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Comyutation of Mean Debye Temyerature of Cubic Crystals
from Elastic Constants*
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An improved method is presented for computing the mean Debye characteristic temperature of cubic
crystals from the elastic constants. It is based upon an evaluation of the distribution in solid angle of the
roots of the cubic equation which describes the propagation of plane acoustic waves in the crystal, and
otherwise employs a device due to Hopf and Lechner. The end result is given in simple closed expressions
which present no computational difhculty. The uncertainty in the computed value of the mean Debye tem-
perature due to the approximation made in the method is of the order 0.1 percent when the anisotropy
factor of the crystal is as large as 4. .

in which the v; are the three velocities of propagation
of plane elastic waves in the crystal, averaged over all
directions in the crystal. A given direction of propaga-
tion in a cubic crystal is conveniently specified by its
direction cosines, n, P, y, with respect to the principal
crystal axes. The corresponding propagation velocities
are then given in terms of the elastic constants, t,-;f„of
the lattice by the expression

z4= (psi c44)/(cll c44)) (3)

provided the z; are the three real roots of the cubic
e,quation, '

s' —zs+ (1—E2)I s—(1—Ms+M') ~=0 (4)
where

E= (crs+c44)/(crt —c44), I' =cs'p'+ p'p'+y'n',

~—~2P2~2

It follows immediately from Eqs. (2) and (3) that

INTRODUCTION

'HE mean Debye temperature, O~z&, of a cubic
crystal is given by the expression

0" n= (h/k)'v~{3K/4rV}l, (1)
I

where X is the number of atoms in volume V of the
crystal and e is de6ned by the formula

3/e s=p;(1/e„,.s), 2=1, 2, 3, (2)

mate evaluation of the integral which is, briefly, as
follows: The function f(s) = (C+s) l is replaced in the
interval 0&z(1 by a fifth degree polynomial in z. The
coefficients of z in this polynomial are obtained by the
Lagrange interpolation method. This amounts to
forcing the representative function through the points
f(0), f(1) and four equally spaced intermediate points.
The sum in the integrand then appears as a series of
sums of powers, up to the fifth, of the roots of the cubic
Eq. (4), multiplied by numerical coeKcients. But such
sums of powers are directly expressible in 'terms of the
coeScients of the cubic, which are constants apart
from the quantities F and X. Accordingly, the approxi-
mate evaluation of the integral requires only com-
putation of the average values of various functions of
the direction cosines, u, P, and y. These averages are,
of course, the same for all cubic crystals and are given

by Hopf and Lechner.
Three defects in the foregoing method are apparent:

first, it is extremely laborious, and the labor increases
rapidly as higher powers of z are introduced in the
representative functions second,

'
no cognizance is

taken of the actual range of values of the roots or of
their distribution in solid angle; third, the method
contains no means for ascertaining the accuracy of the
result obtained. In accordance with Eq. (4), both the
range and distribution of the roots depend solely on
the quantity E. It is shown hereafter than if EC& 1, two
of the roots are negative and the third is greater than

3 p
' & p'~ 1 dQ

(S)
e~ -crl c44- s - & (C+se) - 42r

where C=C44/(crt —c44), and dQ is an element of solid
angle. The present paper is concerned with the evalua-
tion of the integral in Eq. (S).

Hopf and Lechner' devised a method for the approxi-

TABIK I, Values of the constant E, and the anisotropy factor, A,
for various cubic crystals. '

K A

Al 1.13 1.18
W 1.01 1.01
XaCl 0.70 0.69
CaF2 0.60 0.57
KI 0.38 0.37
KC1 0.37 0.37

Fe 2.29 2.32
Ni 2.12 2.63
Cu 2.09 3.21
ZnS 1.98 1.16
LiF 1.93 1.69
Mgo 1.79 1.42

Ag
Pb
CueAu
Au
C
NaBr

1.74 2.88
1.64 3.89
1.63 2.52
1.40 2.91
1.37 1.60
1.36 1.37~ Publication assisted by the Ernest Kempton Adams Fund for

Physical Research of Columbia University.
f Now at Corning Glass Works, Corning, New York.
' M. Born, Atomtheoree des festett Zgstartdes, Enc. Math. Wiss.

{Teubner, Leipzig), Vol. 3, p. 648.
~ L. Hopf and G. Lechner, Verhandl. deut. physik. Ges. 16, 64

(1914).

a Most of these are computed with values of the elastic constants tabu-
lated by R. F. S. Hearmon, Revs. Modern Phys. 18, 409 (1946).

3 'Fuchs has employed an eighth degree polynomial. See Proc.
Roy. Soc. (London} A153, 622 (1936}and A157, 444 (1936).
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Fyo. 1.The basic triangle, showing a line of constant F and a line
of constant y.

1 for all directions in the crystal; if E&1, all three
roots lie between 0 and 1, but in general two lie close
to 0 and the third close to 1. Approximate values of E
for various cubic crystals are given in Table I: it will
be noted that E)1 for all metals and many other
crystals. Evidently, an approximation function 6tted
in the interval 0 to 1 is ill-suited to represent the be-
havior of these materials.

Obvious improvement in the method of Hopf and
Lechner is gained if f(s) is represented by a polynomial
in the intervals in which the roots actually lie, as sug-
gested by Durand. But the accuracy of the result
remains uncertain, and also the optimum degree of the
polynomial to be employed, and the choice of the values
of s to be used in the computation of its coefficients.
A means for the removal of these uncertainties is sug-
gested by the following analysis.

Let the integral in Eq. (5) be denoted by F and
written in the form

1
l

1 dQ;
V=—P d»;,

4s ' ~z, ((:+s;)& ds;

where, now, (dQ;/ds~)ds; is the element of solid angle
associated with values of the ith root lying between s;
and s;+dz;. Evidently, the values of s chosen for com-
putation of the representative function should include
those at which maxima in the functions dQ;/ds, occur.
Furthermore, if the three distribution functions, dQ,/ds;,
are known, a direct measure of the accuracy of the
approximate method follows from comparison of values
of I" obtained when the true and representative func-
tions are, respectively, inserted in the integrand. The
optimum degree of the representative polynomial is
then the lowest that yields a desired accuracy. Ac-
cordingly, the matters of immediate interest are, first,
the specification of the ranges of the roots in terms of E,
and second, the determination of the functions dQ;/ds;.
Analytical expressions for the distribution functions in
terms of E have not been obtained (otherwise no

4 M. A. Durand, Phys. Rev. So, 449 (1936}.

TABI a II.Values of the roots of Zq. (4) at the vertices of the basic
triangle, Fig. 1.

F
x
S1
&2

33

A

0
0
1
0
0

1/3
1/27

$(1+2E)
k(1-E)
$(1-E)

1/4
0

~(1+E)
~(1-X}

0

5 E. Goens, Ann. phys. 29, 279 (1937}.Formulas appropriate
to crystals of the tetragonal and hexagonal systems are also given.

approximation would be necessary), but a numerical
evaluation thereof for a particular crystal permits a
satisfactory resolution of the questions raised in the
foregoing.

DESCRIPTION OF THE METHOD

Consider a unit vector drawn from the origin of a
rectangular coordinate system whose axes lie parallel
to the principal crystal axes. The direction of this
vector may be specified by the polar coordinates, 0, q,
of its point of intersection with a unit sphere centered
on the origin. In consequence of the crystal symmetry,
the value of I" is 48 times the value of the integrals in
Eq. (5) extended over the solid angle subtended by the
right spherical triangle whose vertices lie at the points
0=90', @=0', fi=54'45' (cos'0= —), y=45'; 8=90',
@=45 . Figure 1 is a plan drawing of this triangle, in
which the abscissas are proportional to q and the ordi-
nates to the compliment of 8. Goens' has given closed
expressions for the three roots of Eq. (4) at all points
on the boundary of the triangle. Expressed in terms of
E, these are as follows.

For the boundary Ac,

st ss —-', {1&(cos'2y+E' sin'2y) &}, » ——0; (7)

for the boundary AB,

st, ss ——4((E—1) sinQ+2L1&F(E) j},
»= s (1—E) s111 lp,

where

F(E)= f —s4(5E+3) (E 1) sing-
+ (4E+3)(E 1) sing+1} &, —

and f is the polar angle measured along AB from A.
For the boundary BC the formulas are those of the

boundary AB with 8 substituted for f and», ss inter-
changed. In these expressions s~ is the root correspond-
ing to the longitudinal wave, is always positive, and
sj ~~1 according as X~~1.The roots 2'2 and 2'3 correspond
to transverse waves, are negative or positive according
as E~1, and ls, l ~&I»l.

The values of the roots at the points A, B and C
are given in Table II. It will appear presently that these
values determine the ranges of the roots. H E)1, the
negative roots lie between st(1 —E) and 0, and the
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positive root between 1 and -';(1+2E). If E&1, the
smaller roots lie between 0 and —,

' (1—E), and the larger
between —', (1+2E) and 1.

The computation of dQ/ds for each of the three roots
is based upon a graphical method for the solution of the
cubic Eq. (4.)s The substitution s=y+-,' reduces this
equation to the form

g~ A

where
y'+ py+q=o (9)

p = (1—E')I'—-'„

q= -'(1—E')I' —(1—3E'+2E') x—2/27. (10)

In accordance with Eq. (9), p varies linearly with q
for constant y. If p, q are regarded as the orthogonal
coordinates of a point, then the curve y= real constant
is a straight line, such as the line AC of Fig. 2, which
corresponds to y= —~~(s=O). The envelope of this
family of lines is the discriminant curve of the cubic,
the equation of which is

4p'= —27q'.

The discriminant is shown as the curve )VS of
Fig. 2. All points corresponding to values of p and q
that yield real roots of Eq. (9) lie on, .or within the
cusp of, this curve. Associated with a point on either
branch of the discriminant is a double root corre-
sponding to the tangent to that branch, and a single
root corresponding to the tangent to the other branch,
both tangents being drawn through the point. The
three real roots associated with a given point within
the cusp are those associated with the three tangents
to the discriminant, drawn through the point. They are

FIG. 2. Graphical solution of the reduced cubic,
Eq. (9) (schematic).

'C. Runge, Graphical Methods {Columbia University Press,
New York, 19j.2), p. 59.

FIG. 3. Detail of Fig. 2 (schematic).

the respective double roots associated with the three
tangent points on the discriminant. The values of the
double roots at points on the discriminant are given by
the expression

y= +(—p/3)', (12)

where p is the abscissa of the point and the sign of y is
same as that of the ordinate, q. It follows that, for
di6erent points within the cusp, the absolute values of
the real roots are monotonically increasing functions of
the absolute values of the abscissas of the points of
tangency with the discriminant.

In virtue of Eqs. (10), the triangle of Fig. 1 can be

mapped on the p—
q space of Fig. 2. The p, q values cor-

responding to points A and 8 satisfy Eq. (11) and q is
negative, hence both lie on OM. One root corresponding
to point C and, by Eq. (7) to all points on AC, is
y= —-', (s=0). Hence the line AC of Fig. 1 maps as the
tangent AC of Fig. 2. The boundary AB of Fig. 1

maps as the dotted curve AeB of Fig. 2. (Not all values
of p and q that yield real roots of Eq. (9) are consistent
with Eqs. (10), because the ranges of possible values
of r and x are limited to ~~ and 1/27, respectively. ) Now
F and x may be regarded as curvilinear coordinates of
points in the triangle ABC of Fig. 1. Hence, through
Eqs. (10), every point in this triangle can be mapped
in the triangular area AnBC of Fig 2, and vice versa.

It should be noted that the triangle AeSC of Fig. 2
corresponds to E& j.. H E&1, the point A remains
unaltered, but point C lies on Aes and point 8 on AO.
If E=O, C coincides with m and 8 with 0; if K=-,', C
lies on the p-axis.

Earlier remarks concerning the signs of the roots and
their ranges are immediate deductions from Fig. 2. For
example, it is evident that, for E&1, the maximum
positive root corresponds to the tangent to OX through
8, and the negative root of greatest absolute value cor-
responds to the tangent through C to OM prolonged.

The reader should now imagine that Fig. 1 is modified
by the addition, within the triangle, of a grid of coor-
dinate lines of constant I' and constant x. (One each is
shown in the figure. ) It follows from the foregoing that
to any area within the triangle AeBC of Fig. 2 there
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corresponds an area in the triangle ABC of Fig. 1,
which can be mapped with the aid of this, coordinate
grid. The value of this area is proportional to J'd&dpp.

Suppose, next, that the abscissa of every point of the
grid is reduced in the ratio sin8: i. Then any area
mapped on the shrunken grid is proportional toJ' sin8dody, i.e. to the solid angle associated with that
area. Hence to any area in the triangle of Fig. 2 there
corresponds a solid angle measurable with a planimeter.
This is the basis of the present method for measuring
dQ/ds, which will now be described.

A portion of Fig. 2 is redrawn, schematically, in Fig. 3.
Here ae is the line corresponding to the (negative)
double root y~ on AM. It must be recalled that, in
accordance with the present convention regarding the
negative roots, (zp~ ) (sp~. Now for all points in the
area AebuA, tangent points of both tangents to AM lie-
between A and P, hence, by Eq. (12), both negative
roots corresponding to such points are less than y&.
But for all points in the area abcdeCc the tangent point
of only one tangent, namely that corresponding to the
smaller root, lies between A and I', i.e., only the root sa
is less than y~. Thus the solid angle, 0, associated with
roots s2 less than y& is that corresponding to the area
AebaA, while the solid angle associated with roots s3
less than yJ is that corresponding to the area AnbcdeCA.
Furthermore, let the dashed line, Nt, be the tangent to
OX corresponding to the (positive) double root yo.
Then the solid angle associated with roots s~ less than

yq is that corresponding to the area AetNA.
Therefore, to obtain the solid angles Q~, Q~, 03 asso-

ciated, respectively, wigh roots s&, sp, sp, less than preas-
signed values it is necessary only to plot the corre-
sponding straight lines ae and Nt on the shrunken grid
of Fig. 1 and planimeter the appropriate areas. Curves

Hence the contribution of this region to the quantity
7 remains 6nite and computable.

The curves of Fig. 4 suggest that if a fifth degree
polynomial is adopted to represent f(s), then suitable
values of s to be used for computing the coe%cients of
this polynomial are -', (1—E), -', (1—E), 0, 1, -', (1+E)
and —',(1+2E).These lie at the termini of the resultant
distribution function Z;dQ, /ds;, and at or near its three
maxima. A significant computational advantage accrues
from this choice of s values, for then an analytical
solution of the resulting five simultaneous equations
yields closed expressions for the polynomial coeKcients
and, with the aid of the averages of the appropriate
functions of F and x previously mentioned, a closed
expression for the approximate value of F itself, all in
terms of the single parameter E. Thus, let Lf(s))s
denote the representative polynomial given by the
expression

Lf(s) jz= ap+ajs+aps +ups +ups +ups
and

Then

{2Lf(s') js)dQ/«.
4t) i

(13)

of 0; as function of s; are plotted, and graphical dif-
ferentiation yields the functions dQ;jds;.

The procedure described in the foregoing has been
completed for the value X=2.29 of crystalline iron,
with the result shown in Fig. 4. With regard to dQp/dzp,
separate analysis shows that, in the neighborhood of
s3——0,

dQp pr 1+E
dsp 8 (1+2E)(1—E)sp

where

a 4 = (1/x') {2.2Sm~ jbd 9mp/beg+40—.5m p/cdf 9m 4/bcf+ 20—.25mp/ceg },
a4+ (2+ px) up= (1/x) {3m,/bd+3mp/xbc 405mp/—xdf 3m4/bcf —},
ap+2a4+ (x'—x+3)ap= (1/x) {m4/b+ (mp —m4)/bc),

ap+ (2—x)ap+ (x' —3x+3)a4+ (2—x) (x' —2x+2)ap ——(1/x) {mg—(m4/b) ),
a&+up+ ap+a4+ap= m&,

~o= mo,

mp ——f(0),

m~=f(1) —mp,

m, p f(x) mp,
—— —

mp ——f(-;x)—mp,

m4 f(1 x) mp,
—— — —

m4 =f(1 4x/3) mp, — —

x=-', (1—E),
b=i —x

c=1—2x

d = 3—.2p)

e=3—4x,

f=3 Sx, —
g= 3—7s.

Furthermore,

I'a ——

Sap�

(16m~be)/385+ —(Sap+ 2a4) (16x'b')/21

+ (Sa4+4a4+ 3ap) (4x'e)/105
(Sap+4a4+3ap+2a&) (4xb)/5+m&+3mp. (14)

The curves of Fig. 4 appertain specihcally to a crystal
for which K=2.29. However, certain characteristics of

these curves are independent of the value of K, and
these both justify the application of Eq. (14) to crystals
of arbitrary E and permit a facile computation of
approximate distribution functions for such crystals.
Thus, the maximum of dQ&/ds& always lies at the value
of 2'~ corresponding to 34 of the interval of s~, the maxi-
mum of dQp/dsp always lies slightly beyond the value of
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' 1.0 Z, 1.2 1,6

Fn. 4. The distribution functions for E=2.29.

I.8

eter. The observed discrepancy is 0.23 percent for the
functions of Fig. 4, and this is a reasonable estimate of-
the intrinsic inaccuracy of the graphical method em-
ployed. The procedure for obtaining the approximate
distribution functions of other crystals from those of
iron, described at the end of the preceding section, is
verified by application of formulas (a) and (b) to the
data of lead (E=1.64). The discrepancy is 3.3 percent.

The percent error in the computed mean 0'n intro-
duced by the substitution of Fz for I' in Eq. (5) is one
third of the percent difference between these two quan-
tities. The difference itself is given by the expression

48
(f(»*)—Pf(»;)j~}(~Q*/«*) c«', (16)4; J„.

z2 corresponding to 3 of the interval to z2, the maximum
of dQ~/«» always lies at »~ ——0, and its minimum, which
is zero, always lies at the value of s& corresponding to —,

of the interval of s2. Furthermore, the interval of z~ is
4/3 that of »2, irrespective of the value of E, and all
three intervals are proportional to ) E—1(.Lastly, the
areas under all three curves must always equal 4»./48.
Hence the distribution curves for any cubic crystal are
approximately those obtainable from Fig. 4 by altering
the abscissas of all points in the ratio ( E—1 t/(2. 29—1)
and altering their ordinates in the inverse ratio.

If the curves of Fig. 4 are replotted with a single
scale of abscissas, so that those for z2 and z3 lie to the
left of z=0, and that for s~ lies to the right of z= I, then
the distribution functions for crystals with E&I are
similar, in the above sense, to those obtained by re-
Rection of the z2 and z3 curves in the plane z=0 and
reflection of the»t curve in the plane»= 1.The remarks
of the preceding paragraph are applicable without
modilcation to these curves.

IMPROVEMENT OF THE ACCURACY
OF THE METHOD

The accuracy of a tentative set of distribution func-
tions can be readily ascertained as follows. Consider
the two expressions

(~) —2 " Pf(»')3~(~Q;/«;)«',

evaluated with a planimeter. Clearly approximate dis-
tribution functions, such as those of lead cited in the
preceding paragraph, are entirely adequate for use in
the formula (16), since the error so computed is a few
percent at most. A means is therefore available whereby
the approximate value, F~, of T for whatever crystal
can be corrected, so that the residual error in the com-
puted mean 0'z& due to the approximation is entirely
negligible.

As» approaches —C, the function f(») approaches
in6nity, hence the representation afforded by $f(»))z
and the accuracy of the approximation become poorer.
Now the minimum value of », »(min), is'»(1 —E) and
1+»(min)/C= (ctt—ct2)/2c44 ——1/A, where A is the
anisotropy factor of the crystal. The correction, com-
puted as a function of 1/A with formula (16), which is
to be added to the value of Fz obtained with Eq. (14),
is given in Fig. 5. When the value of I'g thus corrected
is substituted for the integral in Eq. (5), the associated
residual uncertainty in the computed mean 0~& is of
the order 0.1 percent, which is at least an order of mag-
nitude less than that introduced by the experimental
uncertainty in the difference factor (c»—c44) of Eq. (5).

APPLICATIONS OF THE METHOD

Griineisen and Goens7 devised an alternative method
for the evaluation of v . In this method the vertices of
the basic triangle are the points 8=0; 8=90', q =0;

48
(b) —Q [f(»~)jg(dQ;/«;)od»;

Here the range of each integral is the range of values
of the indicated root of the cubic Eq. (4), (dQ;/«~) is
the tree distribution function for this root, and
(dQ;/«;)o the computed distribution function. Then
(u) is identical with the quantity Fz and is evaluated
exactly by Eq. .(14). The accuracy of the computed
function follows by comparison of this 6gure vrith that
obtained from expression (b) with the aid of a planim-

O $ I/A O4

Fzo. 5. Correction to be added to the value of F'g
computed with Eq. (14).

~ E. GrOneisen and E. Goens, Z. Physik 26, 255 (1924).
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8=90', @=45'.Values of s; at angular intervals of 15'
on the boundary are computed with Eqs. (7) and (&);
values at the same intervals on the meridians io=15',
rp=30' are obtained by solution of the cubic Eq. (4).'
The corresponding mean velocities e, are computed
with the trapezoidal formula, and then e with Eq. (2).

SA. Zavrotsky, Tablas poro, la Resolucion de les Ecuuciones
Cubicas (Editorial Standard, Caracas, 1945), contains the real
and complex roots of the reduced cubic [Eq. (9)) to six figures,
for —100&P,q &+100, with the interval unity.

Rohl obtained by this method the mean Debye tem-
peratures 158'K for gold and 212'K for silver at room
temperature. ' The present method appLied to RohL's dttta,

yields the values 157.6'K and 211.3'K, respectively.
In conclusion, the authors gratefully acknowledge

their indebtedness to the Watson Scientific Computing
Laboratory of Columbia University for an especiaDy
prepared, six-place, differenced table of values of x &.

s H. Rohl, Ann. phys. 16, 887 (1933).
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Defiection of High-Energy Electrons in Magnetized Iron*

STEPHAN BERKo AND FRANK L. HEREPoRD
Uaesersity of Vsrgeweo, Chorlottesmlle, Vergento

(Received March 23, 1933)

High-energy electrons are scattered in magnetized iron. From a shift in the multiple scattering curves due
to the reversal of the magnetic 6eld, the e8ective 6eld b, ff acting on electrons traversing ferromagnetic
media is computed. Such an e6'ective 6eld is dependent on the short range forces between beam electrons
and spin-aligned ferromagnetic electrons. The measurements show an effective 6eld equal to the macro-

scopically measured Aux density B.

HE question as to the effective magnetic held
acting on charged particles traversing a ferro-

magnetic medium was first raised in connection with
cosmic-ray deQection experiments. ' The most complete
theoretical discussion of the problem is given by
Wannier, ' who translated into quantum-mechanical
language the objections, first raised by Swann' in
classical terms, against the supposition that the eGective
6eld is necessarily equal to the macroscopically defined
Aux density B.%annier's theoretical conclusions can be
summed up as follows.

Since the magnetization in a ferromagnet is due to the
electron spin, the macroscopically dered Aux density
B is the result of an average over all elementary dipoles
(spin-aligned electrons). If a fast charged particle
traverses the magnet, it is influenced at each point by a

force due to the "true" field at this point. This true
fmld, however, varies over a very wide range of magni-

tudes within regions of the order of a Compton wave-

length around the spin-aligned electrons. The effective
field b, ff is dehned as an average field acting on the
particle along its path. It can be shown that, although

rare, close range interactions (corresponding to classical
"head-on collisions" ) between the beam particle and

the ferromagnetic electrons are decisive in determining

this average. Only if all points in the magnet can be
given equal statistical weight, will b, ff—B. Should

short-range forces exist between beam particle and

electrons, the effective field will be changed accordingly.
This eGect is described by introducing a "coincidence

probability, "

(chance of finding the electron at r if beam particle is also at r)
P(r) =

(chance of finding the electron at r if beam particle is far away)

The average of the magnetization along the path of
the beam particle is taken by first weighting the true
magnetization at each point with this coincidence
probability p(r), a quantity dependent on the force be-

tween beam particle and electrons. Wannier has com-

* Supported by the Once of Ordnance Research, U. S. Army.
'B. Rossi, Atti accad. Lincei 11, 478 (1930); L. M. Mott-

Smith, Phys. Rev. 39, 403 (1932); B. Rossi, Nature 128, 300
(1931).

~ G. H. Wannier, Phys. Rev. 72, 304 I', 1947).
W. F. G. Swann, Phys. Rev. 49, 574 (1936).

puted p(r) for the case of Coulomb forces. The final

result is expressed by Lt, «=8+2mM(p —1).
In this formula p)1 means attractive forces (for

example positrons) p(1, replusive ones. It is seen that
ff can be larger than B for the attractive case. The

deviation of p from 1 occurs, however, at such low

beam energies that it would be hardly verifiable experi-

mentally. Should, however, short-range forces exist, the

deviation of b, f f from B could be more pronounced than

for the pure Coulomb case. An experiment on the eGect-


