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A discussion is first given of the collisions of composite systems in general, where it is shown how the scat-
tering amplitude may be written as a superposition of little amplitudes for the scattering of each particle in
one system by each particle in the other. This is followed by the calculation of scattering cross sections for
single charges by nitrogen molecules with excitation of rotational and vibrational states of motion; the col-
lision of molecules with molecules, including the case that they are identical, is also discussed and applied to
N;—N; scattering. The smallness of internal rotational and vibrational velocities is exploited in the use of the
Born approximation. Detailed numerical results are given.

INTRODUCTION

HE question of the exchange of energy between
translational motion and molecular vibration and
rotation has been discussed heretofore on a highly
simplified basis involving usually a one- or two-dimen-
sional model for the molecule,! and with some attempt
to calculate inelastic cross sections by the method of
distorted waves;? only meager quantitative results have
been obtained. In this report we re-examine the question
and capitalize on the smallness of internal rotational and
vibrational velocities in the use of the Born approxima-
tion to obtain detailed results for the scattering of
single charged particles and of molecules by molecules.
In a preliminary discussion we make a few general
observations on the scattering of composite systems
which will be of perhaps wider application than in just
molecular collisions.

REMARKS ON COLLISIONS OF COMPOSITE
SYSTEMS

Consider the collision of a system of particles with
internal coordinates g; (referred to the system’s own
center of mass) and a second system with internal coor-
dinates r;, the two systems being separated by the
distance R (Fig. 1).

For the present we ignore the possibility that the
systems may be identical and that a rearrangement
collision can take place. We write the Hamiltonian for
the total system in the coordinate frame in which the
center of mass of the complete system is at rest as

H=—(R/2u)Ve*+H,(r;))+H,(0:)+V (05, r;, R), (1)

w being the reduced mass M,M,/(M,+M,), H. and H,
the internal Hamiltonians of the individual systems

* The research reported in this paper has been sponsored by
the Geophysical Research Directorate of the Air Force Cambridge
Research Center, Air Research and Development Command
under Contract AF 19(122)-469. .

IN. F. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Clarendon Press, Oxford, 1949), Chap. XII, Sec. 3.5, where
further references are given. After preparation of this paper, an
article by P. M. Morse appeared in Phys. Rev. 90, 51 (1953)
which contains a similar treatment; the overlap in results with
the present paper, however, is small.

2 Reference 1, Chap. VII, Sec. 5.

referred to their mass centers, and V their interaction
energy. Expanding ¥, which satisfies H¥=E¥ with
suitable boundary conditions, in eigenstates f.(r)os(p)
of HA4-Hj, as 3ap Fap(R) fa(r) 05(p) gives

2
(vR2+ksﬁ>Fu<R>=;§ f f () e (o) VWdrde,
@

2u
k3t2="—(E""Es“‘E¢),
ﬁZ
whence, introducing the Green’s function for the left-
hand side and taking the limit as R—,

1 2y ethstR '
FyR)»——— ff fe’ ket R f ¥ o ¥V WdrdgdR
4 #* R J

etkstR
+e"’“ﬂbZ§m5szf ot(0, @)+ e* %5580, (3)

In Born approximation we replace ¥ by e R f (1) ¢, (p)
and obtain for the amplitude for scattering from the
initial state fo(r)es(p) to the final state f,(r)e.(0),

1 2u
fstab:—Z'h:fffeix'Rfs*qaz*Vfagpbdrdng (4)
T
K=kab—k31.

For a large class of problems
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Fi1c. 1. Schematic representation of two colliding composite
systems, showing labels of coordinates.
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EXCITATION OF MOLECULAR ROTATIONS AND VIBRATIONS'

or, for central forces, Y v;;(|R;|), where Ry=r,—R-

— 9;, from Fig. 1. Hence Eq. (4) may be written

furm =25 [ [ [ expliK- (- et Ri]
2,1
><vji(Rji)fs*saz*famdrdng

exp[sK: r;]f.* fudr

Xfexp[—-iK‘oi]SOt*ﬂObd!?
Xf exp[?K-R;;Jv;;:(R;;)dR

1 2u
=— X Fi(K)$i(K)hij(K). ®)

v/9
The factor
hii(K)= f exp[“K-R;:Jv;:(R;:)dR

_—:fexp[iK'S]vji(S)dS

(S being just a dummy variable of integration), is just
the Born amplitude for the elastic scattering of the ith
particle in the p system by the jth particle in the
7 system with momentum change K, provided that the
collision of the two systems is itself elastic (¢=s and
b=1¢). In this case the result (5) states that the elastic
Born amplitude f,,*® is a superposition of little elastic
Born amplitudes for the scattering of each particle in
one system by each in the other. One can, as was first
done by Massey and Bullard for electron-nitrogen
molecule scattering,? replace the little Born amplitudes
by the exact amplitudes at this point, and thereby
effect a considerable improvement in f4*. This is dif-
ficult to justify theoretically but in practice proves to
be very valuable (see reference 3) ; it is as if the general
result of superposition of individual amplitudes has a
validity considerably exceeding the range of validity
of these amplitudes as found in Born approximation.
Even for the inelastic scattering of the two systems
(] kas| # | kse|), one still identifies /4:;(K) as a Born
amplitude for elastic scattering with momentum change
K, and can replace this with the exact amplitude for
the same momentum change; then f,° is a superposi-
tion of some sort of “quasi-elastic’” amplitudes.*

3H. S. W. Massey and E. C. Bullard, Proc. Cambridge Phil.
Soc. 29, 511 (1933).

The idea of superposing improved amplitudes in otherwise
used in a different sense in nuclear scattering problems. See G. F.
Chew, Phys. Rev. 80, 196 (1950); G. F. Chew and G. C. Wick,
Phys. Rev. 85, 636 (1952), also R. L. Gluckstern and H. A.
Bethe, Phys. Rev. 81, 761 (1951). The latter, for n-d scattering,
replace Born cross sections for individual nucleon-nucleon col-
lisions in the final result by experimental cross sections; our
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It may be noted in passing that when the eigen-
functions f.(r) and ¢s(p) of H,(r) and H,(p) are repre-
sented as products fa1(r1) faa(rs) - - - fan(rs) and ¢g1(o1)
p2(02) * + - g (p,) of one particle eigenfunctions in a
self-consistent field (Hartree) type of approximation,
one has '

Fi(K)= f expliK- 11/ (1) fos (£)d1;
I [ 1) i,
6:(K)= f expl—iK-eJer* (o) ovile)des

g o (or) oo (0r) s

To an approximation sufficient for many purposes, the
self-consistent fields for the states ¢ and s (or b and ¢)
may be taken as the same (or indeed one can often
build the one-particle eigenfunctions for a system from
a single average field, the same for each particle). Then
the orthogonality of the f, fa: is assured and the [];.;
is one or zero according as the states ¢ and s are the
same except for their 7; eigenfunctions or are different
in any 7, eigenfunctions; and similarly for the I ... The
scattering amplitude for the process in which the pth
particle in the 7 system goes from state a to state s
and the gth particle in the p system goes from state b
to state £ is in this picture just

fs°® (simple Hartree approx) =

1 2u

4

exp[iK 1, ]fop* fapdr,

% f expl—K-eJeu* eno f expliK- ST, (S)dS

while the amplitude for exc1tat10n of more than one
particle in either system”is zero (i.e., small in the
general case).

EXCITATION OF MOLECULAR ROTATION

We send a single charged particle against a homo-
nuclear diatomic molecule, which we treat as a rigid
dumbbell, and ask for the amplitude for excitation of

approximation is distinct from Chew’s impulse approximation.
The replacement of 4:;(K) by a quasi-elastic two-particle ampli-
tude is the replacement k= /" exp(—iky- S)v,.(S)X,,(S)dS
where X;; satisfies [— (h“/zu)Vs”-f-vﬁ(S) X ;= (E—E,— 7i
such that X; t—»exp(zkﬂ S)+exp(1ks/S) Sfii(K) w1th [ks,’]

= |ket| and fK|—~[ kst'—Kse| = | kao— This result can be
made to follow formally from (3) when \I’IS approxtmated as
2,1 (0i5/V)Xij exp[iK- (r;— i) 1fos, being a superposition of
two-particle scattering wave functions weighted by the relative
weights of the strengths of their interactions compared to the
total interaction energy. As has been noted, the quasi-elastic
almplitude is a true elastic amplitude when the scattering is itself
elastic.
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rotational levels in a process in which the incident
particle is scattered through a given angle. So long as
the energy, or velocity, or relative motion far exceeds
the energy, or velocity, of internal rotational motion,
we expect the Born approximation to give an adequate
picture of the inelastic scattering. For a nitrogen
molecule, for example, one has internal energies
E~2.5%X10"4(I+1) ev and velocities »,>~1.9X1073
X [1(14-1)]* atomic units, so that the Born approxima-
tion should suffice down to even very small incident
energies.

For the interaction between. the incident charge
(proton, electron, or alpha particle for example) and
the molecule we use the static Fermi-Thomas field
of the molecule. This has been shown by Hund® to be
well represented by a function of the form v(r1)4-v(r),
#1 and 7, being radial distances measured from the two
nuclei. Though distortion of this field due to polarization
of the electron swarm is neglected, this will have no
serious effect on the qualitative character of the results
(barring only a gross alteration of the molecular bond,
an effect that we do not consider at all), and we use the
Hund field merely as the best one available, with due
reservation as to its detailed quantitative significance.

Following the discussion above on composite col-
lisions, we write R=r;+30=r,—3%p, o being the nuclear
separation, and V=9(r)+v(rs). The amplitude for
scattering and exciting from state b to ¢ is then, after
straightforward reductions,

1 2u

4 K?

Ji= 2 f exp (iK-8)v(85)dS f coszK-pecoude,

f=a

o 1 ' 1 1 1 1 I 1 ! 1
o i 2 3 4 5 T( 7 8 9 10 " 12

F16. 2. Plot of the fourth root of I = (do/dw)/(u/m)?, giving the
differential cross section in units wae?, as a function of the mo-
mentum change K in atomic units, for the scattering of charged
particles by Na with excitation of the rotational states I=2, 4,
and 6.

5 F. Hund, Z. Physik 77, 12 (1932).
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which we write as

u 2mm )
=== f exp (K- 8)o(S)dS
m

n(K)
Xfcos%K'esac*%dQ, (6)

g
T

in order to make usé of Massey and Bullard’s® evalua-
tion of the factor A(K) for N,. Here m is the electron
mass, p the reduced mass of target and incident par-
ticle; the ¢’s in Jy are just spherical harmonics; and
K2= k>t k?—2kok, cosf, where 6 is the angle of scat-
tering of the incident particle in the center-of-mass
system, and kg?= (2u/#?) (E— Eg), E= Ey+3u®, v=R.
The factor Jy is explicitly

Jii=NV; ReffP;'”’(cos(})ijf(cos@

X gitKp cosbg—imiegimie sinfdfd ¢,

so m; must be the same as m;. The ‘0 integration tells
that / and j must be of the same parity. A simple case
of the general integral® is J, for the excitation of the /th
rotational state from the ground state. Expanding
¢#Kp cosd in Legendre polynomials gives at once

Jw= 2+ 1)} (—1)"(x/Kp)* 144 (3Kp)
= (2HDH=D"5GKp). (7)

Hence the differential cross section is
do/dw= (ki/ ko)4(u/m)*h* (K) (2I+-1) j2(3Kp),
and the total cross section

u 2 27r kotki
m k02 ko—ki1

In Fig. 2 we illustrate the behavior of the cross section
for 1=2, 4, and 6 by plotting [ (do/dw)/(u/m)*]t as a
function of K.7 in Fig. 3 we give actual angular dis-
tributions for /=2, 4, and 6 and for several different k.
Figure 4 shows total cross sections for excitation of
1=2, 4, and 6 as functions of ko, when protons are the
incident particles. These results all refer to scattering
by nitrogen molecules.

Several interesting points are at once evident. First,
the general order of magnitude of the cross section
decreases rapidly with increasing excitation of the
target, roughly by a factor of 10 for each successive
stage of excitation. Second, in the diffraction-like
maxima in the angular distributions (that arise physi-
cally from the scattering from two centers of force which

6 H. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc. (London)
132, 615 (1931) discuss the general integral.

7 Atomic units are to be understood throughout, except where
otherwise stated.

T wKdK.



EXCITATION OF MOLECULAR ROTATIONS AND VIBRATIONS

in effect constitute a sort of little grating), the small-
angle maximum is indeed very prominent and peaked
above all others; this is especially evident in the /=2
excitation where the chief maximum should be easily
discernible experimentally. Third, the total cross-section
data substantiates the usefulness of the Born approxi-
mation even down to small absolute incident energies
so long as these are still well above the internal energies
that are excited in the target; for, the bulk of past
experience shows the validity of Born results for inci-
dent energies above, roughly, an energy as far beyond
that corresponding to the maximum in the total
cross section as this maximum is above the threshold
energy. In Fig. 3, for instance, the angular distributions

ks:768 556 254
1.0

1.505

1 V4

3 76 5.56
2
768 5.56
7.68
Bl
(o] I L | 1 t It I
[¢] 20 40 60 80 100 120 140 i60 180

6 —

Fic. 3. Angular distribution of single charged particles scat-
tered from N, with excitation of the rotational state I=2 for
various incident initial momenta ko in atomic units; 6 is the scat-
tering angle in the center-of-mass system. The graph gives the
fourth root of I= (do/dw)/(u/m)?, do being in units of wac?,
versus 6.

for k=1.505, 2.54, 5.56, 7.68 correspond to electron
energies of 30.7, 87.4, 419, 799 ev (electron velocities of
1.505, 2.54, 5.56, 7.68 atomic units), and proton energies
of 0.0173, 0.0493, 0.236, 0.451 ev (proton velocities of
8.49X 107, 1.43X 1073, 3.14X 1073, 4.33%X10~% atomic
unit), while the internal motion of the excited state is
of energy 1.53X 1072 ev and velocity 4.70X 10~% atomic
unit; at the same time a glance of Fig. 4 shows that for
ko=1.5 one is already past the maximum of the total
cross section and coming into the region of Born
validity.

In the case that the incident particle is an atom
instead of a charge, one usually represents the inter-
action potential V=v(r1)+v(rs) through a choice of
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Fic. 4. Total cross sections for excitation of rotational states
1=2, 4, and 6 of N. by incident protons. Curves give o/ (u/m)? in
units wae? as a function of incident initial momentum £, in atomic
units.

v(r)=ce™*", or perhaps Ce~¢"/r. This has only the
qualitative significance of assigning an effective range
and strength to the interaction between incident atom
and molecular atom. The amplitude %#(K) in (6) is then

8m*m ¢

2o K2

167%m ac

2 (Oé2+ K2) 2

®)

which are roughly similar in shape to the % based on
Hund’s v(7).

EXCITATION OF MOLECULAR VIBRATION

This is altogether similar to the rotator calculation
except that v(s) in #(K) of Eq. (6) has, according to the
Hund-Fermi-Thomas model that has been assumed, an
explicit dependence on the now variable nuclear
separation p; this dependence will be quite weak,?
however, (except for vibrations of large amplitude) so
that no serious error is made by taking, as for the
rotator, that v(S) corresponding to the equilibrium
nuclear separation. What is thus ignored is a slight
pulsation of the range and shape of v as the molecule
vibrates.

We need only evaluate the factor Ju in (6) for
suitably chosen vibrator functions ¢:(p) and ¢(p); we
assume for simplicity that the molecule stays in the
rotational ground state. An adequate model for the
vibrator when the vibrational quantum number is not
too large is an old one due to Fues® in which the inter-
nuclear interaction potential is

U(p) = — D+4nwip M (3 — po/ o302/ p2),

D, vy, po, and M being the depth of the potential curve,
frequency of small oscillations about equilibrium,
equilibrium nuclear separation, and reduced molecular
mass, respectively. This function with parameters
8 See Fig. 3 in reference 3.
9 E. Fues, Ann. Physik 80, 367 (1926); an account of Fues’s
vibrator will be found in E. U. Condon and P. M. Morse, Quantum

Mechanics (McGraw-Hill Book Company, Inc., New York, 1929),
Chaps. IT and V.



1178

appropriate to the N, molecule!? is illustrated in Fig. 5
together with harmonic oscillator and Morse functions
for comparison (the latter is chosen to give the correct
D and »o but not the correct “wx,’”” ; the former gives the
correct vg). The eigenfunctions ¢s(p) are

Pn (p)= (%)_%Nﬂe_%anpp)‘F(_na 2>\+27 anp)y
M (n+22+1)1 )3
(@A) {n!(Z)\-I—Zn—}—Z)}

belonging to the vibrator levels W, ~— D-+hvo(n+3),
where A= —31+3(144b0)% a,= A+n+1)"(00/20)7,
and b= 4n%v*M?0¢*/ h*= dimensionless constant; F is the
confluent hypergeometric function, here a polynomial
of degree 7.

UPrev

-8 PRNTSUI B S L PSS Sy
L5 2.0 2.5 3.0
£, ATOMIC UNITS —=

Fic. 5. Comparison of the Fues potential curve F, used to give
vibrator eigenfunctions for N,, with Morse, M, and harmonic
oscillator, O, curves.

The integral to be evaluated for the transition »—n,
say, is

NN, (= '
Jnu= 4 f p2)\ eXP[_%(an‘f‘av)P]
0

™

XF(=n, 2M+2, awp) F(—», 2\+2, arp)p*dp

1
X f cosiKpx2rdx
N, -

Im f p?exp[ — 3 (antat7)p]
0

XF(-”, 22+2, anp)F(_~ 4] 22, avp)dpy (10)

0 G. Herzberg, Specira of Diatomic Molecules (D. Van Nostrand
Company, Inc., New York, 1950), Appendix, Table 39; see also
E. A. Hylleraas, Z. Physik 96, 661 (1935).

EDWARD H. KERNER

where 7= —1K. This is similar to the matrix element
for optical transition probabilities in hydrogen, and may
be evaluated by a generalization of the well-known
Gordon!! integral giving these probabilities, as follows.
Calling the integral in (10) 7,, we write

Z*n——l

jnv=A££meXP[_p(ﬁgLi_ffz)]
(—ap)?
e ()(2>\+2)]
iz ff O%E)?—mexp[-p(viff%)]

( ) o I dpds
2+ 2) i

2N+-2
=4 (2\+1) !f z‘”—‘———v
(14 zu)22+2
(5]
z——n—l
= A (2A+1) 1?2 _
(14-za0) M2
av(142)\”
X ( 1— ——-) ds
: 1421
Z~n—1

= A (A1) oM f ——
(1+ Zu)2X+2

—u+ (ro—1)z\”
ATy
1+2u

= A (A1) 22 (rp—u)
Z

! To—1\"
(1-4-zu)? 2 TV—U

= (A1) W2 (ro— )

Tv—1
Xu”F(——n, —v, 2242, 1____*_)_ (11)
u(rv—1u)

In the first line, the first I function has been replaced
by an equivalent contour integral on z, where

A=eTing (A1) 1/ (2m8) A+n+1) |

and the contour is a closed circuit around the origin;
the second F function has been replaced by its series
expansion, (2\+2); standing for (2A42)(2A43)---

W, Gordon, Ann. Physik 2, 1031 (1929), especially Sec. 1
and Sec. 4.
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X (2414 7) [but (2A+2)p=1]. In the second line the
abbreviations

u=(+7—an)/(+7+a,) and v=2/(a,+7+a).

or a,=(1—u)/v and a,+ 7= (14u)/9, are introduced.
In the third line the p integration is performed and then
the summation over j is performed. In the fifth line
a0 is replaced by 14#—7v, and in the sixth line the
remaining contour integral is that for the hypergeo-
metric function in the last line.

For the transition 0—#, the results (10) and (11)
give

(+n+1)!

K nlO+21+2) (2A+2)!
(@ —an*+ K?)*+4a,2K* )"
[ ((@otan)?+K?)? J

4 — [ 7% 1))

4an(10 2N-+2
x[—-——-—————-] sin?[ (A+-2)0r—nb,], (12)
(aotan)*+ K2
20, K
6= tan™! , O,=tan™!

b
artan al’—a K

V4 —
N

It

b
N
o
~F
@
©)
3

o 1 2

K —e

F16. 6. Plot of the fourth root of = (do/dw)/(u/m)?, giving the
differential cross section in units mwae?, as a function of the mo-
mentum change K in atomic units, for the scattering of charged
particles by N with excitation of the vibrational states n=1, 2,
and 3.

from which the differential and total cross sections are
readily found.

Illustrative results are given in Figs. 6 and 7 where
differential cross sections for #=1, 2, and 3, and total
cross sections for =1 and 2 for incident protons are
plotted, the target molecule being N,. The scattering
is qualitatively like that for the rotator, but smaller all
over by a factor of some 10* or 10°.
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Fic. 7. Total cross sections for excitation of vibrational states
n=1, and 2 of N; by incident protons. Curves give o/ (u/m)? in
units 7ra¢ as a function of incident initial momentum ko in atomic
units.

For a scattering process in which both the rotational
and vibrational states of the molecule are altered, one
has for the factor J4 in (6), apart from normalization
constants,

00 1
Ty vi=2m f f cos(3Kpx) oni* (p) 005 (p)
°o X Py(%) P,;(x) Pdpda,

where ¢, is a slight generalization of ¢, of Eq. (9),
namely, A is replaced by —3+3[144(b+1(I+1)) 1% The
calculation of J »;, oo is particularly straightforward, since
the angular integration yields a spherical Bessel func-
tion as before. In the remaining p integration the / and
7 dependence of the ¢’s can usually be ignored because
of the largeness of b bompared with I(l+1), j(j+1);
then when the Bessel factor is written in any particular
case in terms of trigonometric functions and poly-
nomials in p~! the integration may be performed
directly.

MOLECULE-MOLECULE COLLISIONS

In the general case of the collision of two diatomic
molecules when all of the atoms are different one can
investigate the scattering by making a simple but
reasonable model in which the intermolecular forces are
given by central interaction potentials between each
atom in one molecule and each in the other. These can
be taken to be roughly of the forms Ce=*" or Ce=*/r
previously mentioned; attractive interactions can be
introduced where warranted. Upon specifying a model
for the intramolecular binding forces, one can then
calculate a scattering amplitude of interest by Eq. (5).
These remarks indeed are not confined to diatomic
molecules, but in the subsequent discussion we so limit
ourselves.

An interesting special case of the general type of col-
lision is that in which the colliding molecules are homo-
nuclear but distinct. When they are also identical,
special considerations are needed and these are taken
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up in the next section. The simplifying feature here is
that the four interaction potentials between the atoms
in different molecules are the same, say v. Hence,
harking back to Eq. (5), we find the scattering ampli-
tude to be just

12
fsfb=—4—ﬁ—': [ exwK-8)0)a8 [ 120
m

X {exp[iK-3 (r—¢) J4exp[ —iK-3(r—p)]
+exp[iK-3 (r+9) ]+exp[ —iK- 5 (r+9) J}drde

=— P K-S)»(S)dS
4 72 feX ‘

X f fs* cos(3K-1) fadr f e cos(3K-0) pude, (13)

r and ¢ being the nuclear separations in the two mole-
cules. The use of Egs. (7), (8), and (12) now gives
explicitly the amplitude for scattering from the ground
states of both molecules to excited rotational or vibra-
tional states in either or both. We postpone numerical
results until the effect of identity has been discussed.

SCATTERING OF IDENTICAL HOMONUCLEAR
MOLECULES

We now examine the effect of the symmetry of the
Hamiltonian (1) when the homonuclear molecules are
identical. Because our model assumes the forces
between identical atoms in separate molecules to be
generally different from the forces between the identical
atoms in the same molecule (in effect an assumption
of many-body forces between identical “particles” that
we call atoms), the Hamiltonian is symmetric with
respect to an interchange of coordinates of all particles
in the two molecules (i.e., an interchange of the entire
molecules themselves), but not necessarily with respect
to an interchange of coordinates of but one particle in
each of the separate molecules. Under the complete
interchange of coordinates (including nuclear spin coor-
dinates) we must require the total wave function to be
symmetric since the total number of particles in each
system is necessarily even. In the case of identical but
not homonuclear molecules the total wave function
could be either symmetric or antisymmetric, depending
on the molecule.

Writing the spatial part of the wave function now as
YR, 1, 0)=3up Fas(R) pu(r) 0s(g), we have that, for
large R,

\I,(R) I, 9)_)2
a,B

etkabR

fas (6, ©) 0a(r) 05(0)
Fe#Z o, (1) o1 (0).

R

Under interchange of coordinates of all particles, p—r,

EDWARD H. KERNER

r—p, and R——R; hence

eikapR

Jas(m—0, 7+ ¢) ¢a (@) 05 (1)
e *Z o (0) s () ;

or, using kas= kg and relabeling the dummy indices «
and B,

\II(—R) 9, r)_')z
a,B

\I,("_R, 9, 1‘)—’2
a,B

eikaﬂR

Joa(m—0, T+ ¢) () 05 (o)
+em*aZ gy (0) ou(1).
Therefore, the symmetrical and antisymmetrical spatial
wave functions are
5
‘I/A:‘I/(R) r, p)d:‘I/(—R, 0, l’)

eilcagR

»—}Zﬁ [faﬂ(ai ¢)ifﬂa<7r-01 Tt ‘P)]

R
X @ (1) pa(@)+e*% o, (1) 01 (@)
dem*Zp,(0) op(r).  (14)

Whether we symmetrize before or after taking the
asymptotic form of ¥ makes no difference in this result.

s
The scalar product (¢,(r)¢:(o), ¥4) isolates the ampli-
S

tudes fA= f.:(0, )% fis(w—0, m+ ¢) for arrival of one
of the identical molecules in state s at §, ¢ and the other
in the state ¢ at #—#6, 7+ ¢; these amplitudes are in
general distinct from fi,(0, @)= fos(r—0, 7+ ), the
amplitudes for finding ¢ at 6, ¢ and s at 7—0, 7+ ¢.

s

We must now weight the amplitudes f4 properly in
constructing the differential cross section. It will be
assumed that the electronic states in the molecules
remain as ground states and that, as they usually are,
are symmetric states, and so play no role other than
the one that has been already assigned to them, i.e.,
that they produce fixed kinds of interactions between
the atomic centers within one molecule and between
the centers in separate molecules, and in addition make
the symmetry character of the molecular wave function
dependent solely on its rotational part. For a nuclear
spin I of each of the nuclei, we have that each molecule
possesses w= (2I+1)? nuclear spin states and that the
system of two molecules, call them 1 and 2, has w? spin
states. Of these latter, there are w which are sym-
metrical of the form Xi(s)Xs(s), s assuming w values;
and 3 (w’—w) other symmetrical and the same number
of antisymmetrical states of Sthe form X;(s)X,(s")

+Xi(s")X2(s). The weights W4 of symmetrical and
antisymmetrical states are therefore %(w=1)/w. The
differential cross section for a molecule in state s to
be scattered at 6, ¢ and the other in state ¢ to be scat-
tered at 7—6, 7+ ¢ is now

do/do= (ksi/kar) WS| FSIP+WA| ]9, (15)



EXCITATION OF MOLECULAR ROTATIONS AND VIBRATIONS

If, however, we know that there are selection rules
which prevent the excitation of certain states, an
alteration of w from its value (274 1)? may be necessary.
For example, suppose the two colliding molecules are
initially in the ground state; then according to the
discussion of rotational excitations given before, only
even rotational states can be excited; hence of the
(2I4-1)? possible nuclear spin states per molecule only
either the I(2I+1) antisymmetrical ones or the
(I4-1) (2I41) symmetrical ones, depending on whether
the nucleus has an odd or even number of nucleons, can
enter into consideration, and w must be reckoned as
either 7(2I41) or (I41)(2I41).

Making use of Egs. (7), (12), (13), (15), and the first
alternative in (8), we construct some illustrative
results for No— N, scattering, for which I=1,

w={I+1)(2I4-1)=6,

and the molecules are initially in their ground states.
We write the differential cross section for scattering of
one molecule in state s at angle 8 and the other in state
¢t at angle 7—0 as

dolt kst256

el s

s kOO ™
in units mae?, where 2(K) of Eq. (8) has been written

4Ca 4C

—=—-71g(K)
V1 (@FK)

in units eiV2r when C, a, K are in atomic units; a
reasonable value for « is a=2. For s and ¢ both rota-
tational or both vibrational states, we have, for example

AV (K)=g(K)Tw(K)Tvo(K), BlY=A4,"(K'),
A" (K)=g(K)J no(K) T no(K), Bu"'=A,"(K'),

respectively, where
K= (ko™ t+ks—

h(K)=

Zkooksg COS@) %EZkOO sin (%0)
and
K'= (k002+ ks 2kooks: COSH)%= [2 (k002+ k) — Kz:]%'

In Fig. 8 we plot [ (do/dw)/ (u/m)?C?]* as a function
of 0 for s=1=2, i=I'=0; s=1=2, t=I'=2; =ns=1,
t=n"=0;and s=n=1, i=%"=1 for the excitation of the
lowest rotational states in one and both molecules, and
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Fr1c. 8. Angular distribution of N, molecules scattered by N
molecules with excitation of rotational state /=2 in one and
both molecules (for ky=4) and of vibrational state #=1 in one
and both (for ko=15). The ordinate is the fourth root of
I=(do/dw)/(u/m)2C?, giving do in units mae® when C, the strength
of the interatomic interaction potential between atoms in dif-
ferent molecules, is in atomic units; 6 is the scattering angle in the
center-of-mass system. The scale of ordinates for the n=1, n’'=1
curve is 107! that of the scale shown.

of the lowest vibrational states in one and both mole-
cules, respectively, for kgp=4 for the rotational ex-
citations and kgo=15 for the vibrational excitations. It
is not very much harder for both molecules to be rota-
tionally excited than for one to be, but it is considerably
more difficult to vibrationally excite both rather than
one. The excitation of rotation is of course, as in the
scattering of single charges, generally much more prob-
able than for vibrational excitation; and again the
principal maxima in the excitation of rotation should be
visible experimentally.

The author is indebted to Mrs. Ernestine Goodman
for assistance in the numerical computations.



