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where we have made the substitution e = ts(sZe'/E) I and
are using the dimensionless constants

t= L2E/(sZe') js= tan(-', Cs), (15)

P=n8 (hc/e') s-4Z—s (8/hc) s

=2 68X10"ns 'Z 'EM, , (16)
where e is in cm'.

Hardmeier~ has given a formula for 6 at small scat-
tering angles and has evaluated it explicitly for large
scattering angles for P= 1, 2, 4, 6. We have evaluated 8

at large scattering angles for P=0.2 by numerically
integrating the difference of the integrals appearing in

Eq. (4) except near the ends of the region of integration.
At the ends, the difference was approximated by ex-
pressions that could be integrated directly. dB/dC& was

then obtained by numerical differentiation. The results
for o„/o, are given in Fig. 1 using also Hardmeier's'
results for small scattering angles.

In the case of head on collisions, 0„/o. reduces to

L1+ (d8/dCO)] '; also, as t +0, —we have

d8 5 5 p'& dv
t

0 dv
lim = lim —= lim —=

dC, ™Cs ™2t, t 1—2V+Pe'j& & o [1—»)&
(17)

If we evaluate this as a power series in P, we obtain for
backward scattering

0'y—(0)= 1—0.229P—0.0354P'.

For P=0.2, this gives us a 4.7 percent deviation from
pure Coulomb scattering in the backward direction. For
the deuteron s=i and from reference 1, we have'

The value of n is taken from Eqs. (13) and (21) of reference 1
by noting that for the scattering problem, we must average over

n=0.56X10 "cm'. Then, applying Eqs. (16) and (18)
to some examples where the nuclear effects should be
comparatively small' and hence our treatment be valid,
we 6nd for 8-Mev deuterons scattered by»Bi where
P=0.112 a deviation of 2.7 percent in the backward
direction, and for 10-Mev deuterons scattered by 9~U

where P=0.177 a deviation of 4.2 percent in the
backward direction.

the magnetic quantum number so that (nlAv=aso+2nnn=ass
=0.56)(10 "cm'.' D. C. Peaslee, Phys. Rev. 74, 1001 (1948); C. J. Mullin and
E. Guth, Phys. Rev. 82, 141 (1951).
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The theory of scattering of electrons by hydrogen has been re-examined with the objective of identifying
the matrix element for the exchange scattered amplitude from the same integral equation which provides
direct scattered amplitudes. The theory of Mott and Massey is veri6ed, but it is demonstrated that their
result contains contributions from the incident wave which must be removed before coraputing exchange
amplitudes. The result is a theoretical justification for the Oppenheimer (prior) matrix element.

HE analysis of exchange scattering was originally
made by Oppenheimer, ' and an entirely different

treatment of this problem which has become standard
was given by Mott and Massey. ' The reason for the
superiority of the latter method is that the general
matrix element for the exchange scattered amplitude is
identi6ed, while Oppenheimer's solution is an approxi-
mate one from the outset so that the possibility for
improved estimates is automatically ruled out. How-
ever, the method of Mott and Massey involves the

*The research reported in this paper has been sponsored by
the Geophysical Research Directorate of the Air Force Cambridge
Research Center, Air Research and Development Command.

' J. R. Oppenheimer, Phys. Rev. 32, 361 (1928).
~

¹ F. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Oxford University Press, New York, 1949), second edition.

I

assumption that the usual stationary state solution
from which the direct scattered amplitude is derived
has the asymptotic form

Lim P (r t, rs) =Q
a f2

' g~ ' 'p~ (rt) ~

where r~ and r2 refer to the primary and hydrogenic
electrons, respectively. (This labeling will prevail
throughout the present paper. ) The rp's are Coulomb

functions; the sum includes integration over continuum

states. Mott and Massey point out that no proof of
this assumption has been given but that one should be
possible. It is the purpose of this paper to provide such
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a proof' and to discuss other consequences arising from
the analysis. Unless the validity of Eq. (1) is demon-
strated, it is impossible to guarantee that the usual
solution, which is conveniently outgoing in the coor-
dinate of the primary particle, is indeed capable of
describing a bound hydrogenic state in the coordinate
of the primary electron together with a free wave in the
coordinate of the target electron.

%e begin with the Schrodinger equation,

( ~l ~2 +&(&1)+&(&2)+V( I ri r2I ))p(ri, r2)

=EP(ri, r2), (2)

where the v's are the potentials between the particles,
and the nucleus is presumed at rest. The Hamiltonian
is split into two unsymmetrical terms so that the unper-
turbed states describe a freely moving primary electron
in the presence of the hydrogen atom. That is,

H=HO(ri, r2)+ V(fi, I's),

H, = —V,2—V,'+v(r,),
V(r, , r2}=v(ri)+V(lri —r, l).

In order to incorporate the boundary conditions re-
quired in a collision problem, that of an incident wave
in the coordinate r& with the hydrogen atom in, say,
the ground state together with outgoing waves in either
coordinate, we introduce the Green's function for the
operator (E—Ho(ri, r&)) which satisfies the equation

(E H0(ri, r2))—(rir2IGlri'ri') =5(ri—ri')8(r, —r2'). (4)

Here

dke ik ~ (ri—ri')

(ririlGlri'r2') =Lim P
(2ir)'(E —e —k'+ ci)

with e&0. The positive imaginary addition to the
energy establishes the appropriate boundary conditions
upon the scattered wave. If the integral over k is per-
formed, then (5) becomes

~tkaJrl —rl i

k.= (E—c ):.

We now replace (2) by the following integral equation:

f(ri, r2) = e' ""yo(r2)

It is an elementary calculation to show that the asymp-
totic behavior of (7) as ri—+~ is given by

Lim P(ri, r2)
TQ~QO

The coefficient f„(k„) is then the direct scattered am-
plitude corresponding to excitation of the hydrogen
atom into it's eth state.

Since (7) contains a complete statement of the
boundary conditions, it is desirable to isolate the func-
tional for the exchange scattered amplitude from this
same integral equation. It is, however, inconvenient,
if at all possible, to attack this problem directly by
performing the sum on o. involving the Coulomb func-
tions in (5) in order, subsequently, to find the asymp-
totic behavior in the coordinate r2. Such a procedure
is the analog to that carried out conveniently in the
derivation of (6). Consequently, we proceed by re-
writing (7) as follows:

y(ri, r2)=e'"o' qo(r2)

Xh(r2 —r2') (ri'r2'I Glr, "r2")

X V(ri", r2")f(ri", r2"). (9)

We now interchange primed and unprimed coordinates
separately in (4), and obtain

(E—Ho(r2, ri)) (r2ril G
I
r2'ri') =8(ri—ri') 8(r,—r,'), (10)

which is the same as

(E—Ho(r2', ri')) (r2ril G Ir2'ri')
= 8 (r,—ri') b(r, —r2'), (11)

since the Green's function is a symmetric operator with
respect to an interchange of primed with unprimed
coordinates. Upon substituting into (9), we have

P(ri, r2) = e'"0 "go(r2)'
+ dri dl'2 dri dr2

XI (E—Ho(ru', ri'}) (rurilGlr2'ri')$

X (ri'r2'IGlri"r2") V(ri", r2")f(ri", r2"). (12)

It is demonstrated in Appendix I that H, (r2', ri') is
Hermitian with respect to the functions (r2rilGI r2'ri')
and (ri'r2'IGlri"r2"). Therefore, (12) may be written

+ (rir2
I Gl Fi 'Y2 )V(ri', r2')f(ri', r2')dri'dr2.

P(ri, r2) =e'"""yo(r2)(7)

+,~ dridr dri dr (&2&ilGlfnt'i)

X(I E—Ho(r2', ri') j(ri'r2'I Glori"r2")}

X V(ri", r2")f(ri", ri") (13).
'Private communication with H. E. Moses reveals that he has

substantially veri6ed the Mott-Massey conjecture using the
Schwartz distribution analysis. This work appears in Research
Report No. CX-5 and is issued by New York University, Wash-
ington Square College of Arts and Science Mathematics Research
Group.
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%e now make use of the identity,

Bo(x2 xl) +o(rl x2)+v(xi) v(rs)

and Eq. (4), in order to rewrite Eq. (13) as follows:

P(ri, rs) = e'"o'&CHOO(rs)

dri'dr2'dri"dr2" (rsri
I
G

I
rs'ri')

J

X (b(ri' —ri")8(rs' —r2")V(r,", r2"g (ri", r,")

+Lv (1'2') —v (ri') ](xi'r2'
I
G

I
&1"&2")

X V(ri", xs")p(xi", r2")), (14)

and after employment of the original integral, Eq. (7),
Eq. (14) becomes

f(ri, rs) = e'"t'&too(r, )

dri'dr2'(rsri
I
G

I
r2'ri') ~ v(ri', rs')t('(ri', r, ')

f+ dri'dr2'(r, riI GI rs'ri')[v(r2') —v(ri')]

XQ'( i' 2')- "' "'q'o( 2')] ( )

It is shown in Appendix II that the following identity
holds:

(rsri I
G

I
r2'ri') (v (rs') —v (ri')) e'"""'

X yo(r2')dri'dr2'=e'""'ooo(r2). (16)

On using this relation, (15) reduces to

f(xi rs) = dri'dr2'(rsri
I
G I

rs'ri')

or

4'(ri xs)=

XI U(xi x2')+v(r2') —v(ri')]4 (xi', x2 ) (17)

zr, '1grs'(rsr,
I
G

I «2",')

X V(rs', ri')p(ri', rs'). (18)

On evaluating the asymptotic behavior in the coordi-
nate r2, we 6nd precisely the form in (1).Therefore, we

have succeeded in demonstrating that the same wave
function satisfying the condition (8) behaves according
to the assumption of Mott and Massey.

DISCUSSION

It is now possible to understand how the homogeneous
integral Eq. (18) can satisfy the boundary conditions
which characterize scattering problems. For example, if
we replace p (ri', r2') by the undisturbed wave,
e'"o "'too(r2'), under the integral in (17), and utilize

(16), the result is

p(ri, rs) = e* ' too(r2)

+ ' dri'drs'(rsriIGIr2'ri')V(ri', r2')

Xe'"' '"oo (x '). (19)

or more generally, if any approximation to the scattered
wave, 1t'(ri', r2') —e'"o "'too(rs'), is inserted into the
second integral in (15), it is clear that the incident as
well as the scattered wave is present. In other words,
Eq. (18) can be considered as an integral equation for
p(ri, r2) with the proviso that the form p=e'"'o'&too(r2)
+psastt obtallls.

That Oppenheimer's and Mott-Massey's exchange
amplitudes in Born approximation are in fact identical
follows by comparing (19), which yields Oppenheimers'
result, with (18)afterreplacingf(ri', r2')bye'~o "'too(r2')
in the inte gra 1, w ith the result

a fg
to. (xi) to.*(ri')e-'"-'2'Lv(rs') —v(ri')]

Xe'"""'po(r, ')dri'dr2' ~

Although the integral in this expression does not con
verge for a particular continuum state Ot, the sum over
the continuum values converges to zero. That th js lack
of convergence raises no difhculty is clear from what
has already been said concerning the necessity of corn
puting all scattering amplitudes from the scattered part
of the wave in (19) which does provide continuum

Bates, Fundaminsky, Leech, and Massey, Trans. Rpy. Spc.
(London) A243, 117 (1950).' S. Borowitz and B. Friedman, Phys. Rev. 89, 441 (19/3).

p(rl 12)= t, dri'dr'(rsriIGIr2'ri')V(r2', ri')

Xe '~""'
po (r2') ~ (20)

This equivalence is apparent from the vanishing as
r;+~ of the quantity appearing on the left side of (16).
A difference does exist, however, if inexact target wave
functions are employed. This is necessarily the case in
scattering from atoms other than the hydrogen atom,
and the consequent ambiguity has been labeled "post-
prior discrepancy. '"But, since the scattering events de-
rive from the scattered part of the wave function it js
evidenced in (19) that the Oppenheimer amplitudes are,
in principle, the correct ones. These are the quantities
referred' to as "prior" matrix elements. Furthermore, as
Borowitz and Friedman' have discovered, the Born
exchange amplitude for excitation to a continuum state
fails to converge when calculated from (20). Verifica-
tion is to be found in connection with the proof of (16),
which appears in Appendix II. To be more specific,
let us write the asymptotic form of the left side of (16),
namely,
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exchange amplitudes in Born approximation that Upon inserting speci6c expressions for the Green's
converge. functions, we obtain

CONCLUDING REMARKS

The theory of exchange scattering has been examined
without developing two solutions based upon the separate
expansions lf =P P (rt)ip (rs) and P'=P G (rs)d (rr)
which require the imposition of separate sets of
boundary conditions on F„(rt) and G„(r,). This lack
of symmetry for the enforcement of the boundary
conditions is objectionable since there is no assurance
that the two solutions are the same. To assume this
equivalence is precisely the assumption in (1), the
validity of which is now con6rmed. Such a difhculty
does not arise if the perturbation is taken to be the sym-
metrical one, V(I rt —rsl), for the Green's function for
the problem becomes correspondingly symmetric in r&

and r2. However, this procedure possesses the disad-
vantage of mathematical intractibility since the Green's
function is now constructed of Coulomb functions in
the coordinates of both particles.

Finally, it must be pointed out that the present
analysis may be extended to scattering from arbitrary
atomic targets with the result that the "prior" matrix
element is in principle the correct one for Born exchange
scat tered amplitudes.
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APPENDIX I

We consider the expression

I ~dr, 'drs'{ fE IIp(rs', rt') )(r—s« I
G

I
r, 'r, ') )

X(rr'rs'IGlrt"rs")—= ' «t'drs'{I &+~t"+Vs"

—~(rt') j(rsrtIGtrs'rt'))(rt'rs'IGI«"rs") (1)

The theorem to be proved is that the Laplacians are
Hermitian with respect to the functions (rsrrlGlrs'r&')
and (rr'rs'IGlrt"rs"). Therefore, treating the term in
V'&" alone, we apply Green's theorem and prove that
the resulting surface integral vanishes. The proof for the
operator V'," is identical. The surface integralt in ques-
tion is

8
Lim dSt') («'rs'IGI«"rs") (r&r&IGlrs'rt')
g1'-moo g 8, Bry

—(rsr& I
G

I
r&'r&') (r&'rs'

I
G I

«"rs") . (2)
Brj'

t Contributions of the pole in lrmr~)G(r2'rq'} are automatically
accounted for by the use of delta functions.

g»cr I && &1 I

&ikcr I r1r—r1" I

—p.*(r&')
~rr —4~lrr —« I

dSy . (3)

This quantity vanishes at once for the discrete y s, or
for the states for which k is imaginary. For the re-
maining case involving real k and the continuum y,
we rewrite (3) after introducing asymptotic forms given
by

(4)

where r0 is a unit vector in the direction of r~, and

sin (kr r'+ 8 ()
Lim ie,*(rr') = (2/ok) & Y("*(Hr', (pr'),
g yr-+to r'1

Lim ' g )
de expLs(Z —k')&lrs —rs'I jJ8 ~1 r 0

e»ar1'
X Yi"(f}r, ~ r)A, ~(«)

«'gk

k cos(k«'+b()
X Y~"*(et', ppr')

l
«" sinet'der'die, '. (6)

ry J

Here, we have dropped the term in 1/rr's which arises
from diGerentiating with respect to r&'. Clearly the
angular integration does not aGect the k or r~' de-
pendence. Consequently, the integration over the
energy may be examined directly. This integral is

Lim " k*dk expLs(E —k') &
I rs —rs'

I jap, )(r,)
r 1r-+at}-

0

Xcos(krt'+8q),

apart from irrelevant factors. It is not difhcult to show
the convergence of this integral. Consequently, the
entire quantity vanishes in the limit rj —+~. The
second term in (3) may be handled in the same way.
Thus the vanishing of (3) completes the proof.

8 ~
——ln(2kr)/k —argl'(l +1+ s/k)

Here the Coulomb function is normalized on the energy
scale, ~ = O'. We now consider the first of the two terms
in the surface integral. After incorporating (4) and (5),
the following result is obtained:
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APPENDIX II raI1 gemeI1 t

By using the Schrodinger equation defining the
ground state of the hydrogen atom we can rewrite the Lim g e o'~~~&i'~~ (r,)
expression on the left in (16) as -4pr(rp-rp'~ "~' "

(rgri
~
G (

rp'ri')
t

Vp"+ op —o (r i'))
Xe'"p'&'opp(rp')dri'dr, '. (1)

On adding and subtracting ko', the energy of the inci-
dent electron, (1) becomes

8
X ~I op~*(ri') e'"""'—e'""'"'—op~*(ri') dsi'. (S)

It is obvious that only the contribution arising from the
continuum-o. need be investigated. It is sufFicient for our
purpose to examine the expression to the right of the
limit symbol which is written as

(rpri (
G

(
rp'ri') )E+Vp"+Vi"—5(ri'))

Xe'" "'opo(ro')dri'dr '
(2)

1

Here E=k +popthe total energy of the system, and
—kp' has been replaced by Vi'i. On using (2), we observe
that the difference,

o~o(r2) — (rprl( G
~
r2 ri )LE Ho(rp' ri'))

Xe'"' 'o o(ro'), (3)

is an eigenfunction of the operator Hp(rp, ri). Verifica-
tion is immediate by operating from the left with
LE—Hp(rp, i'i)). This result is the physical basis for the
vanishing of (3), for Hp(rp, ri) contains no coupling
between electronic coordinates and thus cannot repre-
sent an incident and scattered wave as (3) appears to
suggest; nor can (3) describe a bound state in ro. To
proceed with the demonstration that (3) vanishes, we
6rst observe that V'2" behaves as a Hermitian operator
in the presence of the ground state pop(rp'). Therefore,
we rewrite the second term, in (3) as

X " kdk expLo(E —k')'lrp —rp'I)~. , i(ri)
Jo

pm@(8~ +~)

&ikp r1'. P

sin(kri'+hi) 8
g ik0 ~ rl

gk ri 8ri

cos(krl +8l) rl siii8i d81 d'pi ~ (6)
g kri'

I"i~*(8i', ppi')ikp cos8i'e"'"'"" "' "ri' sin8i'd8, 'dppi'
& S1'

=2mikor, ' ~ dx xPi(x)e'"p""*

Here we have employed (4) and (5) in Appendix I. On
choosing the direction of kp as polar axis, the angular
integrations for the 6rst term in the curly bracket is
carried out as follows:

LE—Ho(rp', ri'))(rpri~Gjrp ri )
=2%.LP[(x) xe@p""~)' =2pr(e'o'""+( —1)'e 'op"i')

Xe'"' "'q p(rp')dri'drp'

8
+ Lim drp'

~ q'o(rp') (rpri~G~rp'ri')
Brq'

8Xe'""'"—e"""'". 8ri'(rpri
I
G Iro'ri') dsi' (4)

after applying Green's theorem with respect to V'&".

On referring to (11), we observe that the term on the
left in (4) is just the incident wave, e'"""q&o(rp). We
now show that the surface integral vanishes when S~'
is allowed to recede to infinity. Let us rewrite this ex-
pression in detail. We have, after some minor rear-

In the third step we have performed partial integration
and retained only the leading term in 1/ri . with this
result the integral in (6) becomes

f
Lim k'dk exp| z(E k')&) rp ——ro'~)Ro, i(ri)
r1'-+~ Q 0

X (e+o~i'+ ( 1)ie—i on') sjn(kri'+8&) (g)

As in Appendix I, the integral is convergent so that (8)
vanishes in the limit r&'~~. By an exactly analogous
argument, the contribution of the second term in curly
brackets vanishes. Thus, the surface term in (4)
vanishes and the proof of the equality in (16) is con-
cluded.


