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The resonance frequencies of a system containing two or four magnetic sublattices with different gyro-
magnetic ratios are calculated. It is found that in many cases the results reduce to the standard formulas
of ferromagnetic and antiferromagnetic resonance; they are stated, however, in terms of an effective
gyromagnetic ratio equal to the quotient of the net magnetic moment and the net angular momentum of the
system. Line splitting due to the existence of several normal modes of nearly equal frequencies, and the
effect of the sublattice structure upon the anisotropy contribution to the line width are also discussed.
The calculated values of effective g values and line widths as a function of composition are compared with
the experimental results for the nickel ferrite-aluminates.

INTRODUCTION

HE interpretation of the static magnetic properties

of antiferromagnetic and ferrimagnetic materials

is generally based upon the possibility of dividing the
magnetic ions into two or more groups such that the
magnetic moments within each group are parallel.!
The assumed interactions among the magnetizations of
these groups, or sublattices, then results in a magnetic
structure in which the magnetizations of a given pair
of sublattices have a definite orientation with respect to
each other—usually either parallel or antiparallel.
The predominant interaction in these materials can be
taken to be of an antiferromagnetic nature,! i.e., leading
to an antiparallel orientation, but there are other
possibilities involving combinations of ferromagnetic
and antiferromagnetic interactions which lead to
magnetic structures of varying degrees of complexity.?
In time dependent problems, such as the magnetic
resonance experiments which we shall consider, the
existence of sublattices gives rise to observable effects
which are sometimes of a rather unexpected kind. Above
the Curie temperature, the observed resonance absorp-
tion is much like that found in other paramagnetics
although there are indications that the short-range
magnetic order resulting from the interactions affects
the magnitude of the absorption.® Ferrimagnetic
materials, such as the ferrites, have a macroscopic
magnetization below the Curie temperature and
resonance experiments on several of these! have been
interpreted very successfully on this basis by the use
of the results of the usual theory of ferromagnetic
resonance.” The important role of the sublattices in
the theory of antiferromagnetic resonance was first
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pointed out by Nagamiya and Kittel.® In essence, one
regards the interacting sublattices as a coupled system
whose normal modes and frequencies can be found by
standard methods from the equations of motion. If M,
and M, are the magnetizations of the sublattices, one
finds in the simplest case that since the effective fields
due to anisotropy have opposite signs for the two
sublattices, the significant variables become M;-+=M,
rather than the individual magnetizations. As a result,
the effective field describing the interactions (the
“exchange field””) no longer drops out as it ordinarily
does in the ferromagnetic case,® but usually forms the
predominant part of the expression for the frequency.
This method has since been generalized and applied to
more complicated systems.™®

A common feature of the above calculations is the
assumption of the equality of the gyromagnetic ratios
characteristic of the individual sublattices. Gyromag-
netic ratios obtained from resonance experiments,
however, are in general significantly different from the
free electron spin value and the differences are primarily
due to the varying contributions of the orbital angular
momentum as determined by the crystalline potential.l®
Since the grouping into sublattices is usually determined
by the different crystallographic sites available to the
magnetic ions, one should assume that the gyromagnetic
ratios of the various sublattices are actually different.
We then have the possibility that a shift of magnetic
ions from one type of site to another can change the
resultant magnetic moment and angular momentum
of the sample as a whole by different factors and thus
alter the “effective” value of the sample gyromagnetic
ratio. One of the purposes of this paper is to demonstrate
that these effects do occur and that very small differ-
ences in the gyromagnetic ratios can affect the resonance
behavior of the material in a profound and sometimes
striking manner.

We shall confine ourselves to the determination of the
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normal frequencies w of the system basing the calcula-
tions entirely upon the classical equations of motion,

dM;/dt=~.M;XH,, 1)

in which damping is neglected. In these equations, M,
is the magnetization, v; the gyromagnetic ratio, and
H. the effective field for the 7th sublattice. By using
(1), we are implicitly assuming the magnetic ordering
to be sufficient to give M; a meaning. In principle, this
would require the temperature to be nearly 0°K, but
the results should be applicable as an approximation
for higher temperatures provided that one recognizes
that at a given finite temperature the approximation
will be the poorer the lower the Curie temperature of the
material. We shall first obtain the general result for a
system comprising two magnetic sublattices and discuss
a few of the important approximations and compare
them with some interesting experimental data. Later,
we extend our considerations to a system of four
sublattices—a generalization which is found to increase
the complexity of the possible resonance behavior.

TWO SUBLATTICES

The external static field H is assumed to be in the
positive z direction. The molecular field coefficients
describing the intra- and inter-sublattice interactions
~are A1, Asg, and Aa=MAg;=X; they can be of either sign.
We represent the common demagnetizing factors by
N,, N,, N, and the effective demagnetizing factors
resulting from anisotropy® by Nis, Niy, -, Na.. The
field on sublattice 1 can then be written as

H1=Hk+)\11M1+}\M2_‘Nx(M1z+M2:v)i
-'Ny (M1y+M2y)j—Nz(Mlz+M22)k
'—leMl:ci_leMlyj"‘leMlzk; (2)

with a similar expression for Ho.

Combining (1) and (2), we find as before® that
M ~const=M,. If we assume the other components
to be proportional to ¢!, we find from the secular
equation that the normal frequencies are

w2=F:|:[F2— (Asz_C:cDx) (AyBy_CyDy)]%y (3)
where

F‘_'%(AxAy""BxBy“I'Cny"l‘CyDz);
Aj=vP+Ej,
Bj=vQ;+6(N;—NA+E;,,
Cj=5P+Ej_, (4)
D=0+ (N,~N)A+E;, [

E; =3(Nyy—Ni)viM 125 (N o= Noo)y2 Mo,

P=H+(\—N)M,

QJ'=H+(NJ'—Nz)M7 J=x;y’ J

and

M=M1+M2,
v=5(v1+72),

A=M1—M,; ®)
=3(y1—72)- (6)
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As so often happens, this complicated general expres-
sion is not very helpful for understanding the effects
due to the different gyromagnetic ratios, and we shall
proceed at once to the consideration of several important
cases of (3). We note first, however, that when y;=+,
the result reduces to that previously found,® and if &
is small, we can use the classifications introduced before
as a guide for the simplification of (3). We shall further
restrict ourselves for simplicity only to those cases of
ordinary interest in which w~+yH rather than to the
range of very high frequencies in which the exchange
field is predominant in determining the magnitude of w.

THE FERROMAGNETIC FORMULA

For the present, we neglect the anisotropy fields by
setting E;=0. We shall also assume that the Curie
temperature is large enough so that the molecular
fields whose magnitudes are of the order of |AM;| are
very great compared to the external field # and the-
demagnetizing fields, ie., |N|>>N,,, .. We then find
from (4) that A;=vP, By~yQ;—NA, C;=06P, and
D~8Q;—NyA. Since we also have P~AM, we see that
we can get a good approximation to F by keeping only
those terms which are of the-order of the square of the
exchange field. We finally find that

F (yP—8NA)? (7)

and

R=(4,B.—C.D.,)(4,B,—C,D,)
=P (y"—8)Q.0y. (8)

Upon comparing (7) and (8), we see that ordinarily
we can expect that R&KF? Thus we can get a good first
approximation to «? by expanding the radical in (3) in
powers of R/F?; we choose the minus sign in order that
a result of the desired order of magnitude be obtained.
We find that

w*=R/2F
=Yet?[H+ N~ N)MIH+N,~N.)M], (9)

where
Yeti=P(y*—6%)/(yP—No4).

This becomes

Yeott= (M1+M)[ (M1/v)+ (M2/v2) T,

if we use (5), (6), and the approximation P=AM.
Equation (9) retains the form of the resonance
condition suitable for a ferromagnetic but the existence
of the sublattice structure is shown by the replacement
of the electron spin gyromagnetic ratio by the effective
ratio given by (10). Equation (10) has a simple physical
interpretation as it expresses v.sr as the ratio of the
resultant magnetic moment and the resultant angular
momentum of the system. This result can also be written
in terms of the g values of the sublattices and their
angular momenta ;. Equation (10) then yields the

(10)
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following expression for the effective value of g:

geott= (81514 £252)/ (S14S2). (11)

Equations (9) and (11) have also been found by Tsuya!!
by means of the quantum-mechanical analog of our
calculation.

Equation (9) was not obtained by using explicitly
the physical conditions appropriate to the ferrimagnetic
case, and also does not contain any direct reference to
the anisotropy and exchange fields which are known to
have an important influence on the resonance condition
for this case. It turns out to be more suitable for further
discussion to consider another approximation to (3)
in order to see how these effects enter. This procedure
will, in addition, enable us to get a better understanding
of the mechanism by which the different gyromagnetic
ratios affect the frequencies and the dependence of the
line width upon the sublattice structure.

THE FERRIMAGNETIC CASE

We shall restrict ourselves in what follows to the
case in which the sample is a sphere so that N, , .=N
=4x/3. This corresponds to what is most often used
experimentally, and also effects considerable simplifica-
tion in the necessary algebra. Equation (4) shows that
then N enters only in the combination \-N which is
approximately A for materials with reasonable values
of the Curie temperature.

In the ferrimagnetic case, the sublattices are anti-
parallel with Ay, say, parallel to H. The simplest way
of introducing the effect of anisotropy is to assume
that the z direction is also nearly the direction of a
preferred axis of the crystal, so that the anisotropy
field can be written as H, for M, and —H, for M,; in
the notation of (2), this means that we assume that?

~NipM1=NoMo=Hs; Nizy=Nos,=0. (12)

Using these assumptions, we find from (4) that 4;, B;,
Cj, and D; are all independent of j and equal, re-
spectively, to

A=v(H+NM)+6H,,
B=vyH+6(H,—\A),
C=5(HA+NM)+~H,,
D=3§H+~v(H,—NA).
Since it is known!? that in this case
w=3(4+B)x[1(4—B)*+CD],

we need only substitute the expressions given in (13)
into the above equation to find that for a ferrimagnetic
sphere we have

w=vH+8H A3\ (v2ld 171 M) -
+{ (YHo+8H)[yH o+8H —N(v2M1—v1M5)]
+%>\2 (’Y oM 1+'Y M 2)2} 5

1 N. Tsuya, Prog. Theoret. Phys. 7, 263 (1952).
2 Equation following (10) in reference 8.
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The effect of assuming different magnitudes H, and
H,; for the anisotropy fields is merely the replacement
of H by H+H, and H, by H,, where H,.=%(H,,
=+ H ) ; we shall not consider this further.

Before we go on to consider other approximations to
(14), let us temporarily assume that H,=0, so that
(14) becomes

w=vH+IN(voM +v:1M>)
£ {SH[SH —N(voM1—v:1 M) ]
F N (v M-y M) (15)

A comparable result in which anisotropy is included
but different values of v; are not is®

w/y=H4+NM+Mo)£{HJ[H.—NM:1—M5)]
+%)\2(M1+M2)2}%. (16)

If we now compare (15) and (16), we see that the effect
of having y15%v, so that 60 is to introduce an apparent
anisotropy field into the system even if none were
naturally present. The magnitude of this field is 6H /7.
The existence of this anisotropy can be seen most
clearly from the equations of motion themselves rather
than from results derived from them. Suppose in Egs.
(1), we assume that yi=1v,=7, use (7), and omit all
other terms. The equations of motion for this case then
become

dM,/dt=yM X H+yM; X H .k,
sz/dt'—"YszH“’YMzXHak.

If, on the other hand, we assume that y;v, and include
only the external field H, we find that we can write the
equations of motion in the form

dMl/dt= 'yMl)( H+M1X3H,
dM,/dt=yMy;X H—M,XsH.

Comparison of (17) and (18) clearly shows that if 840
the direction of the external field becomes in effect a
preferred direction to which we can ascribe an anisot-
ropy field of magnitude 6H/vy. These results tend to
blur the distinction between the effects on the single
crystal resonance of anisotropy and differing gyromag-
netic ratio and to increase the difficulty of making an
unambiguous determination of anisotropy from re-
sonance experiments especially since the term H /vy can
be comparable in magnitude to H,.

We can approximate (14) in general by expanding
the radical in inverse powers of its last term. In so
doing we get a result which is independent of X and has
the following form:

o=vestf{ H+[ (M1— M)/ (M1+M1)JH.},

where 7.¢: is again given by (10).

This result differs in an interesting way from the
formula which is obtained for a sphere from the
ferromagnetic formula ; the term in the braces would be

(17)

(18)

(19)

18 Equation (11) of reference 8.
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simply H+4-H, rather than the more complicated term
in (19). Thus the sublattice structure not only .alters
the effective gyromagnetic ratio but makes the shift in
resonance frequency due to anisotropy also depend upon
the exact distribution of magnetic ions.

In a polycrystalline material or a powder, we would
not expect the term involving H, to result in a shift of
the line, but rather in a contribution AH to the line
width due to an orientational broadening. The resonance
condition would be simply

(20)

and from (19) we see that the order of magnitude of
AH could be expected to be given by

AH |M—M,

H, MM,

w="esiH,

g15'1~g252
g1S1+ngz

Hence if M, and M, were to be altered by temperature
variation or changes in composition this should be
reflected in the behavior of the line width.

We now proceed to the consideration of the resonance
conditions for two special situations which can occur in
ferrimagnetics. The first corresponds to the vanishing
of the resultant angular momentum, i.e., S=S5;4S,=0,
or, equally well, (M1/v1)+ (Ms/v2)=0. If y1527,, this
does not mean the vanishing of the net magnetic
moment. When S=0, Eq. (10) would predict that
Yot would be infinite; the expansion leading to (19),
however, would no longer be legitimate and we must
find the value of w for this case from the exact expression
(14). If we continue to write w=1.¢:H, we find that

Yeit(S=0)=v— (— 2572>\M1/H)%, (22)

where we have again chosen the minus sign, neglected
the ratio H,/H, and assumed that |[AM,|>H.

For the other case in which M =0, the first approx-
imation for v.¢s as given by (10) predicts a value of
.zero. We find, however, that (14) becomes

w=vyH~+86(H ,+Hg)+{(yH,+H)
X[v(Ho+2Hg)+6H ]+ (0H )},  (23)

where we have let —AM ;=H z. We note in passing that
if §=0, this reduces to the well-known antiferromag-
netic resonance condition w/y=H=4=[H.(H,+2Hg) ]}
Since, generally, Hz>>H and H,, if 640, we can expand
the radical in inverse powers of (6Hg)?, and we find
that (23) reduces to

. (21)

w="YaH,, (24)
where
1 171 1
——(=-=), 25)
Ya 2\71 72

and where, as usual, the minus sign in (23) has been
kept. This result, of course, also follows directly from
(19). Equation (24) is independent of H, and since the
frequency given by (24) will not ordinarily coincide

ROALD K. WANGSNESS

with the fixed applied frequency of the apparatus, no
resonance will be observed, so that in the language of
(20), we can say that in effect

’Yeff(M';-O) = 0:

in agreement with the result given by (10).

If the plus sign before the radical of (14) is taken, the
predominant term is $A (v M 1-+v1M2) ; this gives us the
following result for the frequency of resonance in the
exchange field:

(26)

We= )\(72M1+71M2)~ (27)

This agrees with the frequency found by Kaplan and
Kittel" by a more specialized calculation.

A COMPARISON WITH EXPERIMENT

In this section we shall discuss in detail only some of
the results of resonance experiments which have been
performed at the Naval Ordnance Laboratory on
a series of compounds known as nickel ferrite-alu-
minates.!® These materials have the chemical formula
NiOFe;_,Al,Q;, in which 0Lx<2. The resonance
absorption was observed in small spheres of the sintered
material ; the frequency used was that corresponding to
a wavelength of approximately 3 cm. Effective g values
were found for each resonance by means of (20); the
resulting values for liquid nitrogen temperature are
shown in their dependence upon composition as open
circles in Fig. 1.1

In order to calculate ges as a function of » from Eq.
(11), it is necessary to know the distribution of the
magnetic ions over the various lattice sites in order to
find S; and S, A reasonable, although not unique,
distribution of this kind has been deduced for the nickel
ferrite-aluminates by McGuire!'® from measurements of

g VALUES
U

[o]
J E—

2 J—
o ol
o q o
05 10 15 20

X

F16. 1. g values »s compdsition for NiOFe;_.ALO;. Solid line is
calculated values. Open circles are experimental points.

1 J, Kaplan and C. Kittel, J. Chem. Phys. 21, 760 (1953).

15 Maxwell, Pickart, and Hall, Phys. Rev. 91, 206 (1953);
T. R. McGuire, Phys. Rev. 91, 206 (1953).

16 T, R. McGuire (private communication).
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the saturation magnetization. The theoretical curve
shown in Fig. 1 was calculated from (11) by the use
of this distribution. All of the nickel ions with spin 1
and g;=2.3 were taken as comprising sublattice 1,
while all of the iron ions with spin 2.5 and g,=2.0
formed sublattice 2; the grouping was done in this way
so that the two sublattice formulas could be used
although both the nickel and the iron are apparently
distributed on both A and B sites—this point will be
considered in more detail in the next section. The large
¢ values have an upper limit of about 10 for x=0.6 as
given by the more exact formula (22).

The general agreement between the curves is fairly
statisfactory. The disagreement at the two points
x=0.5 and 0.65 is probably due to a small deviation in

composition in this region of rapid change of g.¢s. For

x>1, the two curves really have in common only the
tendency toward lower values, although the exper-
imental results have a slight trend toward a value near
2.3 which would be expected for nickel aluminate
provided that the resonance were observable. Other
than the inadequacy of the formula (11), a more
likely reason for the discrepancy for x>1 is that the
distribution of magnetic ions used for the calculations
is not quite correct since this distribution is especially
hard to determine for #>1 and is also apparently very
sensitive to the exact heat treatment given the
sample.15 16

The composition dependent contribution to the line
width as given by (21) has also been calculated with
the use of the same distribution. These values are shown
as the solid line in Fig. 2 along with the experimental
results'® for the ratios: AH(x)/AH(0). The general
agreement between the two curves is quite satisfactory
especially in regard to the existence and location of the
maximum and minimum. Better agreement than is
observed can probably not be expected since no attempt
has been made to allow for the contributions of the
many other effects which can influence the line width;
the remarks made above about the distribution for
x>1 are equally applicable here.

A behavior which is qualitatively similar to that of
Fig. 1 has been found for the variation of g with
temperature in LigsFe;.05Cr1.050, by van Wieringen.!
As discussed in the introduction, the present theory
cannot be expected to give an exact account of temper-
ature dependence, but the general aspect of van
Wieringen’s curve can be understood on the same basis,
namely, that the magnetic moment and angular
momentum vanish at two different points.

FOUR SUBLATTICES

In order to make the specific calculations of the last
section, the atoms were grouped into sublattices by
gyromdgnetic ratio rather than by the orthodox
grouping according to the type of crystallographic site

17 J. S. van Wieringen, Phys. Rev. 90, 488 (1953).
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Fic. 2. Relative line widths vs composition for NiOFe,_,Al,Os.
Open circles are experimental points. Solid and dashed lines are
values calculated from two- and four-sublattice formulas,
respectively.

occupied. According to the distribution of ions which is
indicated by the saturation magnetization, however,
both the iron and nickel are distributed between the
A and B sites of the spinel structure. As a result, in
the specific case of the nickel ferrite-aluminates we are
actually dealing with a system of four sublattices with
the accompanying possibility of four different gyro-
magnetic ratios. The purpose of this section is to try to
determine if our previous results are seriously affected
by this situation.

One can proceed by using Egs. (1) exactly as in the
two sublattice case, but the secular determinant now
has eight rows and columns and the complexity of the
resulting expansion makes this method impractical.
What we can do instead is to use a more approximate
method whose utility has been demonstrated by Keffer
and Kittel.” The basic idea is that if the total change of
the magnetization can be described in terms of an
angular velocity o then (1) can be written as

dM;/di=oXM;=v.H;XM,, (28)

where we have explicitly taken into account the fact
that the electron gyromagnetic ratio is negative so that
v: now stands for its magnitude.

The specific case to which we shall first apply (28)
is shown in Fig. 3. The magnitudes of the magnetizations
of the sublattices are A, B, C, and D with corresponding
gyromagnetic ratios v 4, vs, Y¢, and yp. The magnetiza-
tions are assumed to precess about the external field H
with the same angular velocity w; we further assume
the angles made by them with the direction of H to be
small and, for definiteness, that ¢>¢a1>dp>¢pc. The
essential nature of the ferrimagnetic case has been
included since 4 and B are assumed to be oppositely
directed to C and D; we now let A be the magnitude of
the molecular field coefficient describing the interaction
between these two groups. The magnitudes of the
coupling coefficient between A and B will be written as
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A; and that for C and D as \p; we shall also explicitly assume that these couplings are of an antiferromagnetic

nature.

If we neglect anisotropy and demagnetizing fields, the four equations obtained from (28) become

wApa=r4A[Hpa+NC (pa—dc)+AD(pa—¢p)+MB(pp—da) ],
wB¢p=vpB[Hpp+NC (¢p5—dc)+AD(¢ps—dp)—MA (¢n—¢4) ],

wCopo=rcC[Hpc+HNA (pa—dc)+AB(dpp—dc)—AD(dpp—¢c) ],

(29)

wD¢p=rpD[ Hpp+NA (pa—¢p)+AB(¢p5—¢p)+NC(bp—c) |-

The secular equation which results has the form
wtt a1’ et aswt-aH =0,

where the coefficients a; are rather long and involved
functions of the external field, the molecular field
coefficients, and the sublattice magnetizations.

The fact that we are looking for a solution of (30),
however, such that w~H enables us to obtain a suitable
approximation from (30) rather easily. If we let Hg be
the magnitude of the product of a molecular field
coefficient and a magnetization, we can generally
expect that Hg>>H. If one then inspects the explicit
expressions for the a;, one finds that the order of
magnitude of their largest terms are given by a;~HE,
as~Hg?, a3 and ay~Hg®. Then the order of the terms
in (30) are H*, HpH’, Hg*H? Hg'H, and Hg'H,
respectively. Since the ratio H/Hg is so small, we can
then approximate (30) by the equation

daw+(l4H=0

(30)

(31)

and any fractional error made in finding w from (31)
will be of the order of the negligible term H/Hg.

Thus we have found that the four sublattice system
also leads to an expression for w of the form given in
(20) where, of course,

Yeff = — 04/03-

Explicit evaluation of this expression, in which only
terms of the order of Hg® are kept, yields the result that

A+B—-C—D
A/'YA+B/'YB_C/'YC_D/7D‘

We see that to this approximation v.s is again inde-
pendent of the A’s and is equal to the quotient of the
net magnetization and the net angular momentum. In

(32)

Yeff=

F1c. 3. Assumed normal
mode for four sublattices.
Dotted line indicates molec-
ular fields ascribed to
sublattice B.

terms of g values, (32) becomes

24Sa+g8SB—gcSe—gnSp

(33)
Sa+Ss—Se—Sp

Zott=

In the specific ferrimagnetic case exemplified by the
nickel ferrite-aluminates we have assumed that g4=g¢
=gy, and gp=gp=g.. Equation (33) is then seen to
reduce at once to (11) since S;=S1—S¢and S;=Sp—Sp
for this case.

Now we have assumed a specific form of the normal
precession mode in order to obtain (29). As Keffer and
Kittel have shown” in the two sublattice case, we can
assume that there are other possible modes which
differ primarily in the sense of precession of the various
sublattices. Such a possibility, analogous to that discus-
sed by Keffer and Kittel, is shown in Fig. 4. Here we
assume that 4 and B precess in phase as do C and D
but that the sense of precession of these two groups is
opposite. If one now writes down the equations similar
to (29) as obtained from (28), one finds that the new
equations are the same as (29) except that y¢ and vp
are replaced by —+v¢ and —vp, respectively. The rest
of the calculation would go as before with the net
result that all of the algebraic signs in the denominator
of (32) would be plus; the denominator of (33) would
similarly have all plus signs, while the signs in both
numerators would be unaltered.}

The same sort of considerations would be valid for
other assumed modes so that the above results can be
generalized and correlated with the assumed direction
of the angular velocity of a given sublattice with respect
to H. For if we treat 4, B, -+, v¢, vp as all positive
numbers, all of the possibilities are contained in the
following extension of (33), namely, that

24Sa+g8SB—gcSc—gpSp
S4tSpFScFSp ’

Bott= (34)

Here we have assumed 4 and B to be “up,” and C and

I Note added in proof.—Dr. J. Smit of the Philips Research
Laboratories has kindly pointed out to me that the relative
angles of the sublattices in the mode assumed in Fig. 4 are not
constants of the motion so that the derivation of this paragraph
is apparently vitiated. If one continues to use the small angle
approximation, however, and evaluates Egs. (28) for various
phases of the assumed motion, the resulting frequency is still found
to be that discussed in this paragraph. Actually, of course, the
question of the reality of these modes can only be answered by
considering the solutions of the exact equations of motion.
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H
A .
wprwg
B
F16. 4. Another assumed
normal mode for four sub-
lattices.
weEwp D
C

D “down.” The signs in the denominator are chosen as
follows: the upper sign applies if the assumed direction
of the angular velocity of the sublattice is parallel to
H (always the case for 4 since another choice will not
lead to physically different values for g.s:), while the
lower sign applies if the angular velocity is assumed
to be antiparallel to H.

From (34), we see that if the angular momentum of
one of the sublattices is small enough, then the fre-
quencies of the two modes corresponding to different
signs may be so close together that they both fall within
the range of the apparatus. This is apparently the reason
for the extra low-temperature peak observed in the
nickel ferrite-aluminate with x=1.75. As shown in Fig.
1 the experimental value of g is 3.5; the value of g
calculated on this basis by using (11) with the de-
nominator S;—.S; is 3.8. The agreement is sufficiently
good to show that these other modes very likely can give
rise to an apparent splitting of the low-temperature
resonance curve with values of g.¢: given by the various
formulas contained in (34).

Anisotropy and the Line Width

We shall briefly-consider the result of including an
anisotropy field in the mode pictured in Fig. 3. For
simplicity we shall assume the anisotropy field to have
the same magnitude H, for all four sublattices and is
directed parallel to H for 4 and B, and antiparallel to
H for C and D.

When the equations of motion are written down from
(28) for this case, they are found to be the same as
© (29) except that H is replaced by H-+H, in the first
two, and by H—H, in the last two. In accord with our
previous method of approximation we need only find
what the inclusion of H, does to the last term of (30).
This is a straightforward but lengthy calculation; the
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result is that the frequency is given by

w=veti{ H+[ (A+B+C+D)/
(A-I'B'—C"D)]Ha}y

where 7.:: is again given by (32).

For a polycrystalline material or a powder, we can
expect to find from this result a contribution AH to the
line width of magnitude

AH |A+B+C+D
H, |4+B—-C-D

We see that in the interesting case in which ya=vyc¢=7v1
and yp=vYp="1s, Eq. (36) does not reduce to the result
(21) which was found for the two sublattice case
since the numerator of (36) does not become M;1— M,.
The relative line width calculated from (36) for the
nickel ferrite-aluminates is shown as the dashed line
in Fig: 2. The agreement with the experimental curve
is definitely improved for values of x up to about 1.25,
but the minimum which was previously found for
2>1 no longer appears. Very likely the disagreement
with experiment for > 1 is due to the use of a distribu-
tion for the ions which is not exact as we have previously
discussed.

(35)

. (36)

CONCLUSION

Both the theoretical considerations given above and
the limited comparison with experiment indicate that
the expressions for the effective gyromagnetic ratio
given by (10) and (32) as well as their natural extension
to more complex situations are accurately applicable to
systems containing sublattices. If a system can be
adequately described in terms of only two sublattices,
then one has the possibility of actually being able to
determine the magnetizations of the individual sublat-
tices, and thence the ionic distribution by using both
the measured values of the saturation magnetization
and effective g values for the sample as a whole. For
systems of more sublattices, these two values are not
sufficient to determine the ion distributions completely,
but comparison of experimental g values with those
calculated from an assumed distribution will provide a
useful check on the accuracy of the distribution.
Equations (21) and (36) will be helpful when one is
considering the contributions of other effects to the
line width because their use will enable one to separate
the contributions dependent upon the sublattice
structure from the total observed widths.

I wish to thank Dr. L. R. Maxwell, Dr. T. R.
McGuire, and Dr. J. S. Smart for some interesting
discussions of this work.



