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Broadening of Microwave Absorption Lines Due to Wall Collisions*
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The broadening of microwave absorption lines due to wall collisions is calculated using a method intro-
duced by Johnson and Strandberg. Two types of absorption cell are studied, i.e., infinite plane parallel plates
and a circular cylinder, each in a region of uniform microwave field. The usual assumption that the half-
power half-width is given by ay =1/2er, where r is the mean time between collisions is in good agreement
with the detailed calculations of the present work which show that the error in the line width as calculated
by the above expression is not larger than 30 percent. Experimentally observed line widths agree with the
predicted values.

1/T = (A/V) (kT/2s. m) &, (2)

with A the total area, V the volume of the absorption
cell, and m the mass of the molecules.

However, Johnson and Strandberg' have shown that
in general the line shape will dier from that of a
Lorentz line and will depend on the geometry of the
absorption cell. They investigated the case of an ab-
sorption cell consisting of the space between two infinite
parallel planes separated by a distance u. However,
their value for the line width is several times too large
and is based on an incomplete evaluation of an integral
which appears below in Eq. (5).

We summarize their argument up to that point.
Assume that the molecules make transitions between
states with energies E; and E;. In an electric field

~~NE of the eRects which limits the resolution ob-
tainable by microwave spectroscopy is broadening

of absorption lines due to collisions between absorbing
gas molecules and the walls of a containing cell. Several
estimates of the magnitude of this type of line broad-
ening have been made. ' 4 Since the most recent and
most detailed investigation4 disagrees with earlier
estimates and with some experimental observations, it
seems worth while to discuss this question once more.
It will be shown below that the earlier rough estimates'
of line broadening due to molecular collisions with walls
are actually not far from correct.

In the earlier investigations' ' it was tacitly assumed
that this line broadening was Lorentz-shaped with a
half-power half-width

ay= 1/2prr,

where ~ is the mean time between collisions given by

described by
E=O for 3&0,

E=Ep sin(&ot) for t)0,
the increase in the probability of finding a molecule in
the upper state j is given' by

I ~, (t) I

s —
I ~, (O) I

s= (n/s)'(I o;(0) I

s —
I o, (0) I

s)

&&sin'(-,'At), (3)

where Ia, (t)I' and Ia;(t)I' are the probabilities of
finding a molecule at the time t in the states i and j,
respectively; 0=pe;;Ep/k, and tee, ; is the matrix element
of the Z component of the electric dipole moment
between the states i and j; kooo ——E,—E;; Bee=a, o

—u,.
s'= (5&v)s+O'.

I a, (0) I' is given by the Boltzmann dis-
tribution by virtue of the assumption that a collision
with the wall returns the molecule to thermal equi-
librium. Now let f(t) be a distribution function such
that, if there are X molecules, then

de=Sf(t)dt

is the number which had their last collision between the
times t and t+dt in the past. The power attenuation
constant is then given by

keep p d
dtf(t)-(I ~;(t) I

s-
I o;(0) I'),

(S) 4p dt

where p is the density of molecules and (S) is the time
average of the Poynting vector.

In the case of plane parallel plates separated by the
distance a, f(t) is such that Eq. (4) becomes

~= (B/e) L1—exp( —1/i') j»n(ei)di

where e=zP, P=a(etp/2kT)& and
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0,
approximately in closed form~ if 1—exp( —1/i') is

~ I. I. Rabi, Phys. Rev. Sl, 652 (1937).
e W. Magnus and F. Oberhettinger, Formetl end Settee fNr dte

speziellen Funktionen der muthematischen I'hysik (J. Springer,
Berlin, 1943}.

ii59



M. DANOS AND S. GF SCH WIN 0

lisions, giving

Ai (wall collisions) =i1/27rP=0. 1(1/a) (2kT/m) &. (7)

A Lorentz line given by 1/(e'+g') (curve 3, Fig. 1)
with g=0.6 gives the same line width as Eq. (6) down
to a power level PQ = 0.2. This, for example, corresponds
to a power level of roughly 10 ' watt/cm' for OCS at
room temperature and for a plate separation equal to
one cm. With decreasing power level, i.e., PQ—+0, g~0.

The error introduced by the approximation used in
going from Eq. (5) to Eq. (6) is such that the actual
line width is no more than 30 percent larger than the
line width given by Eq. (7).

Returning now to Eqs. (1) and (2) and specializing
to the present geometry, we have

I

FIG. 1. Line shapes due to wall broadening; infinite parallel
planes. Curve 1:n/B as function of zP; curve 2: e/8 as function
of Philo at a power level where PO=0.2; curve 3: Lorentz-line with
2~Pd v=0.6 as function of ~9.

replaced by 1/(1+f'2). The result so obtained is exact
both for &~0 and ~—+~ and has its maximum error
around &=0.5. The maximum error is less than 30
percent. Kith this approximation the power attenuation
constant is

n= (8/2e) I e—' Ki(e) —e' Ei(—e) j, (6)

where Ki(e) is the exponential integral. 6t

n varies as 1/e' down to e=1.5. I As a matter of fact
any nonadiabatic collision process will yield a line
shape which varies asymptotically as 1/(8&v)'.j For
e—+0, the attenuation constant goes logarithmically to
in6nity (see curve 1, Fig. 1).This last feature makes the
definition of a line width ambiguous for vanishingly
small power. However, in the presence of a 6nite
amount of power the singularity is removed because
e&PQ. Under this condition the line width is well
de6ned by Eq. (6) (plotted as curve 2 in Fig. 1 for
PA=0.2) and a measure of the contribution of wall
collisions to this line width can be obtained in the
following manner. Ke de6ne a quantity p such that

2vrPhi = (P'0'+vP)'*,

where Av is the half-power half-width. We 6nd that for
PQ&0.2, q is essentially constant and has the value
q=0.6. This term g appearing in addition to the power
term PQ is properly identified as arising from wall col-

) Note added in proof.—A similar result has been obtained by
G. S. Newell, thesis, Princeton University, 1952 (unpublished).

a result only 10 percent smaller than the value given
by Eq. (7).

As can be seen from Eq. (3), the absorption of
energy by a molecule at resonance and for vanishing
power level increases proportionally to the time. This,
together with the fact that there are too many mole-
cules with infinitely long times of Right, gives rise to
the singularity of n at the origin. As this singularity is
only logarithmic, one is led to expect that any reduction
in the long times of Right would remove it. Such a
reduction can be achieved for example, by the addition
of side walls somewhere at a finite distance. Ke shall
therefore investigate the simplest case of this kind,
which is that of a circular~cylindrical absorption cell
located in a region of a wave guide where the electric
field is essentially uniform.

For this calculation it is easier to use directly the
expression, Eq. (3), which after multiplication with h&o

gives the energy W(/) a molecule has absorbed between
two collisions, if one speci6es t as the time of Right
between collisions.

If Ã is the number of molecules colliding with the
wall per unit length of the cell per second, and F (/) the
distribution function of the times of Right from their
last collisions of those molecules which at the present
time are colliding with the wall, then the power ab-
sorbed per unit length of cell is

aP= iVF(t)W(t)Ch.

The power absorption coef6cient o. is therefore

(I~, (~) I

—
I
a, (0) I

)F(~)d~,
ir2P(S) & o

where E. is the radius of the cell.~

7The connection of'P(t) in Eq. (9) with f(t) of Eq. (4) can be
established by integrating Eq. (4) by parts.
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The function F(t) depends on the geometry of the
absorption cell and in our case can be found as follows.
Since the length of the cell in the x direction is assumed
infinite only components of the velocity of the molecules
in the y and s direction contribute to a motion ap-
proaching the walls. Let 8 be the projection on the

y—s plane of the angle between the normal to the wall
and the direction of motion of a molecule colliding with
the wall. If v is the projection of the velocity on the

y
—s plane then the probability for such a collision, dm is

dtv dA cos8v exp( mv'/2—kT)d8vdv,

where dA is the surface element. The time of Right for
the considered molecule is given by

t = 2R cos8/v.

Expressing v in terms of t and inserting (3) in (9) we
find that the integral in Eq. (9) is proportional to

1,0

~ n/2

I= I dt d8 cos48 sin'(/tt/2)t 4 exp( —o' cos'8/t'),
~0 ~0

(10)

TABLE I. Comparison of line width parameters Q Lsee Eq. (14)g
of microwave absorption lines broadened by wall collisions.

Parallel planes
Circular cylinder

Elementary
theory

0.09
0.18

Present
work

0.10
0.20

Fio. 2. Line shapes due to wall broadening in a circular absorp-
tion cell; curve 1:n/n(0) as a function of sa", curve 2: Lorentz line
with the same peak absorption and half-width as a function of f~o.

half-power half-width due to wall coHisions, of
where o'= (2R)'m/2kT. By substituting

$= t/(o cos8), X=~o,
we obtain

1.25 1 t2kTi'
av=

2ZEm l
(13)

)
CO ~ ~r/2

dP exp( —1/P)P 4)
0

d8$1- cos(P. cos8)7

= (v./4o') d$ exp( —1/P) +4Hi(P, ),
~0

Q (2kT~'
Lt, m )

(14)where Ht(x) is the Struve-function of the first order. '
Using the expansion,

For purposes of comparison, a Lorentz line having the
same peak absorption and the same half-width is
plotted as curve 2 in Fig. 2.

The results may be summarized in the following way.
Let us express the half-width of the line broadening due

(11) to wall collisions by

2 x' x'
Irr(x) =———+

x 3 45

one Ands for the peak absorption

rr (0) (64/3)v 5/s (psp/r
~
p8 ' '

~

s/ck2 )
)(' (e

—Ei/sz'/Q . e Eg'/sT) (12)—
The shape of the line has been found by numerical
integration (plotted as curve 1 in Fig. 2), yielding a

where Q is a numerical factor and L is a length charac-
teristic of the absorption cell. Specifying L, then Q as
calculated both by the elementary theory (Eqs. (1)
and (2)$ andby the present work, are listed in Table I.

As seen from the table, the agreement between the
elementary and the more exact calculation is sufficiently
good to justify the use of the elementary theory is
calculating line width due to wall collisions. The values
of the line widths calculated this way can be expected
to have an error of at most 30 percent.

Line widths regularly observed on a high resolution
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microwave spectrometer at the Columbia Radiation
Laboratory have been in general agreement with the
above calculations. As an example, we cite the recent
experimental work of Gunther-Mohr and White on an
additional fine structure in the ammonia quadrupole
spectrum, ' where the measured total width at half-
maximum for NH3 at dry ice temperature in X-band
Stark guide was found to be 68+5 kc/sec. The calcu-
lated Doppler broadening and collision broadening for
NH3 under these conditions are, respectively, 2hvD, »&„
= 60 kc/sec and 2hv„n = 25 kc/sec. Born has tabulated
the resultant shape for a Lorentz line broadened by
Doppler effect. ' His tabulated results show that the

' G. R. Gunther-Mohr and R. White (to be published).
M. Born, Optik (J. Springer, Berlin, 1933},Table 38, p. 486,

and p, 431 and the following.

total line width is given to a good approximation by

~~t:(~".„.,)'+(~ .. )']i. (»)
Extrapolating from the results of the present paper,
one is led to expect that in practice, quite generally
(and at least for a rectangular wave guide) the line shape
of broadening due to collisions with the wall will be
suKciently close to that of a Lorentz line so that ex-
pression (15) can be used. Thus the combined theo-
retical line width is 2dv=(60'+25')&=65 kc/sec in
agreement with the observed value.

We wish to thank Professor Townes for his active
aid. %'e also wish to thank Professor Strandberg for an
interesting discussion. The help of Mr. George Dous-
manis who performed the numerical calculations is
gratefully acknowledged.
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The theory of the polarizability of the deuteron in a uniform electric Geld is developed. Vsing the proper-
ties of the deuteron Green's function, we obtain an expression for polarizability of the deuteron which
exhibits its dependence upon the spin orientation of the deuteron. This dependence arises from the inclusion
of a tensor force in the neutron-proton interaction. In terms of the magnetic quantum number m, with
respect to the direction of the electric Geld, the polarizability a is o.as+ (3ms —2)nsn+ (3m —2) ann. When
Hulthdn wave functions are used for the deuteron, nap is found to be approximately 0.56X10 "cm' and
n~z 0.027)&10 ' cm'. The applicability of the theory to intramolecular interaction measurements and
deuteron scattering experiments is discussed.

I. INTRODUCTION

HE particles which constitute the deuteron do not
all have the same ratio of charge to mass so that,

because of reorientation and stretching, the deuteron
will exhibit a polarizability with respect to an external
electric field.

It has been pointed out earlier by Ramsey' that this
polarizability of the deuteron should give rise to a
measurable departure from Rutherford scattering in
certain cases where deuterons are scattered by heavy
nuclei. In addition, the dependence of the deuteron
polarizability upon its spin orientation should also give
rise to a small change in the deuteron quadrupole
interaction in D2 and HD as a result of the diGerence
is amplitude of zero-point vibration in the two mole-
cules and consequently of the oscillating electric field
at the deuteron.

In this paper, we calculate the polarizability of the
deuteron in an adiabatically applied uniform external

*This work was partially supported by the joint program of the
V. S. OfFice of Naval Research and the U. S.Atomic Energy Com-
mission.

' N. F. Ramsey, Phys. Rev. 83, 659 (1951).

electric 6eld. The electric scattering of the deuteron will
be examined in a subsequent paper.

The polarizability of a nucleus is related to its
polarization energy 5'„, in an adiabatically applied,
uniform electric fMld b, by the equation'-

n= —2W„/h . (1)
The 8"~ is the energy of the second-order Stark eBect
arising from the perturbation

V= —-', es8, (2)

where s is the component along the direction of the
electric 6eld 8 of the relative distance r=r„—r„of the
proton from the neutron. The factor 2 enters because
we are concerned with the displacement of the proton
with respect to the center of mass of the deuteron. The
polarization energy is then

W = e P Q ( [ 0[tEz) ( ( I( z)/0(E Ep) (3)
n p-'0

where g' „p represents the sum over all the discrete
and continuum intermediate states except the ground

' D. Bohm, Quantum Theory (Prentice Hall, Inc. , ¹wYork,
1951}p. 461.


