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rent density of 8.7&&10' amperes/cm' at the cross
section XX of the emitter profile in Fig. 7(B). That
current density is about equal to the value required to
raise the tip of the emitter 7(B) to its melting point in
one microsecond in view of the calculations presented
in Part II of this paper. The heat of fusion is small,
and no large amount of material was vaporized during

arc judged from the electron micrographs of Fig. 7.
The evidence indicates that the resistive mechanism
was adequate to account for the heat required by the
observed emitter deformation during are. Apparently
energy was not supplied by other mechanisms at a
rate large compared with that of the resistive mecha-
nism.
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Electrical breakdown between clean metal electrodes in high vacuum was observed when the held current
density at the single crystal tungsten cathode exceeded a critical value of the order of 10' amperes/cm'.
At current densities just below the critical value, an electron emission process was observed which apparently
involved both high temperature and high electric Geld. Calculations are presented for the emitter temper-
ature increase due to the resistive mechanism for both the steady state and the transient solution. Emitter
geometries used for the calculations approximated those obtained from electron micrographs of several
emitters. The calculations show that the resistive heating was sufficient to melt the emitter at the critical
current density, assuming the accepted value of the physical constants for the polycrystalline metal.

' 'N Part I of this paper evidence has been presented
&- showing that the interruption of the microsecond
6eld emission from the tungsten emitter by the occur-
-rence of a vacuum arc is dependent principally upon
current density J under conditions of clean emitter
surfaces and excellent vacuum. It also has been pointed
out that the experimentally observed values of the
critical current density J, for arc initiation lie in the
range 10'(J & 10s amperes/cm' for microsecond oper-
ation, with the suggestion that heating of the emitter
by a current density dependent mechanism may be the
initiating factor of the breakdown. The purpose of this
part of the paper is to present an analysis of the heat
Row problem when an emitter of idealized geometry
approximating those used in actual operation is heated
resistively. The current density dependent mechanism
proposed by Nottingham' is brieQy considered. A
comparison will be made between values of the current
density for which an arbitrary large temperature
increase is predicted by resistive heating and experi-
mental values of J .

A mathematical analysis of the resistive generation
of heat and its simultaneous dissipation by conduction,
using physical constants for the polycrystalline metal,
was made possible when electron micrographs had
revealed the geometry of the emitter, ' whose shape in
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the present experiments was a cone whose half-angle
was in the range 2.75' to 15.5, with a hemispherical
tip of radius between 1.5X10 ' and 1.5X10 ' cm.
Although this geometry does not lend itself directly
to any simple coordinate system, it may be closely
approximated by a portion of a cone bounded by
concentric spherical surfaces, orthogonal to the cone,
for which ordinary spherical coordinates are suitable.
Figure 1 shows a comparison between the idealized
geometry and that of several typical emitters. The
point N=ns is chosen to correspond to the position of
maximum current density, which may be expected at
the "neck" of constricted emitters I see Sec. XX of
Fig. 4(D), Part Ij, or in the case of emitters without
constriction, at a distance from the vertex of the
emitter about equal to the radius of its hemispherical
tip.

The Qow lines for both electric current and heat are
assumed to follow the radial coordinate curves of the
system. Heat radiation is supposed negligible. Con-
sideration of the resistive generation of heat, together
with the usual laws of heat conduction, leads to the
difterential equation

I'it'&/»'+»'~ &/cist rr'I'ct&/c—lt = b

Here I is the distance in cm from the vertex of the
cone, T is temperature in degrees centigrade, t is time
in seconds; n'=c8/x, where c is specific heat, 5 is

density, and x is thermal conductivity; b is deined by
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an equation with in6nitely many solutions k„. The
functions sin(k„(l —m)) are orthogonal for all values of
k„so that they may serve as a basis for the series
expansion needed below.

The solution (4) now takes the form

00

2'= —g exp( —k 2l/n')A„sin(k (l—e))+s(e). (8)

the equation

4x'(4. 18K) (1—coswo)'
(2)

(c) (d)

I"xo. 1. A comparison between the geometry of typical 6eld
emitters (a, b, c} and the idealized conical geometry (d) used in
heat Row calculations.

Clearly T approaches the steady-state value s (u)
when t~~, and the coeKcients A„must be so chosen
that T=O when l=O, i.e., the function —es(N) must
be expanded in a series of the orthogonal functions
sin(k„(l —I)). A process analogous to that used in the
usual Fourier series development leads to an evaluation
of the coe@.cients in the form

with I indicating electric current, p the resistivity, and
vo the interior half-angle of the cone. Equation (1)
overlooks the variation of the physical constants with
temperature which if included would unreasonably
complicate the solution. The use of values for inter-
mediate temperatures is a satisfactory alternative.

If the term involving I in Eq. (1) is omitted, a
steady-state solution s(e), useful in the general case,
is obtained,

~l
A„= ' xs(x) sin(k„(l —x))dx,

sin(2k„(l —nz)). (10)

$(N) = k/Q +Ci/Q+C2,

where c~ and c~ are constants of integration. For the
general equation (1), the method of separation of
variables may be used. A sol&tion of the form

T= U(N)tt(t)+s(e) (4)

O'U 2 dU
+— +k'U=O,

QQ s dN
(5)

k being arbitrary. Boundary conditions are based on
the assumptions of zero temperature at a relatively
great distance I=/ from the apex of the emitter, and
no heat Row through the apex where I=no, that is,

U(l) =0, dU/du(„=„= 0. (6)

A related problem treated. in Churchilp suggests a
solution of Eq. (5) satisfying the first of conditions
(6), namely,

U= (a/I) sin(k(l —I)),
where a is arbitrary. To satisfy the second of conditions
(6) requires the relation

tan(k(l —m) )= —mk, (7)

3 R. V. ChurchiO, Ilourier Series aed Boledary Viue Problems
(McGraw-Hill Book Company, inc. , ¹wYork, 1941), pp. 113-
114.

is assumed. 8(t) has the usual exponential form appear-
ing in Eq. (8) below and the function U(N) must satisfy
the equation

The procedure for writing the series (8) is now
straightforward. The roots k„of Eq. (7) are obtained
by successive approximatiog. s, and thereafter the values
M„, A„, and the exponential factors of (8) are com-
puted. If the experimental current is drawn for short
intervals of time, many terms are necessary to get the
desired convergence of the series (80 terms in the
present case of microsecond pulses). Computation of
steady-state temperatures on the other hand is rela-
tively simple. The physical constants for the tungsten
emitter used are those tabulated by Worthing and
Halliday. For resistivity p and speci6c heat c, which
vary considerably with temperature, intermediate
values p= 50X10 ' ohm cm and c=0.045 cal/g'C have
been arbitrarily chosen for the present examples; a
further comment on a possible dependence of resistivity
on current density appears below. The value of / is
taken as one millimeter, which approximates the usual
length of the emitters used, and is large compared with
the radius at the apex. The value of m varies with
cone angle in such a way as to make the cross-section
radius where N=m equal to the true emitter radius.
The value of the cone angle, within broad limits
exceeding those encountered in practice, makes rela-
tively little difference to the results in terms of per-
missible current density, not more than a factor of 3
between half-angles of 5' and 20'. In the calculation
of Eq. (11) an arbitrary angle of arctan-', (approxi-
mately 11') is assumed.

4 A. G. Worthing and D. Halliday, Heat (John Wiley and Sons,
Inc., ¹wYork, 1948), p. 496.
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The maximum steady-state temperature, which
occurs at e=ms, may be expressed by the relation

~max=9 ~X ~0 J r deg C,

where J is current density in amperes/cm', and r is
emitter radius in cm. If T ., is to be held at less than
1000'C, an arbitrary value used for illustration, it is
clear that the product J'r' must not exceed 10'. Thus
in the range of radii from 10 4 to 10 ' cm, J for direct
current operation may reach corresponding values of
10~ to 10' amperes/cm' under the conditions here
described. It shouM be noted that while the permissible
J varies inversely as the radius, the total current
involves emitting area and so varies directly as radius.

The temperature rise-time indicated by the calcu-
lation of the series in Eq. (8) is such that the steady
state is closely approached in 10 ' sec, and about
one-fourth of the temperature increase is to be expected
in a microsecond. Since T is proportional to J, micro-
second operation should permit about twice as large a
current density as can be sustained in the steady state,
and shorter pulses oGer the possibility of attaining
still higher levels.

The analysis for a cylindrical emitter is useful in

comparison with the foregoing because it represents a
limiting case for very small cone angles. In cylindrical
coordinates the equation corresponding to Eq. (1) is

O'T/Bn' a'8 T/clt = ——u, (12)

where T, t, and n have the same significance as before;
I is the length coordinate along the cylindrical wire,
and a is defined by the relation

u =I'p/4 18m'aso'I

IPO
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being the radius of the wire. The steady-state
solution is

T= —gun +cyN+c2. (14)

If the origin is chosen so that u=0 at the emitting end
of the wire, and N=l at the cool end, the boundary
conditions are: (1) T=O when n= l, (2) dT/dN, =O when
N=O. By use of these conditions, Eq. (14) becomes

T= ,'u(P -—u').

If the emitter is one millimeter long as in the conical
case, the maximum value of T found where z~=0 is
given by the relation,

T .=2.45&10 'J'deg C,

which may be compared with Eq. (11) for the cone.
The temperature in the present. case is independent of
radius.

Equation (16) immediately gives a limiting value of
J of about 10' amperes/cm' for operation at 1000'C
in the steady state, which is a factor of several hundred
less than the level permitted by conical emitters of
typical radius. Although the temperature in conical
emitters is not very sensitive to changes in cone angle
within the stated limits, the change is very rapid as
the angle approaches zero, and it may be shown that
Eq. (16) is the limit of Eq. (11) under such conditions.

A comparison of temperature gradients for the
cylindrical and conical cases in the steady state is
instructive. Figure 2 shows such a comparison, with the
dotted curves indicating the corresponding gradients if
heat conduction is neglected. The latter curves reach
no steady state and are arbitrarily adjusted to the
same maxima. It is observed that while the. temperature
in the conical case decreases to one-half of its maximum
in a distance of ten emitter radii from the apex, the
same fraction is reached for the cylinder at a distance
of several thousand radii.

Details of the transient case for a cylindrical wire
will not be included. The procedure is straightforward,
except that the boundary conditions do not permit
expansion of the steady-state function in ordinary
Fourier series; however, a series of terms in the orthog-
onal functions cos(2n —1)mN/2l is permissible and the
solution is given explicitly by the expression

" so

0

6 8 Ioglo- &

u 16uP (—1)" '
T= —(P—I')—

n i (2n —1)'
((2n —1)~+i

XexpL —(2n —1)'Ctj cos
( (17)
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FrG. 2. A comparison between steady-state temperature
gradients (solid curves) in the idealized 6eld emitters of (A)
cylindrical and {8) conical geometries, the latter assuming an
emitter tip radius of 10 ~ cm. Dotted curves are corresponding
gradients if heat conduction is neglected, adjusted to arbitrary
maxima.

where p represents the quantity x'/4Pa
In experimental work direct current operation of

emitters has been observed at current densities in
excess of 10' amperes/cm2 as compared with predicted
values for the conical case of approximately 10' am-

~ W. P. Dyke and J. K. Trolan, Phys. Rev. 89, 799 (1953).
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TABLE I. A comparison between observed experimental current densities Z, required to initiate arc for several emitters (Column 8)
and current densities Jg (Column C) for which the calculated temperature reaches 3000'C in the corresponding pulse times.

Emitter
number

0-38
X-62"
X-62-A
Q-I
Q-29
0-54
2-X-4

J.
(amp/cm2)

6X10'
4X107
3X10'
4X10'
7,X10'
1X10s
5X107

~z
(amp/cmm)

7.0X10'
2.4X10'
2.5X10'
7.1X10'
7.4X10',
2.7X10s
5.8X10'

VmtLx
(kv}

9.2
8.8

60.1
4.9

14.2
16.1
13.3

F
Radius of the

emitter tip
(cm)

2.4X10 '

1.5X10 4

1.5X10-
3.2X10-~
2.0X10 '
38X10 ~

F
Half-angle of
the emitter

cone (degrees)

5
10
10
3
6

16
6

6
Pulse
length
(ysec)

Ha

Tube type, elec-
trode spacing (cm),

anode material

S, 4.5, ABW
S, 8.5, ABW
S, 8.5, AB%
PTP, 1, Moly.
Sp 8.5, AB%
S, 4.5, AMV
S, 4.5, AB%

a Experimental tube type S is shown in Fig. 1; type PTP, i.e., point-to-plane, is shown in reference 5; ABW, aluminum-backed willemite.
b Electron micrographs of this emitter were not available; hence J~ was calculated from its electrical behavior with the aid of Eq. (1) of Part I. In

this case, J~ was known within a factor of 3. For the other emitters, electron micrographs were available and J~ was known within ~10 percent.

peres/cm'. Larger experimental current densities may
yet be obtained for the steady state since the limitation
imposed in reference 5 was not due to the cathode.

Table I exhibits the comparison of the maximum
current densities Jz predicted by the resistive process
(Column C) with the values of the critical current
density J, observed experimentally during the micro-
second operation for several emitters (Column 8).
Methods for calculating the value of J, were presented
in Part I. J was arbitrarily de6ned as that current
density required to raise the emitter temperature to
3000'K in a time equal to the duration of the experi-
mental current pulse. For all emitters except X-62 the
tip radius and cone angle were obtained from electron
micrographs, and the resulting values of the experi-
mental current densities are correct within 20 percent.
The critical current density showed approximately the
expected dependence on radius and cone angle. It will
be noted that electrical breakdown depended on current,
density. It was independent of voltage, total current,
anode material, and gap spacing.

Kith regard to the assumed values of the physical
constants for tungsten, it may be pointed out that
recent work by Ignateva and Kalashnikov' suggests
that for impulse operation at values of J above 10'
amperes/cm', the 'resistivity of some metals may be
increased by a considerable factor. The reference notes
an increase by a factor of 2 in resistivity of tungsten
at the largest current density reported, i.e., 4X10'
amperes/cm'. Current densities two orders of magnitude
larger were observed in the present work, and the
increase of resistivity with current density, if any, must

6 L. A. Ignateva and S. G. Kalashnikov, Zhur. Eksptl. i Teort.
Fiz. . 22, 385 (1952).

be less than an order of magnitude for J(10s amperes/
cm' unless it is later shown that the physical constants
for the polycrystalline metal are inapplicable to the
small single crystals used herein.

The heating process suggested by Nottingham, ' a
quantitative analysis of which has not been made, is
based on the suggestion that emitted electrons must be
replaced in the metal at their respective energy levels

by electrons supplied at the top Fermi level. The energy
lost in the replacement process was assumed to heat
the emitter. The analysis of this mechanism requires
knowledge of (1) the energy distribution of the emitted
electrons under conditions of simultaneously high 6eld
and high temperature, and (2) the spatial distribution
of the heating within the emitter. The former is pres-
ently under study and he lattter is in question. ' The
eftect of this heating mechanism would be small, ac-
cording to preliminary analysis, unless it can be shown
that the average energy per electron given to the metal
is about 1 ev and that this energy is released within
a distance from the emitter tip which is. small compared
to the emitter radius.

The resistive heating process provides adequate
emitter temperature increase to support the supposi-
tions in Part I which were advanced to account for the
observed ring and tilt prior to arc formation. Thus,
no other source is required for the generation of the
heat which presumably initiated. the observed electrical
breakdown.

The experimental data for' Table I were supplied by
the authors of Part I. The continued interest of Pro-
fessor J. E. Henderson of the Physics Department,
University of Washington, is appreciated.

r G. M. Fleming and J. K. Henderson, Phys. Rev. 59, 907 (1941).


