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Calculation of the energies of interstitial atoms in copper have been carried through in some detail using
a free-electron model and approximating the repulsion of closed shells with a Born-Mayer potential. Alter-
nate choices of constants in this potential have been employed to explore the extent of the associated un-
certainty. Results show that interstitials require an activation energy of about % ev or less for motion. Ap-
plications to various current experiments are pointed out.

URRENT interest in radiation damage in metals
has indicated the importance of the behavior of
interstitial atoms. Earlier theoretical study! had tended
to discount the role of interstitials as a mechanism for
diffusion because of the large amount of energy needed
in their creation but had indicated that if formed their
mobility might be high. Under radiation by energetic
massive particles large numbers? of lattice displacements
consisting of vacancies and displaced interstitial atoms
result. There is evidence from the low-temperature
annealing of this damage® that there exists a mechanism
(perhaps several) for atom motion with low activation
energy. .

Accordingly this paper is an attempt to study the
interstitial atom in a metal such as copper in more
detail and with particular emphasis on the relative
energy difference between the two equilibrium con-
figurations for the interstitial atom since this difference
is the activation energy for interstitial motion. The
general procedure follows that of I. The copper metal
is represented by a lattice of positive point ions im-
mersed in a uniform, compensating distribution of
electrons. Each ion repels its neighbors according to an
exponential potential, involving two semi-empirical
constants, which represents the repulsion of closed
shells after the Born-Mayer treatment. This treatment
is, however, more detailed and differs from I at three
points. In the first place, the form of the exponential
repulsion of the closed shells of copper has been revised
to fit with more recent findings. Secondly, the electro-
static potential of the interstitial position has been
evaluated, whereas formerly it was assumed to be zero.
Lastly, the method has been altered to consider the
relaxation of neighbors before the redistribution of
electron charge. The effect of the latter, always diffi-
cult to estimate, is greatly reduced and the reliability
of the method is thereby improved. It should be empha-
sized that such a technique is not limited to the treat-
ment of individual interstitials but should prove useful

1H. B. Huntington and F. Seitz, Phys. Rev. 61, 315 (1942);
hereafter called I.

2 F. Seitz, Discussions Faraday Soc. No. 5, 271 (1949).

3C. J. Dienes in Annual Review of Nuclear Science (Annual
Reviews, Inc,, Stanford, 1953), Vol. II; Marx, Cooper and Hen-
derson, Phys. Rev. 88, 106 (1952); A. W. Overhauser, Phys. Rev.
?;), 53;)3 (1953); R. R. Eggleston, Bull. Am. Phys. Soc. 27, No. 6, 9

952).

for treating more complex lattice defects such as may
be generated in metals by radiation damage or cold
work.

A. THE EXPONENTIAL CLOSED-SHELL REPULSION
1. Constructing the Potential

Besides I, other papers*® have employed exponential
repulsive potentials for copper. The common features
have been to use the elastic moduli to determine the
constants in the formula. The variation of compressi-
bility with pressure and behavior of the Hartree wave
functions for the copper atom have also been invoked
to substantiate the final result. Since different authors
have come up with somewhat different expressions, it
appears worth while to investigate critically the causes
for these divergences.

Let the interaction energy of two adjacent ions be
written U(r)=Ae—"0/» where 7, is the equilibrium
separation, 4 gives the interaction energy at this dis-
tance, and 7o/p is a dimensionless number whose mag-
nitude is a measure of the rigidity of the repulsion.
Contributions to the elastic constants for the face-
centered lattice from the close range forces may be
computed® from the equations

IS — S
ol =IN[PU 43U T, (2)
e’ —cp'= %ND’Z U+ 77’Ul:|ro: (3)

where NV is number of ions per unit volume. Primed
elastic constants are corrected for the effects of long-
range forces. The nature of these corrections will be
discussed below.

The bulk modulus of copper is 13.9X 10" dynes/cm?.
Values for the shear moduli given by Goens and
Weerts” and by Lazarus® are in close agreement for
c11—c12=4.7X 10" dynes/cm? and c4="7.5X 10" dynes/
cm?. With the model that is used here to represent the
metal, namely, nearly free electrons and a lattice of
singly charged ions, the long-range forces are the elec-

4 C. Zener, Acta Cryst. 3, 346 (1950).

5 G. J. Diennes, Phys. Rev. 86, 228 (1952).

¢ K. Fuchs, Proc. Roy. Soc. (London) A153, 622 (1936).
7 E. Goens and J. Weerts, Physik. Z. 37, 321 (1936).

8 D. Lazarus, Phys. Rev. 76, 545 (1949).
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trostatic interactions and the pressure of the electron
gas. The latter will contribute to the bulk modulus,
while the former will affect the shear moduli.

The actual bulk modulus will be

(c114+2¢19) /3= N (hk )2/ Sm*+ (c1i'+2¢12') /3, (4)

where the first term on the right is the bulk modulus
of the electron gas. The value for m*, the effective elec-
tron mass, was taken to be 1.47m in accord with low-
temperature measurements of specific heat.? In estab-
lishing the values used for 4 and p in his work, Zener!
omitted Eq. (1) because of uncertainty of the correction
term in Eq. (4). Besides the lack of supporting theoreti-
cal evidence for the value of m*, this model of the free-
electron metal as used by Fuchs® was relatively un-
successful in explaining the cohesion of copper. Never-
theless, it turns out that the contribution to the bulk
modulus from the compression of a gas of free electrons
is only about 20 percent of the experimental bulk
modulus so that the remaining contribution to the bulk
modulus from the short-range forces is fairly well
known.

In his work on copper,® Fuchs calculated the electro-
static contributions to the shear constants arising from
distorting a lattice of positive point charges in a uniform
negative charge distribution. They™ are (c11—¢12)eleo
=0.57 and (cs4)etec=2.57 in units of 10" dynes/cm?.
Though these terms are relatively small, they affect cu4
much more than c¢;1—c¢y2 and so alter the anisotropy
ratio 2css/(c11—c12). As Zener has remarked, the r¢/p
is quite sensitive to this ratio. Since the electron density
does not stay uniform with elastic shear distortion but
changes to neutralize in part the electrostatic stored
energy in the distorted point lattice, the terms calcu-
lated by Fuchs represent an upper limit for this effect.
Zener,* in his consideration of this point, concluded that
electron compensation made the electrostatic contribu-
tions negligible, but he made no direct calculation on
this point.

In Appendix A, a variational calculation has been
carried out on an approximate model to determine what
fraction of the electrostatic terms is really operative.
A shear distortion of the angle between two cubic axes in
a face-centered cubic lattice has the effect of decreasing
the distances between atoms in the (110) direction and
increasing the distances in the (1-10) direction, so an
effective charge deformation is generated in a criss-cross
pattern with a period of d/v2, where d is the lattice
constant. The variational calculation using a very simple
form of modulation shows a reduction of 25 percent in
the electrostatic energy of deformation. Since more
elaborate methods should give greater reduction, it
seems reasonable to put these contributions to the elastic

9See F. Seitz, Modern Theory of Solids (McGraw-Hill Book
Company, Inc., New York, 1940); Estermann, Friedberg, and
Goldman, Phys. Rev. 87, 582 (1952).

10 See N. F. Mott and H. Jones, The Theory and Properties of

Metals and Alloys (Oxford University Press, London, 1936),
pp. 147-150.
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TasLE I. Data for determining 4 and p. All values are
given in units of 10" dynes/cm?.

$(en+2c12) c1i—cie ca
Experimental elastic 13.9 4.7 7.5
constants
Contributions from 2.6 0.28 1.28
long-range forces
Primed quantities 11.3 4.42 6.22

constants at one-half their value for the uniform elec-
tron distribution.

All these considerations are summarized in Table I
and can now be applied to determining 4 and (ro/p).

With values of the primed shear constants as ob-
tained in Appendix A together with the correction to
the primed bulk modulus given in Eq. (4), Egs. (1)— (3)
can be solved by the least-squares method to give
(ro/p)=14.9 and 4 =0.056 ev, with a relative deviation
less than 6 percent in every case.

In the corresponding expression developed by Zener,*
the value of 7o/p was some 10 percent lower. In addition
to using the ratio of the shear constants, Zener also
adduced supporting evidence from two other sources,
one arising from the exponential behavior of the d elec-
trons for the Cu* ion in the Hartree-Foch solution! at a
radial distance corresponding to mid-point between
ions in the metal and the second from the change of -
compressibility of copper with pressure as determined
by Bridgman® and Lazarus.® The treatment of the
pressure data was reviewed by the author taking into
account the effect of the electron gas on the compres-
sibility and variation of compressibility with pressure
and using the condition of equilibrium in a somewhat
different manner. We obtained essentially the same
result as Zener. A formula for U(#) closely resembling
his was adopted for subsequent work :

U.a(r)=0.053 exp[13.9(ro—7)/r¢Jev per ion pair. (5a)

Since the treatment of the elastic data given above
called for a somewhat larger value of r¢/p, it was de-
cided to bracket this value by carrying out alternate
calculations with a function' of considerably larger r,/p,

Us(r)=0.038 exp[17.2(ro—7) /7o v per ion pair. (5b)

2. Repulsive Energies for Interstitial Configurations

Interstitial atoms in face-centered lattices have two
equilibrium configurations as depicted in Fig. 1. Con-

1D, R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A157, 490 (1936).

12 P, W. Bridgman, Proc. Am. Acad. Arts Sci. 77, 198 (1949).

13 See reference 8.

14 This potential is quite close to the one used by Huntington
and Seitz in I and displayed as curve (2) in Fig. 1 of that paper.
The values quoted in connection with this curve on p. 317 of I
are in error. Corrected, they should read: p=0.284 in Bohr units
(not angstroms), and 4=35.64X10* ry per ion pair (where the
factor 10* was inadvertently omitted). A curve based on these
values was used in the actual calculations. However, this curve
was obtained using rather different shear constants and incor-
porating the full value of the electrostatic terms.
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F1c. 1. B and C configurations for an interstitialcy.

figuration B (following notation of I, Fig. 2) represents
the interstitial atom at the cube center and the asso-
ciated disturbance has spherical symmetry. In con-
figuration C two atoms appear on opposite sides of a
vacant lattice site and the accompanying disturbance
has only cylindrical symmetry. The procedure is to
consider the relaxation of nearest neighbors, 6 for B and
8 for C, and in addition the relaxation of each quartet
of ions most directly opposing the motion of each of the
nearest neighbors. This brings the number of neighbors
considered up to 30 for B and 36 for C. The relaxation
of outermost ions which were not considered in I lowers
the energy in each case by amounts of at least 7 ev.

For configuration B, the origin of coordinates is put
at the interstitial ion. The outward displacements of the
nearest neighbors is given by a vector of the type %ed,
0, 0, where d is the lattice constant. The displacements
of the ions at the positions of type (d, 3d, 0) is taken to
be outward from the next neighbors and to be repre-
sented by vectors 8d/V2, 8d/v2, 0. The first part of the
calculation consists in treating each nearest neighbor
and the four ions against which it is pushed as forming a
complex whose energy is minimized with respect to 6
for each value of e. The interaction of these complexes
with the interstitial ion is then minimized with re-
spect to e.

For configuration C, the origin of coordinates is put
at the empty site and the two ions flanking this position
have coordinates == (1—X\)d/2, 0, 0. The eight next
neighbors at (%d/2, 4=d/2, 0) and (&d/2, 0, £d/2)
are given outward displacements of the type Avd/2,
vd/2, 0. The displacements of the more remote ions at
positions (d, d, 0), (d/2, d, d/2), and (0, &, 0) are all
assumed to point outward from the next neighbors and
are given magnitudes 71d/V2, n.d/V2, and n:d/V2, respec-

TaBLE II. Summary of closed-shell repulsive terms.

Configuration B Ua(r) Us(r)
Minimizing value for e 0.21 - 023
Minimizing value for & 0.03; 0.04,
Energy minimum 4.34 4.85

Configuration C
Minimizing value for A 0.42 0.39
Minimizing value for » 0.15 0.17
Minimizing value for (0.036, 0.023, (0.045, 0.028,

M1, N2, M3 0.008) 0.014)
Energy minimum 443 ev 4.74 ev

HUNTINGTON

tively. The procedure here is to assume an approximate
value for A\(A=0.4) and for different values of » to find
the minimum values for the 5’s, taking into account only
interaction with the 28 remote neighbors. The inter-
action of the interstitials with the complexes formed
around the eight next neighbors is next minimized with
respect to ». The final step is to vary A and to compute
the energy of the configuration at the minimum values
for all parameters, taking care to count all interactions
only once.

In each case, the energy is calculated from the normal
lattice plus isolated “interstitial” ion as zero potential.
Tt is to be noted that the ions whose relaxation was most
important were not always those nearest the defect.
For the B configuration, ions at the (d/2, d/2, d/2)
positions were passed over because the effect of ion
repulsion was less important for them than for (d,
d/2, 0) neighbors. In configuration C, a similar remark
holds for neighbors at the (d/2, d/2, 0) positions. The
final results of these calculations are given in Table II
for configurations B and C.

From Table IT one can judge how critical the choice
of repulsive potential turns out to be for these configura-
tions. With U,, the “harder” potential, the level of
both B and C configurations is raised by about % ev.
For U, also, the B configuration lies higher by about
0.10 ev; whereas for U, the difference is reversed. In
both cases this difference is too small to imply much
physical significance.

B. ELECTROSTATIC TERMS

The interstitial configurations at this stage where
the electrons are uniformly distributed may be con-
sidered as consisting of point ions introduced into the
lattice (one positive ion for Configuration B and two
positive and one negative for Configuration C), a num-
ber of large dipoles which arise from the displacements
of the nearest neighbors and a larger number of smaller
dipoles because of the displacements of the more dis-
tant ions. The electrostatic energies associated with
these configurations are subdivided into the following
terms: (1) the lattice potential at the points where the
ions are introduced, (2) the Coulombic interaction of
these ions (for C configuration only), (3) ion-large di-
pole interactions (must treat dipoles as finite), (4)
large dipole-dipole interactions, (5) large dipole-lattice
interactions, (6) ion-small dipole interactions, (7) large-
small dipole interactions, (8) small-small dipole inter-
actions, (9) small dipole-lattice interactions. These
quantities are evaluated by assuming that the ions are
situated at the equilibrium positions determined in
Sec. A. Since the closed shell repulsive forces treated
there vary much more rapidly with distance than the
electrostatic forces, this seems to be a reasonable ap-
proximation. Moreover, in a metal the electrons will
tend to shield the ions to an extent that is difficult to
determine, and so the electrostatic forces are less effec-
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Tasie IIL. Electrostatic terms (all energy values in €2/d).

Configuration B

Configuration C

Term Formula With Ua With Us Formula With Ua With Us

(1) Lattice potential V.(d/2,0,0) —0.303 —0.303 2V{d(1—N)/2, 0, 0} —V.(0) 4.390 4.218

(2) Ion-ion —3/(1=N) —5.175 —4.918

(3) Ion-large dipole +12[(14¢)1—1] —2.088 —2.244 —1.440 —1.640

(4) Large-large dipole 10.5¢ 0.464 0.556 12.58»* 0.283 0.363

(5) Large dipole-lattice 12.6¢ 0.555 0.660 19.5»2 0.439 0.565
(6) Ion-small dipoles 18.26 —0.582 —0.728 —0.266 —0.33
(7) Large-small dipoles —11.2¢d —0.075 —0.103 —0.046 —0.07
(8) Small-small dipoles 2168% 0.222 0.346 0.062 0.10
(9) Small dipole-lattice 20352 0.208 0.325 0.113 0.18
Total —1.599 —1.491 —1.640 —1.53

tive in determining the equilibrium positions of the ions
than might appear on the basis of uniform electron
distribution. In Table IITI below are given the values for
the various electrostatic terms.

For the calculation of the lattice potential the
Ewald!® method is used,

Ve(x) =e[m/4d+ (7)™ hi? exp— (whi/s)?
+2alr—Ra| 1= (s|r—R.|)} —7/5°2], (6)

where the R, are the translation vectors of the lattice,
the %; are the translation vectors of the reciprocal
lattice, and s is an arbitrary parameter whose choice is
governed by the need to have both series converge
sufficiently rapidly. (In this work s==/d was chosen.)
The symbol ¢(x) stands for the error function. The first
term inside the square bracket, namely w/4d, is intro-
duced to take into account the dipole layer at the sur-
face of a large spherical lattice. The derivation of this
term, which does not appear to have been developed
elsewhere, is given in Appendix B. The V,.(0) is the
potential at a lattice site when the ion at that position
is missing. It is —3.800¢/d, and is obtained by omitting
from Eq. (6) the term for which R,=7 in the second
summation and adding a term 2s/7%.

In many cases of dipole-dipole interactions, the
formula for infinitessimal dipoles proved to be suffi-
ciently accurate, namely,

Vaa=3Z:l(Di-D,)/P—3(Dy-1:) (D, 1:5) /r:°], (1)

where the D; are the dipole moments and 7;; their
mutual separations. Since the displacements are some-
what different according to whether U, or Uy is used,
results are given separately for both.

The dipole lattice term is the increase in electrostatic
energy when an ion is displaced from its equilibrium
position. It can be adequately approximated for our
use by ex?/2r2=8.4(¢/d) (x/d)?, where x is the displace-
ment from equilibrium. ,

In Table IIT formulas have been given, where pos-
sible, for the various electrostatic terms as functions
of the displacement parameters. Such formulas were
more difficult to use in configuration C because of its

. 1P, P, Ewald, Ann. physik 49, 1, 117 (1916); 64, 253 (1921):
Z. Kryst. 56, 129 (1921).

greater complexity and lower symmetry. For the terms
involving the smaller dipoles, the multiple values of 7
made formulas impractical. In general, no accuracy is
claimed for the last figure of the numbers in this table.

From Table III it can be observed that the reduc-
tion in energy throughout was greater with the U, than
with U,, because in general U, forced the greater dis-
placements, hence the greater effective polarization.
Because the electrostatic disturbance associated with
the interstitial alone is less concentrated for configura-
tion C, the lowering of the electrostatic energy is here
considerably greater. When the effective polarizations of
first the large and then the small dipoles are successively
introduced, the B—C difference is continually reduced
to a value of about 0.04 ¢2/d in the final total. Some-
what fortuitously perhaps the final values for the B—C
difference appear to be independent of the force law
used to within the accuracy of the calculation.

The calculations so far are referred for zero potential
to the isolated ion and the regular lattice. The energy
to form an isolated ion is the sum of the cohesive energy
plus the ionization of the atom minus the work function
of the metal which is regained as the freed electron is
returned to the lattice. For copper these quantities total
about 7.2 ev. Also, for copper, the ¢2/d unit is 4.0 ev.
The summary of the results obtained so far, under the
assumption of uniform electron distribution, is given
in Table IV, where the results of Tables IT and IIIT
are combined with the 7.2 ev for forming the isolated ion.

=

+
3 /| Distance  from Interstitial
< 0.5 1.0d
K}
H
ste
&l

]

od

"

Fi16. 2. Electrostatic potential for B configuration.
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TaBLE IV. Summary of results. All energies are in ev.

Configuration B C
Closed-shell force law (a) (b) (a) (b)
Closed-shell repulsion 434 485 443 474

(Table II) -
Electrostatic terms —640 —35.96 —6.56 —06.12
(Table III)
Formation of isolated ion 7.2 7.2 7.2 7.2
Energy on basis of uniform 5.14 6.09 5.07 5.82

distribution

Table IV shows the calculated values for the inter-
stitial configurations to be about 0.9 ev higher on the
basis of U; as compared with U,, but the value for the
B—C difference is considerably less, 0.07 ev for U,
and 0.24 ev for Us. On the basis of either force law, the
configuration of lower symmetry C is favored as the
equilibrium state.

C. VARIATION OF THE ELECTRON DISTRIBUTION

The study of the effect of the redistribution of elec-
tron density injects some calculational difficulties into
what has been up to now a straightforward attack based
on an easily applied model. We shall proceed by a simple
variational approach and choose trial functions,

Yi(x) = Ve F (1), 8

where all the wave functions'® are modulated by the
same function F which depends only upon distance from
the interstitial ion. The value of F(r) is more than one
near the interstitial ion and infinitesimally less than
one elsewhere, so that the total number of electrons is
conserved. V stands for the volume of the metal. The
theory of a very similar case has been worked in I, and
the analysis there shows that three terms enter into the
variational calculation :

(1) The interaction of the change in charge distribu-
tion with the potential field of the defect. This field
includes the contribution from the displacement di-
poles as well as that from the interstitial ion.

(2) An increase in the kinetic energy arising from the
modulation, which can be reduced to

— (#/2m*) f F(r)V2F (r)dr.

(3) The self-energy of the change in charge distri-
bution.

The considerations governing the choice of the func-
tion F(r) rested not so much on physical grounds as on
mathematical convenience since the evaluation of three
terms above in convenient closed forms was most de-
sirable. The function chosen for configuration B was

F(r)=(1+4B cos2br)? for r<w/4b, 9)
where the quantity B is determined to be 0.340 (bd)? by
18 The validity of the subsequent results may be challenged

because the trial functions are not orthogonal. There is indication,
however, that this is not a serious shortcoming.

H. B. HUNTINGTON

the condition that the interstitial defect appears elec-
trically neutral at large distances in the metal. Beyond
r=m/4b, F(r)—1 is of the order of 1/N, where N is
total number of atoms.

(1) For calculating (1), the interstitial potential is
approximately —e/r and the displacement dipoles are
replaced by dipole spherical shells of equal total strength,
so that one has a potential as shown in Fig. 2 of a
Coulomb attraction with steps at the position of the
dipole layers. For the choice €=0.20 and §=0.032,
these potential steps turn out to be V;=1.98¢/d for
71=0.55d and V3=0.61¢/d at r,=1.12d. Qualitatively
their effect is to repel the neutralizing electronic charge
so that it is spread over a greater volume than would be
the case if the dipoles were not there. The expression
for this interaction using trial function (9) is

[—2.43bd4+4.21G(£)4+1.30G (&) Je2/d,  (10)

where £1=2bry, £2=2br,and G(&) = (£—2) sinf+ 2£ cosé.
(2) For the change in kinetic energy one can inte-
grate by parts to get

A2 4 bw/4
- — F(r)(V2F (r))r%dr
2m* Qo 0
2rhAT /2 (Bb)* 72 sin’xx’dx
= [(—-) Bb+ f ] (11)
m*Qol \ 44 (26)* Jy  1+4Bcosx

Because of the widely spread charge, B turns out to be
small'” and can be dropped from the denominator of the
integral. This can be evaluated and itself shown to be
negligible compared with the first term.

(3) The potential of the change in electron charge
distribution ¢, can be found from Poisson’s equation,

V¢ (r) = (4eB/Q0) coslr,
to be

Go(7) =o(m/4b)+4.26eb[ 4/7+ cosg1— 2 sinéy /&1 ). (12)

The value for the self-potential term is

(¢/29%) f $o(r) B cos(2br)dr=091be%.  (13)

In Table V is given the results of minimizing the sum
of Egs. (10), (11), and (13) with respect to b. The
table shows that the variation of the electron distribu-
tion in the above manner lowers the energy by 0.223¢%/d
or 0.89 ev. This number serves to give the order of mag-
nitude of the energy gain but may be too small for many
reasons. As in any variational calculation, the arbi-
trarily chosen trial function can usually be improved. A
radial function which decreases less rapidly at larger
distances than the cosine might effectively shield out
the farther dipoles. Further gains could be intro-
duced by departure from spherical symmetry; i.e., let

17 The fractional error introduced by neglecting the non-

othogonality of the trial functions is proportional to B, which is
of the order of 0.01.
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=F(r,0,¢). Aside from these considerations asso-
ciated with the variational procedure, there are still
the electron correlation effects which would tend to
reduce the self-potential term [see Eq. (13), which
amounts to about +1.2 ev in the above reckoning].
From these considerations one estimates roughly that
the energy gain from variation for configuration B will
lie between 1.0 ev to 2.0 ev, which, when combined
with the results of the preceding sections, yields an
activation energy for interstitial diffusion bracketed
between 3.8 ev to 5.1 ev. This seems to be well outside
the range of experimental values for copper.
~ The application of a variational attack on configura-
tion C does not appear warranted in view of the neces-
sary complication. One expects that the energy lowering
in such a process would be about the same as for con-
figuration B, though perhaps somewhat smaller. There
are two reasons why electron redistribution might be
expected to be less effective for C. First, the departure
from spherical symmetry might be expected to increase
the change in the kinetic energy of the electron wave
functions that is caused by the modulation. A second
and more important reason is that the C configuration
is slightly more spread out than the B, for example, 8
near neighbors and 28 next nearest as compared with 6
near neighbors and 24 next-nearest neighbors. It has
already been pointed out that largely as a result of this
spreading, the C configuration has a considerably lower
electrostatic energy than B. The relaxations.of the first
and second neighbors reduces this difference markedly.
Likewise, the modulation of the electron distribution
might be expected to decrease the difference somewhat
further and to favor B over C—perhaps by about 10
percent of the total energy lowering.

D. CONCLUSIONS

The results of this calculation indicate that once an
interstitial atom is formed, it is relatively mobile be-
cause of the small activation energy required for it to
jump from one equilibrium position to another. The
calculation indicates an average value for this energy
of about % ev, with the less symmetrical configuration C
as the more probable equilibrium position, though the
reverse possibility that C is a saddle point cannot be
definitely ruled out. Wherever a large nonequilibrium
number of interstitials exists in the lattice, motion of
interstitials will be important. On the other hand, the
calculation shows that interstitial diffusion in copper is
ordinarily unimportant because the energy to form an
interstitial, while less than originally estimated (see I),
is still greater by a considerable amount than the ac-
tivation energy experimentally observed.

The possibility of mobile interstitials has bearing on
the results of some current experiments. Recently the
measurement!® of changes in resistance found in the
annealing of cold-worked wires of gold, silver, and
copper at fixed temperatures for fixed periods of time

18 J. A. Manintveld, Nature 169, 623 (1952).
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TasLE V. Variation of electron distribution.
(Energies in units of ¢2/d.)

—1.52 bd —0.517 (bd) min=0.34
421 G(&) 0.076 B=0.013
1.30 G(&2) 0.160

AKE Eq. (11) 0.058

Total energy gain —0.223

has been reported, indicating clearly that at least two
distinct atomic mechanisms are operative in the anneal.
For one the activation energy is about % ev or less, for
the other the energy values fall around £ ev, for these
metals. Manintveld has proposed that the second
mechanism corresponds to the motion of single va-
cancies. We should like to suggest that the first effect
can be attributed to the annealing out of interstitials
formed by the cold work.

Recent work® at the University of Ilhnms has shown
similar results from the study of resistance changes in
radiation-damaged wires of copper, silver, gold, nickel,
and tantalum. The investigators found at low tempera-
tures activation energies for anneal in the range of 0.2
to 0.3 ev for all of these metals. More recent measure-
ments reported on copper® from widely different sources
agree on another activation energy for anneal of 0.68 ev
but indicated that the situation is complex at lower ener-
gies. One explanation for this complexity may be that
multiple vacancies formed along the track of thefast par-
ticle may require about the same energy for motion as
the interstitials. (At still lower energy, the direct recom-
bination of nearby vacancies and interstitials might be
expected.) Experiments? with very rapid quenching of
pure gold wires from high temperatures reveal an activa-
tion energy of 0.4 ev. Since the presence of interstitials
after quench is unlikely, it would seem that this effect
might arise from coupled vacancies? which result from
a large density of vacancies frozen in from high tem-
perature.

By way of interpretation, it is tempting to assign the
0.68 ev energy in copper to the motion for single
vacancies. On the other hand, it is difficult to decide
from theory or experiments performed so far, whether
the interstitial or the coupled vacancy has the lower
energy for motion or which plays the more important
role in the radiation-induced changes in resistance.

The author wishes to thank Dr. G. J. Dienes and
Dr. J. B. Sampson for their valuable suggestions and
constructive criticisms.

APPENDIX A

The amount by which the electrostatic energy of the elastic
deformation in shear of a point lattice is reduced by the motion

1 Marx, Cooper, and Henderson, Phys. Rev. 88, 106 (1952).

2 A. W. Overhauser, Bull. Am. Phys. Soc. 27, No. 6, 8 (1952);
R. R. Eggleston, Bull. Am. Phys. Soc. 27, No. 6,9 (1952).

2 J. W. Kauffman and J. S. Koehler, Phys. Rev. 88, 149 (1952).

2 Calculations by J. H. Bartlett and G. J. Dienes, Phys. Rev.
89, 848 (1953), show that the energy for motion of paired vacan-
cies should always be less than the energy for motion of a single
vacancy.
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of the electrons can be estimated for a particular model by a
variational procedure. By an extension along the (110) direction
and a compression along the (1-10) direction, a shear without
dilation may be produced. If the electron distribution is main-
tained uniform, the potential in regions lying between ions along
the (110) direction will be decreased. Between ions along the
(1-10) direction, the potential will be increased. We shall approxi-
mate this potential distribution by two mutually perpendicular
standing waves,

V (x, 3) = Vo[ cos (lx) —cos (i) ], (A1)

where «x is measured in the (110) direction and y is measured in the
(1-10) direction, and !=2V2x/d (d is the lattice constant). For
our purpose it will be sufficient to consider only one of the terms
in Eq. (Al). If one chooses Vo=4mea/PQ, where Q is the volume
per ion, then one can consider that V is the result of a varying
charge distribution caused by superimposing standing waves of
the form

p(x) = (e/Qa’cos (), (A2)

where ¢ is seen to be the fractional variation of charge density.
The stored energy per unit volume for such a charge distribution

is given by
wfae\2
3 [ @V 0ar=3(%)"

This stored energy may be decreased by modulating the uniform
electron distribution. One takes for the wave functions of the
electrons in the electrostatic field

Ui’ =yi[14b cos(ix) ], (A9

where the y; are the orthogonal, normalized electron wave func-
tions corresponding to the original uniform distribution. Though
the new wave functions are not strictly orthogonal nor normalized
these defects are not serious since terms in 52 will be neglected
(b~a<1). The electron charge density is now altered by

(A3)

Ap(x) = — (e/Q)2b cos(lx). (A5)
Correspondingly, a change in potential occurs,
AV (x) = — (8wbe/1Q) cos(ix). (A6)

The quantity b is determined by minimizing the sum of three
terms: (1) a kinetic energy term 742%2/4m™ per electron (where
m* is the effective mass of the conduction electrons), (2) a poten-
tial term

S v,
and (3) a self-potential term
3 [ AV@p@ar.
Accordingly this sum can be written

E=[(i)2/4m*+4re?/PQIp2— drabe? /PR, (A7)

with

~0.123a,

(B PQ ]-1 (A8)

a
”““"‘E[1+4m* 4né
where m*/m is taken equal to 1.47. It follows that

Eaie (31 00 P10 o6
%ﬁ/m"‘(z) [1+4m* Ine) ~i0062e%

On comparing this result with the total stored energy, Eq. (A3),
which is 7 (ae)?/QR, one finds that this very simple trial wave func-
tion lowers the electrostatic energy to 75 percent of its original
value. Presumably more detailed variations could lower this value
substantially. In addition, the effect of electron-electron correla-
tions of any sort will tend to decrease the self-potential term and
subsequently Enin still further. For these reasons, we have sub-
tracted off from the experimental values of the shear moduli only
4 the electrostatic contributions as computed by Fuchs for the
uniform electron distribution,

c'n—c'12=4.7—%(0.57)=4.42X 101 dynes/cm?,
¢'44=7.5—3%(2.57)=6.22X 10" dynes/cm?.

(A9)

(A10)

HUNTINGTON

APPENDIX B

The calculation of the electrostatic energy associated with tak-
ing an ion from infinity and putting it at an interstitial position
cannot be found directly from an application of the usual Ewald
method since this procedure is based on the assumption of an
infinite lattice filling all space. From a physical standpoint, the
difficulty arises from the unspecified dipole surface layer which
raises or lowers the potential of the whole lattice by an arbitrary
constant. In the text the actual dipole layer of the metal is used in
incorporating the work function value into the 7.19 ev, the energy
for compressing the electron gas. The actual dipole layer gives the
lattice a positive bias of a few tenths ev? as compared to a surface
situation made up of s spheres, or atomic polyhedra, where the
electron distribution goes sharply from average value to zero at the
polyhedra surfaces. There are two problems here: (1) to determine
what surface conditions would give the reference potential of the
usual Ewald function (without the we/4d term) and (2) to calcu-
late the potential change in going from this surface condition to
that of the atomic polyhedra.

The first question can be answered by realizing that the space
summation in the Ewald calculation, which can be made to pre-
dominate by the choice of a small value for s, is equivalent to the
Coulomb potential of a collection of point charges, whose magni-
tudes depend only on distance, immersed in a compensating uni-
form charge distribution of opposite sign. Such radial symmetry
implies a fundamental condition, where the compensating charge
stops at the surface of a sphere just large enough to enclose the
exact amount of uniformly distributed charge needed to com-
pensate the enclosed point charges.

We have not been able to demonstrate in a formal manner that
the potential difference from the surface condition of the large
sphere to that of the close-packed duodecahedra of the face-
centered lattice is er/4d, but a process of induction makes it seem
likely. First we calculated the potentials associated with the di-
pole layers which arise when the polyhedron surface is cut in turn
by planes (100), (110), and (111) at the proper positions to ensure
electrical neutrality. These potentials turned out to be respec-
tively 1/12, 1/6, and 1/36 in units of we/d. Single directions, how-
ever, intercept infinitesimal area on the large sphere. To average
over solid angle, one must include deviations from the exact Miller
indices. As a result, the tangent plane to the sphere makes in
these cases small angles s/L with the crystal planes, where s is the
distance between atom planes and L the interval of periodicity
along the tangent plane. The potential of the resulting dipole
layer is found from Poisson’s equation,

V2V, =4m(4e/d*)5(1—2x/s). (B1)

The second factor on the right is the uniform charge density in
the interior. The factor % enters because regions of charge overlap
and charge deficit are spread equally over the tangent plane. These
regions are wedge-shaped, and the final factor takes into account
their linear decreases in cross section with distance from the sur-
face as measured by the variable x. The dipole layer potential is
then obtained from Eq. (B1) integrated twice with respect to =
from —s/2 to s/2, namely,

V= (2we/3d) (s/d)2.

When one adds this quantity to the results already found for the
surface potential in the exact direction of the Miller indices, one
obtains in each case (er/4d).

A similar procedure has been applied to calculating the surface
potential in a simple cubic lattice in (100), (110), and (111) direc-
tions. In each case the results were (ew/6d). For the b.c.c. lattice,
different results were obtained in different directions. Possibly
the situation is more complex here because the atomic polyhydra
have two different kinds of faces.

% See work function calculations on sodium by J. Bardeen,
Phys. Rev. 49, 653 (1936).



