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The partial waves scattering theory has been applied to electron scattering by U and F atoms at 40 and
11 kev. The electron scattering by the UF; molecule, predicted from these results, is in good agreement

with experiment.

I. INTRODUCTION

ECENTLY, Schomaker and Glauber! have pointed
out that anomalies, e.g., apparent asymmetry,
in the structures of molecules containing both heavy
and light atoms as determined by electron diffraction
can be removed by using complex atomic scattering
amplitudes f(f) and hence by rejecting the first Born
approximation which gives only real amplitudes. This
approximation, although theoretically justified only for
—a=2¢*/(hv) small, has nevertheless been universally
employed in investigations of the molecular structure
-of gases by electron diffraction. Using the second Born
approximation, Glauber and Schomaker? evaluated the
phase of the complex amplitude, 7(6) =argf(6), for the
exponentially screened Coulomb potential —Ze2e="/%/r;
agreement was obtained for a large group of molecules
at 40 kev. However, good agreement is not obtained
for the UFg pattern at 11 kev,? and, in any case, the
second Born approximation and the assumption of the
screened Coulomb field are both uncertain, so that a
more adequate calculation is desired. We describe below
an application of the partial waves scattering theory
to the problem of the scattering of electrons by atoms
(U and F). The energies considered (11 and 40 kev)
are sufficiently high so that electron exchange and
polarization effects can be neglected.

II. THEORY*
The solution to the problem of the elastic scattering
of a beam of particles by a central potential V(r) is
given by

76)= (2ik) :z;:o (24 1) (91— 1) Py(cost), (1)

where 6 is the scattering angle, & is 2x/A, and the
phases §; may be interpreted- as the phase differences
between the perturbed and unperturbed radial functions
at large distances from the nucleus. The &;’s can be
evaluated in several ways for electron scattering. When
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8:<1, (1) can be rewritten as
fO)=Fk1 > (214-1)6,P1(cosh), (2)
1=0
and the §;’s are given by
kam *
6l0=“f V()T w42 (kr)rdr. 3)
Z€2 0

Substitution of (3) into (2) yields the first Born
approximation for the scattering amplitudes, namely,

sin(s7)

2ka p=
o= [ vo="ru @

Sr

where s=2k sin(6/2). When the §,’s are not small, they
may be evaluated conveniently by the WKB method.
Starting with the relativistic Schrédinger equation,

V42 (ry =0, (5
where
[E—V (r) P—m?* Vi(r)—2EV (r)
K2 (r)= = k2
2 h2c?

we obtain

bi= f G dr— f Go(r)dr, ©)

71 2

with

GOV = {2 () —LU+B/7 P, Go()={B—[(+3)/ P}

Here, the energy E includes the rest energy, and 7y, 7.>0
are the zeros of the respective integrands. In accordance
with the work of Langer,? we have replaced /(/41) by
(I43)% The &/s may also be evaluated exactly. This
has been done by Bartlett and Welton® with a differ-
ential analyzer for Hg at 100 and 230 kev starting with
Gordon’s solutions of the Dirac equation. Although
the 8;’s from the WKB method are generally supposed
to be reliable only when large, and hence only when /
is small, Bartlett and Welton found these values to be
in excellent agreement with the exact values over the
entire range of /; they found the §’s to be reliable at
large 1.

5 R. E. Langer, Bull. Am. Math. Soc. 40, 574 (1934); Phys.
Rev. 51, 669 (1937).
( 6].)H. Bartlett, Jr., and T. A. Welton, Phys. Rev. 59, 281
1941).
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III. PROCEDURE AND RESULTS

We first compute the complex atomic scattering
amplitudes for U and F at 40 and 11 kev and then
apply these to the scattering by the UFg molecule.
UFs was selected because it offers the most severe test
(the molecule exhibits the largest apparent asymmetry?)
and because only for it do we have electron diffraction
photographs prepared at 11 kev as well as at the usual
40 kev.

For U we adopted the Thomas-Fermi potential, v

using the approximate form’

Ze* 3
V(r)=——2% awtle, (M

7 =1

where ¢1=0.10, @,=0.55, ¢3=0.35, 5:=6.0, by=1.2,
b3=0.3, and ¢, the screening radius, is 0.4685/Z%. For
F we used the Hartree potential® in the approximate
form

V(r)=—(Zé/r) (e Prrtcre ), 8)

where B1=3.94, 8,=17.0, and ¢=—2.67. Preliminary
calculations indicated that the effect of electron spin
would be important only for /<22 and since in the
final summation (1) these terms are reduced in impor-
tance by the factor 2/41, we felt justified in adopting
the relativistic Schrédinger equation (5). For small /, the
8.’s were calculated for 40 and 11 kev from the WKB
expression (6); for large I (2 25), it was found that the
8”s (3) and &;/s (6) were in excellent agreement, as
anticipated from the work of Bartlett and Welton.®
With the §,’s obtained in this way (Table I), we have
evaluated the magnitudes |f(6)| and the arguments
7(0) of the complex scattering amplitudes (Table IT).
The 8/’s for U can also be computed over the entire /
range from the asymptotic expression (15) below. In
this case, although the §;’s differ from the above by as
much as 8 percent at 40 kev and 15 percent at 11 kev,
the resultant magnitudes and arguments in no case
differ by more than 3 percent from those in Table II,
the relative error increasing with increasing 6.

In the application of these results to the molecule
UFg, the assumption is made that multiple scattering
and valence distortion are negligible. Then for visual
data the following expression for the intensity function
(specialized for the case of UF) is suitable:

I(s)K (s)= (6/ru_¥) cos[nu(8)—nw(8)] sin(ru_vs)
+( =@/ fo®1)
X{(12/re-r){exp[— (er-r— av_¥)s*]} sin(re_rs)
+ (3/rr.¥){exp[— (ar.r— av_r)s*]} sin(rr.xs)}, (9)

where I(s) is the modified scattering intensity, K (s) is
is a smoothly decreasing function of s, and exp(—a;;5?)

7 G. Moli¢re, Z. Naturforsch. 2a, 142 (1947).
8 F. W. Brown, Phys. Rev. 44, 214 (1933).
9 See reference 4, Chap. IV, Eq. (23).
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TaBLE I. Selected values of ;.
Uranium Fluorine
! 40 kev 11 kev 40 kev 11 kev
0 6.11 7.20 0.571 1.05
2 3.49 4.67 0.414 0.555
4 2.47 2.96 0.317 0.391
6 1.87 2.06 0.258 0.297
8 1.53 1.52 0.218 0.234
10 1.26 1.16 0.189 0.188
15 0.847 0.679 0.135 0.113
20 0.602 0.441 0.101 0.071
25 0.452 0.302 0.077 0.046
30 0.353 0.212 0.059 0.029
35 0.282 0.152 0.046 0.019
40 0.228 0.110 0.036
S0 0.155 0.059 0.022
70 0.076 0.018
100 0.028

2 The actual values used were 39.470 and 11.380 kev.

is the temperature factor for the distance r;; between
atoms ¢ and 7. Using our complex amplitudes and a
symmetric UF¢ model,'* we have evaluated the function
I(s)K(s) at 11 and 40 kev. Figure 1 compares the
calculated and the visually estimated versions of this
function. When one considers that the visual curves
are significant only for comparisons of intensity over a
small range of s (e.g., that one usually can compare
the height of maximum # only with the average of the
heights of maximum #+41 and maximum n—1), the
agreement is excellent. For the present purpose, the
most significant parts of the patterns are the very
sensitive regions where ny(0) —nr(0)=n/2, and these
are reproduced satisfactorily (Table ITI).

Table II also provides a comparison with the magni-
tudes f3(0) calculated by the first Born approximation??
[using (18) and (19)7] and the phase angles 42(f) for U
calculated by the second Born approximation. For the
latter it was necessary to extend the calculations of
Glauber and Schomaker? to the potential for U used
here. Their formula is

2 (0) = n? (K, K) =
PO K D=

Xﬁ%WWWMM%Gm

( 10 Sl)laffer, Schomaker, and Pauling, J. Chem. Phys. 14, 659
1946).

u TU-F= Z.OOA, rPp_F= 2.83A, 1'F.F=4.00A, ap_F—ay_p=2.2
XIO*:’AZ, (ZF.F~GU~F=O.75X 107342,

27t should be noted that f2(f) is related to F(8), the x-ray
form factor, by the relation

1) = (—2ka/sH[1— (F(6))/Z].

The F(6) for U obtained from the corresponding f2(8) given in
Table II agree to within 1} percent with the Thomas-Fermi
values given in Imternationale Tabellen zur Bestimmung von
Kristallstrukturen (Gebriider Borntraeger, Berlin, 1935), Vol 2,
p. 573. The F(6) for F agree to within 10 percent with those of
R. W. James and G. W. Brindley [Phil. Mag. 12, 81 (1931)],
and to within 6 percent with the f of R. McWeeny [Acta Cryst.
4, 513 (1951)7]; our values being in general lower than those of
McWeeny and higher than those of James and Brindley. We
suspect these differences arise from differences in the models used.
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Fic. 1. Intensity curves for UFs. ‘V” visual, “C” calculated
for “40” or “11” kev. Further photographs will be made both at
40 and 11 kev, and the visual curves (40 V is due to Dr. Otto
Bastiansen and 11 V to Felsenfeld and Ibers (reference 3)) are
not to be regarded as final.

where k and k’ refer to the directions of incidence and
scattering, respectively, and k'’ is integrated over the
sphere |k’/|=Fk. When the potential (7) for U was
inserted and the integration performed there resulted

a? 3 @

7 (6) =

26f5(6) cos(6/2) 71wy

2[1,‘,‘ cos (0/2)
Xtanhl——
giig;— cosf

(11)

gui= 14 (b2+b7)/ (e,

mi={[(62—07)/ (4k%a?) ]
+[gi2—cos?(6/2)] tan(6/2)}?,

which is in serious disagreement with the partial waves
values and with experiment, as may be seen from
Tables IT and IIT. The good agreement with experiment
obtained previously? must be due to a fortuitous
cancellation of errors: For heavy atoms the expo-
nentially screened Coulomb field is quite unsatisfactory
and (10), even at 40 kev, is inadequate.

A. HOERNI AND J. A.
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It is planned to extend the calculations for 40-kev
electrons to other atoms with the hope of achieving a
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diffraction studies of the molecular structures of gases.
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IV. APPENDIX—MATHEMATICAL DETAILS
The Phases $; and 8

When computing §; it is convenient to split up (6)
as follows:

&=fimW%Jm%®W+f[p@”%@yf

=I,—I+1s. (12)
Here, ; is sufficiently large so that for >3, G(r) and
Go(r) do not differ by more than 10 percent. Then I3
reduces to

ka )
= f [V () )/[Go(r)Jdr. (13)
Ze2 r3

r1 was evaluated graphically and I; was integrated
numerically using Simpson’s rule; I; can be integrated
analytically. I3(13) can be expressed in terms of
various power expansions and when V(r) is given by
(7), the following expression is convenient :

Ii=—a X s [ Lo L= ((H4)/6Y Dy
m5

3 m?
=—a Z ll,;[ K()(‘I/L,‘) — ‘"i[m—u,g'—-l— (3“,‘2'—14,');'—

i=1
m7
— (St 508 - ]} (14)

us=b;(1+%)/ (ka), m=cosh™[(rsk)/(+%)].

For large values of / (2 25), it was found that r,=7r,=1r;,

TaBLE II. Magnitudes and arguments of the scattering amplitudes.

Uranium Fluorine
40 kev 11 kev 40 kev 11 kev
0 F®1 2@  Fe 2P0 oL 20 Fe 220 f@1 20 O @1 a0 e
0 1451 0317 1724 0.50 1201 0414 1636 090 231 0079 232 215 0141 220
1 1030 0424 1278 10.64 0456 14.88 190 0093 191 203  0.148 2.08
2 554  0.687  7.52 7.85 0579 11.78 124 0128 124 173 0169 177
3 321 100 474 139 537 0772 886 151 0.776  0.179  0.781 139 0201 143
4 208 131 3.27 367 101 6.72 0.507 0231 0.511 1.08 0243 1.12
5 146 160 242 261 128 5.23 0.349 0.281 0.352 0.841 0290 0.871
6 1.08 188 187 241 194 157 418 263 0.252  0.329 0.254 0.660 0.341  0.685
7 0.837  2.16 1.49 152 185 3.44 0.190 0376 0.192 0.525 0.396  0.546
8 0.683  2.42 1.21 124 213 2.88 0.148  0.420  0.149 0.424 0447 0442
10 0.500 289 0848 3.44 0930 264 212 3.96 0.096 0.487 0.098 0.201 0552 0.302
12 0403 326  0.624 0.756  3.03 1.63 0.068 0551 0.070 0.211  0.651 0.218
14 0.327  3.61 0.478 0.623  3.34 1.30 0.051 0.623 0.052 0.162 0.748 0.164
16 0.263  3.95 0.378 4.64 0.520 3.60 106 5.60 0.040 0.676  0.041 0.128 0830 0.128
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so that (12) reduces to

3
5l= —Q Z G;K(](M,').

(15)
i=1
For the same potential, (3) becomes
3 1/06:\?
=—a a,Ql[l—i——(———) ] (16)
i=1 2\ka

The Qs were computed for 0L/<10, using the
polynomial expansions,® for /> 10 they were evaluated
using Watson’s relation'

Qi(cosh§)~ (exp[ — (I43%) (¢—tanh§)]) (sech?f)
X (Ko[ (I4-3) tanh&))+0(e1¥/D).  (17)

At =10, (17) gave values in excellent agreement with
the exact values and therefore its use was justified for
higher /. When computing the phases for large ! (> 25),
only the term for ¢=3 is of importance in (7). Since
the corresponding £ is much less than unity, (17)
reduces very nearly to

Kol (149 E]=Ko[ (14+%) (bs/ (ka))],

so that the &;’s and §%’s are in close agreement.

Corresponding quantities for the F potential (8) can
be readily obtained: Integrals involving a term of the
form c¢re=#7 are obtained by differentiating with respect
to B the integrals already obtained for terms of the
form ce—#" (the U potential).

The Scattering Amplitudes

In summing (1), the convergence of the real part is
improved by subtracting fB(f) as given by its series
expansion (2) and adding it as obtained by the inte-

18 A. Cayley, Messenger Math. 17, 21 (1887). The same poly-
nomials with decimal coefficients are given by N. Rosen, Phys.
Rev. 38, 255 (1931).

4 G, N. Watson, Messenger Math. 47, 151 (1918).
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TaBiE IIL. Values of s where ny(6) —nr (@) =7/2.
Voltage, kev Sobserved Spartial waves $2nd Born
40 10.740.6 10.9 7.7
11 6.60.6 71 3.8

gration of (4). The integrated expressions are respec-
tively, for U and F,

3
fBO)= —2kaa® 3~ a;(b24a2sd),

i=1

(18)

and
JBO)= —2ka[ (B2+5%) 7+ (282) (B2+s3)72].  (19)
By substituting the following asymptotic expressions :'®

Ko(x)~(Gr/x)te, (20)
and
P(cost)~V2 (xl sinf)~* sin[ (14-3)0+7/4]
<V2(wlsing)~%, (21)

into the respective expressions for the real and the
imaginary parts of f(6), it was shown that negligible
errors would arise from termination of the summation
at /=70 for the real part and at /=100 for the imaginary
part, for §2>1°. For #=0° P;(cosf)=1 and an exact
termination correction can be made.

The P;(cosf) were obtained from the available tables
up to =10 and for 10<7<100, 1° <0< 16°, they were
computed from the relation

Pi(cost)~ (8/sinb) Lo (I+-3)¢] (22)

which may be derived from the corresponding asym-
ptotic expressions.!® Equation (22) was satisfactory for
I as low as 5 over the whole range of 6 indicated in
Table II.

15 See, for example, E. Jahnke and F. Emde, Funktionentafein
(Dover Publications, New York, 1945), fourth edition, p. 138,
noting that Ko(x) = (w/2)iH,® (¢x), and p. 117,

16 Reference 15, pp. 117, 138; see also reference 7, p. 144.



