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The Excitation of Molecular Rotations and Vibrations in Inelastic Scattering Processes*
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A discussion is first given of the collisions of composite systems in general, where it is shown how the scat-
tering amplitude may be written as a superposition of little amplitudes for the scattering of each particle in
one system by each particle in the other. This is followed by the ca1culation of scattering cross sections for
single charges by nitrogen molecules with excitation of rotational and vibrational states of motion; the co1-
lision of molecules with molecules, including the case that they are identical, is also discussed and applied to
Q2 —N2 scattering. The smallness of internal rotational and vibrational velocities is exploited in the use of the
Born approximation. Detailed numerical results are given.

INTRODUCTION

HE question of the exchange of energy between
translational motion and molecular vibration and

rotation has been discussed heretofore on a highly
simpli6ed basis involving usually a one- or two-dimen-
sional model for the molecule, ' and with some attempt
to calculate inelastic cross sections by the method of
distorted waves only meager quantitative results have
been obtained. In this report we re-examine the question
and capitalize on the smallness of internal rotational and
vibrational velocities in the use of the Born approxima-
tion to obtain detailed results for the scattering of
single charged particles and of molecules by molecules.
In a preliminary discussion we make a few general
observations on the scattering of composite systems
which will be of perhaps wider application than in just
molecular collisions.

referred to their mass centers, and V their interaction
energy. Expanding 0', which satisfies H4=~ with
suitable boundary conditions, in eigenstates f (r) yz(tb)
of H, +H, as P. ., p F.II(R)f.(r) ys(tb) gives

2p f
(v&'+k, b2)F„(R)=—

I 'Itf,~(r) «*(ts) v~drd~,
A2

2p
h, b2 = (jV P, g,)

52

(2)

whence, introducing the t reen's function for the left-
hand side and taking the limit as E—+~,

gp eiksbR

F.,(R)~——— e '" b "f.*q,*v+drdfbdR
4sr O' E & J J

REMARKS ON COLLISIONS OF COMPOSITE
SYSTEMS

+e~&abzg ebb . f,(e ~)+cab.bzhb gtb (3)
R

K=k.b
—k.,

Consider the collision of a system of particles with InIlornapproximationwereplace@bye'"ob "f,(r)pb(y)
internal coordinates y; (referred to the system's own and obtain for the amplitude for scattering from the
center of mass) and a second system with internal coor- initial state f, (r) qb(tb) to the 6nal state f, (r) y, (p),
dinates r;, the two systems being separated by the
distance R (Fig. I).

For the present we ignore the possibility that the f'b' = )' )
e'" f*«*Vf Pbdrd'tsdR (4)

4~ 5»
systems may be identical and that a rearrangement
collision can take place. We write the Hamiltonian for
the total system in the coordinate frame in which the
center of mass of the complete system is at rest as For a large class of problems

H= —(&'/21 )~z'+H. (rs)+H~(e')+ V(fs', rs R), (~)

p being the reduced mass 3I,3I„/(JVf,+cV„),H., and H,
the internal Hamiltonians of the individual systems

*The research reported in this paper has been sponsored by
the Geophysical Research Directorate of the Air Force Cambridge
Research Center, Air Research and Development Command
under Contract AF 19(122}-469.' N. F. Mott and H. S. W. Massey, Theory of Atomic CoNisiols
(Clarendon Press, Oxford, 1949), Chap. XD, Sec. 3.5, where
further references are given. After preparation of this paper, an
article by P. M. Morse appeared in Phys. Rev. 90, 51 (1953)
which contains a similar treatment; the overlap in results with
the present paper, however, is small.' Reference 1, Chap. VII, Sec. 5.
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FIG. 1. Schematic representation of two colliding composite
systems, showing labels of coordinates.



EXCITATION OF MOLECULAR ROTATIONS AN 0 VI 8 RATIONS 1175

or, for central forces, P tt,, (~R;;~), where R;;=—r, —R
—y;, from Fig. 1. Hence Eq. (4) may be written '

fet
2p,

' exp[iK (r; y—;+R;;)]
4x Pt, t'~

Xv;;(R, ;)f,*q t*f.q»drdydR

1 2p,
exp[iK. r;]f,*fdr

4~jPij J

exp[ —iK ttt] p, *tttbdy

exp[iK R;,] t,t, (R, ;) dR

2p= ———P F;(E)y,(E)h;;(E).
4~k' ~, ~

The factor
l

It,;(E)= exp[iK R;;]tt;;(R;,)dR

exp[iK S]tt;,(S)dS

(S being just a dummy variable of integration), is just
the Born amplitude for the elastic scattering of the ith
particle in the p system by the jth particle in the
r system with momentum change K, provided that the
collision of the two systems is itself elastic (tb=s and
b=i) 1n this .case the result (5) states that the elastic
Born amplitude f,b

b is a superposition of little elastic
Born amplitudes for the scattering of each particle in
one system by each in the other. One can, as was 6rst
done by Massey and. Bullard for electron-nitrogen
molecule scattering, ' replace the little Born amplitudes

by the exact amplitudes at this point, and thereby
effect a considerable improvement in f,b'b. This is dif-
6cult to justify theoretically but in practice proves to
be very valuable (see reference 3); it is as if the general
result of superposition of individual amplitudes has a
validity considerably exceeding the range of validity
of these amplitudes as found in Born approximation.
Even for the inelastic scattering of the two systems

((k b~W ~ktt(), one still identifies h, ,(E) as a Born
amplitude for elastic scattering with momentum change

K, and can replace this with the exact amplitude for
the same momentum change; then f, t

b is a superposi-
tion of some sort of "quasi-elastic" amplitudes. '

'H. S. W. Massey and E. C. Bullard, Proc. Cambridge Phil.
Soc. 29, 511 (1933).

4The idea of superposing improved amplitudes in otherwise
used in a diferent sense in nuclear scattering problems. See G. F.
Chew, Phys. Rev. 80, 196 (1950); G. F. Chew and G. C. Wick,
Phys. Rev. 85, 636 (1952); also R. L. Gluckstern and H. A.
Bethe, Phys. Rev. 81, 761 (1951).The latter, for n-d scattering,
replace Born cross sections for individual nucleon-nucleon col-
lisions in the final result by experimental cross sections; our

It may be noted in passing that when the eigen-
functions f (r) and brett(p) of H„(r) and H, (p) are repre-
sented as products f~i(rt) f~s(rs) f „(r„)and fatti(yi)
@its(ys) qttt„(y„) of one particle eigenfunctions in a
self-consistent 6eld (Hartree) type of approximation,
one has

Ft(E)= exp[iK ri]f„*(r;)f;(r;)dr,

II J f.t*(rt)f.t(«)«t

4'(E) = exp[ —iK i)']«'*(0')s b'(9')de'

'II itttk (gk) V bk(gk)dgk

To an approximation suf6cient for many purposes, the
self-consistent 6elds for the states a and s (or b and t)
may be taken as the same (or indeed one can often
build the one-particle eigenfunctions for a system from
a single average Geld, the same for each particIe). Then
the orthogonality of the f, t, f,t is assured and the II«;
is one or zero according as the states a and s are the
same except for their r; eigenfunctions or are diGerent
in any rt eigenfunctions; and similarly for the IIk ~;. The
scattering amplitude for the process in which the pth
particle in the r system goes from state a to state s
and the qth particle in the p system goes from state b

to state t is in this picture just

f« ' (simple Hartree approx) =

1 2it
exp[iK r ]f, 'f. dr

4m A. ~
aP aP y

ezp[ Ky, ]—ttt«*titbit I eXp[iK S]tt, (S)dS

while the amplitude for excitation of more than one
particle in either system is zero (i.e., small in the
general case).

EXCITATION OF MOLECULAR ROTATION

We send a single charged particle against a homo-
nuclear diatomic molecule, which we treat as a rigid
dumbbell, and ask for the amplitude for excitation of

approximation is distinct from Chew's impulse approximation.
The replacement of h;;(E} by a quasi-elastic two-particle ampli-
tude is the replacement It;t= J' exp( ik. t S)s;;(S-)X;;{S)dS,
where X;; satisfies I

—(I't f2')V'tt +e;;(S) X;;={E E, Et)Xtt- —
such that X; +exp(ik, t' S-)+exp(ik. t'S) Sf't'(K) with

~
k«'I

= Ik, tI and K = (k, t' —k, tI = (k,b
—k, t . This result can be

made to follow formally from (3) when +is approximated as
Zt t(ttj/V)Xtt expLiK (rt g )jfgrtp ~bebing a superposition of
two-particle scattering wave functions weighted by the relative
weights of the strengths of their interactions compared to the
total interaction energy. As has been noted, the quasi-elastic
amplitude is a true elastic amplitude when the scattering is itself
elastic.
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rotational levels in a process in which the incident
particle is scattered through a given angle. So long as
the energy, or velocity, or relative motion far exceeds
the energy, or velocity, of internal rotational motion,
we expect the Born approximation to give an adequate
picture of the inelastic scattering. For a nitrogen
molecule, for example, one has internal energies
E~ 2.5X10 4l(l+1) ev and velocities v~ 1.9X10 '
XD(l+1)]l atomic units, so that the Born approxima-
tion should sufFice down to even very small incident
energies.

For the interaction between the incident charge
(proton, electron, or alpha particle for example) and
the molecule we use the static Fermi-Thomas field
of the molecule. This has been shown by Hund' to be
well represented by a function of the form v(rr)+ v(r2),
r~ and r2 being radial distances measured from the two
nuclei. Though distortion of this field due to polarization
of the electron swarm is neglected, this will have no
serious effect on the qualitative character of the results
(barring only a gross alteration of the molecular bond,
an effect that we do not consider at all), and we use the
Hund field merely as the best one available, with due
reservation as to its detailed quantitative signi6cance.

Following the discussion above on composite col-
lisions, we write R= rr+-,'9= r2 —-,'y, g being the nuclear
separation, and V=v(rr)+v(r2). The amplitude for
scattering and exciting from state b to t is then, after
straightforward reductions,

1 2p
f,'= ———2 I exp(pK S)v(S)dS~~ cos-', K flap, *Ipbdy,

4pr k' ~

which we write as

p 2m'7Ã f
fpb= —2— )~ exp(iK S)v($)dS

m h'
J

X " cos&K ~ gyp pbdfp, (6)

V

Jfb

in order to make use of Massey and Bullard's' evalua-
tion of the factor k(K) for Np. Here pub is the electron
mass, p the reduced mass of target and incident par-
ticle; the q's in J~~ are just spherical harmonics; and
E'=kb'+kp 2kb—kp cose, where 8 is the angle of scat-
tering of the incident particle in the center-of-mass
system, and ks'= (2Ik/k') (E Efr), E=—Eb+ ,'Ikv', v= B-.

The factor J&& is explicitly

Jr, =/I'/tS, Re P~ '(cosII)P, &(cose)

ei-I I' cos8&—™l+e™7P S/Qgded p 7

so mE must be the same as m, . The '0 integration tells
that 1 and j must be of the same parity. A simple case
of the general integral' is J~o, for the excitation of the 1th

rotational state from the ground state. Expanding
e"~&""in Legendre polynomials gives at once

Ap= (2~+ 1)'(—1) '"(~/&I )'~~ (-'&I )
= (2~+ 1)'(—1)"'ii(K'p) (&)

Hence the differential cross section is

«/d~ = (ki/kp) 4(k/~)'k'(&) (2~+ 1)7i'(R'I ),

and the total cross section

(~ q
2 2pr ~kp+k(.(k,) =4~ —

~

— kkJ„Padre
(5$) kp Jkpki-

0
0 I 2 3 4 5 6 7 8 9 10 I I I 2K—

t' F. Hund, Z. Physik 77, 12 (1932).

Fto. 2. Plot of the fourth root of I= (dp/d&u)/(p/vp)', giving the
differential cross section in units xa0', as a function of the mo-
mentum change IC in atomic units, for the scattering of charged
particles by N~ with excitation of the rotational states 1.=2, 4,
and 6.

In Fig. 2 we illustrate the behavior of the cross section
for /=2, 4, and 6 by plotting L(do/dpp)/(Ir/m)'j& as a
function of E.~ in Fig. 3 we give actual angular dis-
tributions for 1=2, 4, and 6 and for several different &0.

Figure 4 shows total cross sections for excitation of
1=2, 4, and 6 as functions of ko, when protons are the
incident particles. These results all refer to scattering
by nitrogen molecules.

Several interesting points are at once evident. First,
the general order of magnitude of the cross section
decreases rapidly with increasing excitation of the
target, roughly by a factor of 10 for each successive
stage of excitation. Second, in the diffraction-like
maxima in the angular distributions (that arise physi-
cally from the scattering from two centers of force which

' H. S.W. Massey and C. B.O. Mohr, Proc. Roy. Soc. (London)
132, 615 (1931) discuss the general integral.

'Atomic units are to be understood throughout, except where
otherwise stated.
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appropriate to the N2 molecule' is illustrated in Fig. 5
together with harmonic oscillator and Morse functions
for comparison (the latter is chosen to give the correct
D and vo but not the correct "m,x,";the former gives the
correct vs). The eigenfunctions s!e(p) are

s „(p)= (4m ) le„.e '* .&p"—F( I, 2!—I,+2, n„p),
(~)

n„"+1
t

(zz+2X+1)!S„=
(2ll,+1)! zz! (2) +2zz+2)

belonging to the vibrator levels W„~ D+—hve(zz+~),
where X= —-'+-(1+4b)&, „=(X+zz+1) '(po/2b) ',
and b=4zr'vszM'pe'/h'= dimensionless constant; F is the
confluent hypergeometric function, here a polynomial
of degree e.

where 7= —iK. This is similar to the matrix element
for optical transition probabilities in hydrogen, and may
be evaluated by a generalization of the well-known
Gordon" integral giving these probabilities, as follows.
Calling the integral in (10) j„,we write

I .+ ,+
j„.=A exp —

pI, J (1ys)zx+z

(v& (—n.p)'
Xp»+z pI I dpds

~ (j) (2K+2);

s"' (1+su)-
=A+ ~ exp —

pI
z ~ (1+s)'"+' I v(1+s) )

t'v) (—n.)'
pz+»+zd ds

Ej) (2~+2),
~2K+2

=A(2l+1)!fs " '
(1+su)st+2

(vq n,v(1+s) '
X&I I

— ds
z (j) 1+su

~n—I

=A (2X+ 1) !v'"+'
(1+su)'"+'

n„v (1+s) q
"

XI 1— Ids
1+su i

-e

-8
!.5

I I

2.5
!O, ATOMIC UNITS ~

8 "1
=A (2K+1)!v'"+'

(1+su)'"+'

t'rv —u+(rv —1)s) "

XI
1+su

FIG. 5, Comparison of the Fues potential curve E, used to give
vibrator eigenfunctions for N2, vrith Morse, M, and harmonic
oscillator, 0, curves.

The integral to be evaluated for the transition s —+e,
say, is

=A (2K+1)!v"+'(rv—u)"

X
s—n—1

(1+su)»+2+v I

rv 1)"—
Ids

rv —u&

S„S„
p'" exp' s'(n„+n„)pj-

Jo

XF(—zz, 2K+2, n~)F( —v, 2K+2, n,p)p'dp

pl
cos~~Epx2zrdx

—1

2E~„
Im p"+' expI ——', (n~+n„+ r)pj

K

XF(—zz, 2K+2, n~)F(—v, 2lw+2, n„p)dp, (10)
'0 G. Herzberg, Spectre of Diatomic 3folecules (D. Van Nostrand

Company, Inc., ¹vrYork, 1950},Appendix, TabIe 39; see also
E. A. HylIeraas, Z. Physik 96, 661 (1935).

= (2X+1)!v'"+'(rv —u)"

rv 1—
Xu"FI —zz, —v, 2&+2, 1— I. (11)

u(rv u))—
In the first line, the 6rst F function has been replaced

by an equivalent contour integral on s, where

A = e '"zz!(2K+1)!/(2zri) (2X+zz+1)!

and the contour is a closed circuit around the origin;
the second Ii function has been replaced by its series
expansion, (2K+2); standing for (2K+2) (2K+3)

"W. Gordon, Ann. Physik 2, 1031 (1929}, especia11y Sec. 1
and Sec. 4.
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&& (2K+1+j) [but (2K+2) p
——1$. In the second line the

abbreviations

u= (n.+r n—„)/(n.+r+n„) and v=2/(n„+r+n. ).
or n„= (1—u)/e and n.+r= (1+u)/v, are introduced.
In the third line the p integration is performed and then
the summation over y is performed. In 6f h

~ ~ ~

d. In the 6fth ine
o.,~ is rep ace yl d b 1+u—rv, and in the sixth line the
remaining contour integral is that for the ypergeo-
metric function in the last line.

For the transition 0—rr, the results (10) and (11
give

CV

C
0
0

C

e
0
. I4

12 14 )S ie. 20 22 240 2

(2X+I+1) ! Fzc. 7. Total cross sections for excitation of vi rational states
e= 1 and 2 of Np by incident protons. Curves give p/(p/m)s in
units ma02as a unc ion o if t' f ncident initial momentum kf) in atomic
units.

4 C1 &ClpJ 2

E' u! (2) y2u+2) (B.+2)!
—

(np' —n.'yK')'
X

Cp Q'~,

- 2K+240, O.p

X
(np+n„)'+ E'

For a scattering process in which both the rotationalE')'
and vibrational states of the molecule are altered, one
has for the factor J,p in (6), apart from normalization

sin'[(2K+2)8& —n8„), (12) constants,

8),= tan —i
) '60 =tan '-

np+n Ap —0,'~

„=2pr cos(-,'Kpx) y„) (p) q „;(p)2

&(Pp(x)P;"(x)P'dpdx,

.24

. 22

.20

18

16

14

12

10

where y„~ is a slight generalization of q„of Eq.

calculation of J & pp is particularly straightforward, since
the angular integration yields a spherical Bessel unc-
tion as before. In the remaining p integration the l and
' d d f the 's can usually be ignored because
f th largeness of b bompared with /(t+1), j(j+ );

icularthen when the Bessel factor is written in any particu
case in terms of trigonometric functions an poly-
nomials in p

' the integration may be performed
directly.

06

04

.02

0 I

0 1 6. 7 8 9 102 '5 4 5K~

Fro. 6. Plot of the fourth root of I= (de/des)/(p/m)', giving the
section in units xaP, as a function of the mo-

particies y 2 wi exi b X 'th excitation of the vibrational states e=,
and 3.

from which the di6erential and total cross sections are

Illustrative results are given in Figs. 6 and 7 w ere
differential cross sections for n= 1, 2, and 3, d t taland 3 and total
cross sections or e=c f =1 and 2 for incident protons are
plotted, the target molecule being N2. The scattering
is qua itativey i e1 1 1 k that for the rotator, but smaller all
over by a factor of some 104 or 10'.

MOLECULE-MOLECULE COLLISIONS

In the general case of the collision of two diatomic
molecules when all of the atoms are diGerent one can
investigate the scattering by making a simple ut
reasonable model in which the intermolecular forces are
given by central interaction potentials between eac
atom in one molecule and each in the other. These can

1 tioned attractive interactions can be
duced where warranted. Upon specifying a mo eintro uce w

ne can thenfor the intramolecular binding forces, one can
calculate a scattering amplitude of interest by Eq. (5).
These remarks indeed are not confined to diatomic
molecules, but in the subsequent discussion we so limit

An interesting special case of the genera type o co-
is that in which the colliding. molecules are homo-

nuc ear u is i1 but distinct. %hen they are also identica,
special considerations are needed and these are a en
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up in the next section. The simplifying feature here is
that the four interaction potentials between the atoms
in different molecules are the same, say v. Hence,
harking back to Eq. (5), we find the scattering ampli-
tude to be just

2p ff„~b= ———
~ exp(iK S)v(s)dS f,*q i*f.qb

al

X (exp LiK. —'(r —g)]+exp L
—iK —(r—p)]

+expLiK 2(r+y)]+expI —iK 2(r+y)])drdg

2p= ———4 ~ exp(iK. S)ii(5)dS
4~5' ~

&& ff,*cos(—'K. r)f,dr ' p, *cos(-',K y)qbdti, (13)

r and y being the nuclear separations in the two mole-
cules. The use of Eqs. (7), (8), and (12) now gives
explicitly the amplitude for scattering from the ground
states of both molecules to excited rotational or vibra-
tional states in either or both. We postpone numerical
results until the effect of identity has been discussed.

SCATTERING OF IDENTICAL HOMONUCLEAR
MOLECULES

%'e now examine the effect of the symmetry of the
Hamiltonian (1) when the homonuclear molecules are
identical. Because our model assumes the forces
between identical atoms in separate molecules to be
generally different from the forces between the identical
atoms in the same molecule (in effect an assumption
of many-body forces between identical "particles" that
we call atoms), the Hamiltonian is symmetric with
respect to an interchange of coordinates of all particles
in the two molecules (i.e., an interchange of the entire
molecules themselves), but not necessarily with respect
to an interchange of coordinates of but one particle in
each of the separate molecules. Under the complete
interchange of coordinates (including nuclear spin coor-
dinates) we must require the total wave function to be
symmetric since the total number of particles in each
system is necessarily even. In the case of identical but
not homonuclear molecules the total wave function
could be either symmetric or antisymmetric, depending
on the molecule.

Writing the spatial part of the wave function now as
e(R, r, p)=g„,pF.p(R)q (r)qp(p), we have that, for
large E,

e(R, r, p)~P f.p(e, p) p. (r) pp(g}
rs.P E

+P ' & (r)Fb(P)

Under interchange of coordinates of all particles, g
—&r,

r~g, and R—+—R; hence

+(—R e, r) 2 f- ( 0,—+~)v-(e)v (r)
a, P

+ p ""~-(e)~b(r);

or, using k p
——kp and relabeling the dummy indices n

and P,

+(—R, e, r)~Z fp-(~ 0~—+v)v-(r)~p(e)
E

+p '""'e-(e)v»(r).

Therefore, the symmetrical and antisymmetrical spatial
wave functions are

8
+"=4(R, r, y)a+( —R, y, r)

~ikr PR

Lf-p(0, ~)~fp-(~ ~, ~+—~)]
~, p E

)& q. (r) p, (g)+e*'. 'p. (r) p, (p)

~p """'~.(e) v»(r). (14)

Whether we symmetrize before or after taking the
asymptotic form of 0 makes no difference in this result.

The scalar product (q, (r) q &(g), 4'") isolates the ampli-
S

tudes f"= f, i(0, y)+ fi, (n0, ir+ p. )—for arrival of one
of the identical molecules in state s at 8, q and the other
in the state t at vr —0, x+y, these amplitudes are in
general distinct from f„(0,y)& f,i(~ 8, m.+ p),~t—he
amplitudes for finding 3 at 0, y and s at ir —9, ~+ &p.

5
We must now weight the amplitudes f" properly in

constructing the differential cross section. It will be
assumed that the electronic states in the molecules
remain as ground states and that, as they usually are,
are symmetric states, and so play no role other than
the one that has been already assigned to them, i.e.,
that they produce fixed kinds of interactions between
the atomic centers within one molecule and between
the centers in separate molecules, and in addition mat. e
the symmetry character of the molecular wave function
dependent solely on its rotational part. For a nuclear
spin I of each of the nuclei, we have that each molecule
possesses ~= (2I+1)' nuclear spin states and that the
system of two molecules, call them 1 and 2, has co' spin
states. Of these latter, there are cv which are sym-
metrical of the form Xi(s)X2(s), s assuming cu values;
and —', (~'—~) other symmetrical and the same number
of antisymmetrical states of the form Xi(s)X2(s')

S
&Xi(s')X,(s). The weights W" of symmetrical and
antisymmetrical states are therefore —,'(ra&1)/&v. The
differential cross section for a molecule in state s to
be scattered at 0, q and the other in state t to be scat-
tered at m —0, m.+q is now

dr/'dco= (k i/'0 b)(W ( f ('+W
( f (') (15)
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A."'(E)=g(E)&.o(E)& o( ),E 8„"'=A „"'(E'),

respectively, where

E= (koo' 8~
—

op .~k '—2k k cos8)'—2kpp sin(is8)

koo' k P+2kppk, ~ cos8)'= [2(kpp'+k„

In Fig. 8 we plot P(do/dip)/(y/m)'C'g' as a function
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.02

I

00 l20 i40 160 I 80
0
0 20 40 60 80 IOOe"

tion of N2 molecules scattered by N2gIG.
i n of rotationa s a emo lecules with excitat o

,d..t i. th f...th ...t.=4 and o vi ra io
of( o o=i5). h o a

taction otential between atoms in dii-o e
'

ferent molecules, is in a o
center-of-mass system. The sca e o or in
curve is 10 ' that of the scale shown.

oth mole-
u s respe v y 0 00—

f b th o1 1 tob ot-
for one to be, but itis considerably

uch harder for o m

t to vibrationally excite o r
f hion of rotation is o cone. The excitat

e char es, genera ymucgo 'g g
vibrational excitation; an

i n of rotation should beprincipa max'1 axima in the excitation o ro a
'

M Er eti e GoodThe author is indebted to rs. mes
the numerical computations.for assistance in e n


