an
odd tensor operator (being simply a vector) and its value depends
on the seniority of the state but is independent of n, and as the
case of v = 1 in both coupling schemes is the case of a single nucleon,
the values of the magnetic moments are equal for a=1 in, LS
coupling and in jj coupling. The Gamow-Teller operator is,
however, an even double tensor (as a part of the magnetic moment
is in the general case) and therefore not independent of n, so that
the property described here should not necessarily hold.

4E. P. Wigner, "The jj Coupling Shell Model for Nuclei, "
Wisconsin Lecture Notes, 1952 (unpublished).

5E. Feenberg, 1Vuclear Shell Structure (Princeton University
Press, Princeton, to be published).' G. Racah, Phys. Rev. 62, 438 (1942). The notation defined
there will be used jn this paper.
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degree k (k=0, Bs" = 1 for Fermi interaction, whereas
k= 1, B,l'l =o, for Gamow-Teller interaction). In order
to illustrate the method of calculation we derive here
the matrix elements for the case of a single nucleon
P-decay in this formalism.

The matrix element of (1) between the state charac-
terized by /, j, nz, t =—'„ t,= -,'and the state l, j', m', t'= —'„
t,'= —-,'is given by

(ORs ") =(ljmsislr„Bq" Ilj'm's —s)
= (—1)™'+'(fjs II

~2~B'"'ll tj's)

X V (jj'k; —mm'q) V(i i1; —-', —xs1)

= —(—1)™v2(sll&lls)V(ss1 ——:—k»
X(ljllB'"llf j') V(jj'k; mm'q)—, (2)

as in this case only t+& contributes to the transition.
Introducing the values

(2ll~ll-:) = (2)' and V(s-:1; —s —s1)= (3)-:,

we obtain

(oR.'"')- = —(—1)™(t&IIB'"lib )
X V(jj'k; —mm'q). (3)

In order to compute the transition probability, we have
to sum

I (OR, &"l) I' over q and m' for a fixed value
of m (it should then be independent of m). Instead it is
more convenient to sum

I (OR, '"') I' over q, m, and m'

and divide by 2j+1. Using the properties of the V's
we obtain

1
2 E I (oR, '"')..I'

2j+1 p mm'

quantum number. This assumption is certainly justified
in the region A (50 as in this region the protons and
neutrons occupy the same shells and highly favored
image transitions occur (charge symmetry is not enough
to account for the big matrix elements between mirror
nuclei). The easiest way to calculate the matrix ele-
ments is to express the totally antisymmetrizetI wave
function of e nucleons by means of the coefficients of
fractional parentage (c.f.p.). These are defined byr

P(j "nTT,JM) = P P(j" '(n'T'J')j TT,JM)

X (j " '(n'T'J')qTJ I)j-nTJ). (6)

In the case m=2 the c.f.p. are given by means of trivial
considerations, but in the case @=3, which will be
treated in the following, the evaluation of the c.f.p.
requires some work. Most of the c.f.p. that will be used
below are given by Edmonds and Flowers. The matrix
elements can be calculated in terms of the c.f.p. by
using the analogs of the formulas (in Sec. 5 of reference
7). The f, 1., and S appearing in those formulas should
be properly replaced by j, J, and T.

We shall compare the matrix element of the transition
I from the state j', J, T=-', to the state j', J', T=-'„ to
those of the image transition II from j', J, T=-'„
T,=& to j', J, T'=» T,'= —2. The matrix elements
for the case of transitions within the j shell are given by

(OR, s')srsr = (j "nTT,JMI+, r„,Bq, '" Ij "n'T'T, 'J'M')

= 2 (i "nTJ(lz" '(ni»Ji)iTJ)

(3jllB&"&Illj')' Q Q V(j j'k; mm'q)—'
2j+1 q mm'

X (TiJi 'j.TT,JM
I r,.B,.+'

I TiJi 'j .T'T, 'J'M')

X (j"—'(n, T,J,)gT'J'
I )g "n'T'J'), (7)

1
(VIIB"'IIV')'Z

2j+1 a 2k+1

where o. stands for the additional quantum numbers
necessary to define the state. Using (44) of reference 6,
we obtain

1
(fjllB»ll)j')& (4) (OR, " )sr' ep ——(j"nTJ(l j'" '(niTiJi)j TJ)

2j+1 &1~1+1

This is the quantity usually written as
I
J'1I' or

I

J'o. l'.
The connection with the usual formulation is given by

(VII1IIV')' = (2j+1)~ ',
(~, f+lll ll~, ~+l)'= (2j+1)(j+1)/j

(5)
= 2 (l+ 1) (21+3)/(21+ 1),

(~, ~——:ll~ll~, ~—s)'= (2j+1)j/( j+1)
= 21(2l—1)/(2l+1),

(l, l+-', llo. lll, lW-', )'=8l(l+1)/(2l+1).

In the treatment of wave functions of many nucleons
we shall assume that the total isotopic spin T is a good

X (j" '(niTiJi) jT'J'I )j "n'T'J')

X V(TT'1 TT ' (T —T,')) V(JJ—'k; —MM'q)

X (—1)'~+"-~-'+'~+'-'-'v2(-', lltll-', ) (lgllB&"&Ill~)

X[(2T+1)(2T'+ 1) (2J+1)(2J'+1)]'

XW(,'T,'T'; T,1)W(jJjJ'; J,k). -(8-)

This expression becomes, upon putting v=3, T'=-'„

' G. Racah, Phys. Rev. 63, 367 (1943).' A. R. Edmonds and B. H. Flowers, Proc. Roy. Soc. (London)
214, 515 (1952).
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T,'= -'„and inserting the value (-,'
~~

tj~-', ) = (-', ) '

(OR, '»).M I
. = (—1)/' & ~'3(6)&(2T+1)&V(T-,'1; —T„-,', T,—-', )

X5(2J+1)(»'+ 1)]'(~jll&'"'ll~j) I/

X (JJ'k; M—M'q) P (j'nTJ{
I
j'(TiJi)j TJ)

X 0'(TiJi) j2J'I) j'~'2J')

XW(-,'T—,'-,'; T,1)W(jJjJ'; Jik). (9)

X (j'(1Ji)jkjI }j'~'2j) W(jjjj Jik) W(lB2; 11)
(1o)

IIo T Q) Tg 2 ~

(OR, &»„~.= —(—1)&6(2j+ 1) (V~~a&»~~V)

x I/(i Jk; MM'q) p (j'~—-;j{~
j'(TiJi)j-,'j)

X (j'(TiJi) j2jl)j'&'2j)W(jjjj' Jik) W(-'-'-'-'' T 1)

The o. characterizing the state should now be specified.
In some of the cases to be considered the total spin J
and the total isotopic spin T are sufhcient to charac-
terize the state uniquely. In other cases, however, in
which more than one state with the same J and T are
found in the configuration considered (as can be the
case for j', j&~5/2) we shall take for the ground state
the one which is the lowest in the case of short-range
attractive (spin independent) forces. This is the state
with J=j (for T=~3 or T=2) which belongs to the
irreducible representation of the symplectic group in
2j+1 dimensions characterized by the partition (10).
This state may be said to have the lowest seniority.
Inserting in (10) the proper c.f.p. of the ground states
thus specified and summing the square of (OR, '"')~M
over q, M, and M and dividing by 2j+1,we obtain the
appropriate transition probabilities. These can be
naturally written down as the product of (4) of the
single nucleon transition j—+j and a certain factor
which is found to be, for the two cases considered, as
follows: (2j—. 1)/3(j+1) incaseIand[(j+4)/3(j+1)]'
in case II. These expressions have the following values
(for k=1):

1/2 3/2
4/15

121/225

5/2
8/21

169/441

7/2
4/9

25/81

Vfe see that for j)~ these two expressions are of the

In order to compare the image transition to the other,
let us put J=J'= j, then we obtain for the two cases

I TQ)Tg2 ~

(OR,"')~~ = —(—1)"3(6)'*(2j+1)(V l&'"'lit j)
X~D(k; —MM'q)2(j'~lj{

I
j'(1Ji)jl j)

same order of magnitude; for j=S/2 they are almost
equal, and for j&&7/2 the transition I should be more
favored than the image transition II. The result shows
clearly that jj coupling cannot account for the observed
favored transitions, it leads to the conclusion that image
transitions should not be more favored than the others.
The situation is not essentially changed if we also take
into account the Fermi matrix elements, as it is usually
assumed that these have an almost equal weight to
that of the Gamow-Teller matrix elements; their addi-
tion will multiply the

~
(OR, '»)irzz ~' of the image

transitions by a factor ~2 which is far less than the ob-
served ratios.

The cases to which this formula apply are A"
(log ft &~3.53) as compared to S" (log f3=4 98) in. the
/f?/2 shell, and Ti4' (log ft 3.40) as compared to Sc"
(log ft ~&4.77) in the f7/2 shell.

Short-range attractive forces (and also attractive
tensor forces) predict that the ground state of the con-
figuratiori j",e odd, shall have the spin I=j.Therefore,
if in an actual case the ground states (of the nuclei
involved in the transition) have other spins, we must
conclude that other interactions take here place and
that the wave functions which transform according to
the irreducible representations of Sp(2j+1) (and which
diagonalize the energy in the case of short-range forces)
are not adequate to the description of the states. Only
if we assume that the spin of the ground state of Na"
is 5/2 (unlike Na") does it make sense to apply our
previous results for j=S/2 to a comparison of its
P-decay (log f3=5 25) with th. e image transition of AP'

(log ft 3.53). In the case of A=23 the ground state
of Na" has a spin —', and therefore we do not know what
are the adequate quantum numbers which characterize
this state (there are three independent states of (d;)'
with J=-', , T=-;).

In the case of A = 19 one 6nds that the ground state
of F' has J=2 and that of 0' probably has J=~.
These spins of ground states in the (d;)' configuration
cannot be explained by assuming short-range forces (or
tensor forces) alone, and one might think that either
other forces are present or that configuration inter-
action (probably with s; orbits) is important in this
case. However, if the con6guration considered is to a
large extent pure (d;)' we can still calculate the transi-
tion probability of 0"to the ground state of F"without
saying anything about the interaction, as in this con-
figuration there is only one state with J=—'„T=2 and
only one state with J= 2, T= ~. Using (9), we obtain
for the transition probability of 0" the factor, used
above, equal to 4/7 (experimentally, log ft,=5.57) as
compared with the case of the image transition of Ne"
L(d;)', J= ~~] for which the factor is equal to 121/105
(for this transition log ft= 323).

If there are only two j nucleons outside closed shells,
the matrix element of the P-transition between the
odd-odd and the even-even nucleus can be easily written
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'And also AP" for which neither J nor J' are known; in this
case the correcting factors for the reasonable possibilities are as
follows:

J'XJ 0
2/3

3
5

2

128/105
162/245 32/49

2/7

down. We also give here the factor by which the
transition probability of the single j nucleon should be
multiplied in order to obtain the probability of the
transition considered. The even-even nucleus has T= 1
and T,= 1, say, whereas for the odd-odd nucleus T,=O
and T is either 1 or 0; the transition probability is the
same for the two cases. The factor dered above is

2(2j+1)(2J+1)W(jJjJ' jk)s (11)

where J' is of the initial state and J is of the final state.
In case one of the J, J' vanishes the other must be
equal to 1 (if k=1) and the result is, for initial J'=1,
final J=O: 2(2j+1)/3(2j+1) =—'„and for initial J =0,
final J=1: 2(2j+1)3/3(2j+1)=2. Both of these
factors are of order of magnitude of unity and all such
transitions should be favored. A similar conclusion is
also the result of the supermultiplet theory, and both
these theories account for the cases in which the fl
value is low (He', C", and F")' and both have difhculty

in explaining the high ft values of such transitions as
of P", Cl", and K'.*

The other cases of odd-odd to even-even transitions,
where E/Z in the odd-odd nucleus, are not favored
and should be forbidden according to the supermultiplet
theory. It is interesting to calculate the matrix elements
in jj coupling in the case that in the odd-odd nucleus
there are a j' nucleon and a j hole. The ratio between
the transition probability in this case to the probability
of the single nucleon transition j'—+j is given by

res (2j'+1)(2J+1)W(jJj 'J'; jk)', (12)

where e is the number of nucleons in the closed j shell
—2(2j+1).J must vanish and J' must be equal to 1

(for k= 1) in which case the factor (12) becomes simply
(2j'+1)/3. The only cases to which' this result is
applicable are 8" and N" for which j= ~ and j'=

&

and the correction factor is ~~. This is not enough to
explain the high ft values of these transitions (log fl
=4.17 and )4.3, respectively).

The author would like to express his sincere thanks
to Professor E. P. Q'igner and Professor E. Feenberg
for many helpful discussions.

Pote added r'I proof. Asuper-allow—'ed transition between
the ground states of CP4 and S'4 is reported to have been found
in the E.T.H, , Zurich.
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Measurement of the thermal neutron capture cross section of hydrogen has been effected by a comparison
with boron using the technique of pile oscillation. The 2200-m/sec value obtained, 0.332 b, has a 2 percent
uncertainty resulting primarily from the effect of neutron moderation by hydrogen. However, the result
indicates an exchange moment contribution to the cross section of 6~3 percent.

INTRODUCTION'

'HE thermal n —p capture cross section is of theo-
retical interest' ' in studying the nucleon-

nucleon interaction; ts —. p scattering data from thermal
energies to 5 Mev in conjunction with the deuteron
binding energy allow one to 6x the so-called "effective
singlet and triplet ranges. '" It is the near equality of
m —p and p —p singlet ranges (2.4&0.3)&10 " crn and
2.7&0.2X10 " cm, respectively) that suggests charge

* Now at Brookhaven National Laboratory, Upton, New York.
' H, A. Bethe, Phys. Rev. 76, 38 (1949).
~ J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).' H. A. Bethe and C. Longmire, Phys. Rev. 7?, 647 (1950).
4 J. D. Jackson and J. M. Blatt, Revs. Modern Phys, 22, 77

(1950).' E. E. Salpeter, Phys. Rev. 82, 60 (1951).
Hafner, Hornyak, Falk, Snow, and Coor, Phys. Rev. 89, 204

(1953).

independence of nuclear forces. ts —p capture, in addi-
tion to involving the singlet and triplet range, also
involves an exchange moment. ' This has the eGect of
increasing the I pcapture cross sectio—n by 5 per-
cent. Owing primarily to the large ratio of scattering
to absorption ( 150) the uncertainty in the measured
value of the ts pcapture c—ross section' is also 5 per-
cent. It is the object of the present work to improve on
the accuracy of this measurement in order to better
estimate the exchange moment contribution to the e—p
capture cross section. An improved technique has be-
come available for this purpose since the recent refuel-
irig of the heavy-water reactor at the Argonne National
Laboratory.

' N. Austern and R. G. Sachs, Phys. Rev. 81, 710 (1951).
W. J. Whitehouse and G. A. R. Grahm, Can. J. Research A25,

261 (1947}.


