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A general form of the two-Quid model of a superconductor, which includes all previous forms, is set up
and the underlying assumptions examined in the light of the lattice vibration theory of superconductivity.
Thermodynamic re.ations are derived and their consistency with the observed isotope eBects indicated.
Specialization to the 0| model of Casimir and Gorter permits Gtting recent precise critical 6eld data and
evaluation of the parameter 0. characterizing different superconductors. Comparison is made with Koppe's
form of the two-Quid model, which is shown not to 6t all the data, and simpli6ed and limiting forms of his
equations are given.

l. INTRODUCTION

HE two-Quid model of a superconductor was
proposed originally to describe the second-order

phase transition and the temperature dependence of
both the thermodynamic functions and the critical
Geld curve. This it succeeded in doing in a remarkably
simple way. ' The model has acquired fresh support in
recent years by its success in interpreting other prop-
erties of superconductors. In particular the temperature
dependence of the penetration depth is correctly pre-
dicted, ' and the model may be extended to describe
behavior in a magnetic Geld, leading to a theory of the
surface energy between normal and superconducting
phases and to the 6eld dependence of the penetration
depth. '

Additional support for the model, in that it is
consistent with the observed effects of the change of
isotopic mass on the electronic entropy, has been

W'ork begun at the University of Illinois, Urbana, Illjtnoi s,
and supported there by the U. S. Once of Naval Research.

t Supported in part by OSce of Scientific Research, Air
Research and Development Command.' C. J. Gorter and H. B. G. Casimir, Physik. Z. 35, 963 (1934).
An electrodynamic two-Quid model had been suggested by H.
London, Nature 133, 497 (1934).' Daunt, Miller, Pippard, and Shoenberg, Phys. Rev. 74, 842
(1948).' L.Landau and V. Ginsburg, J.Exptl. Theoret. Phys. (U.S.S.R.)
20, 1064 (1950); A. B. Pippard, Proc. Roy. Soc. (London) A203,
210 (1950); J. Bardeen (to be published); also Phys. Rev. Sl,
1070 (1951).

pointed out by one of us4 and will be developed further
here.

Other recent papers which make use of the model-
will be referred to at appropriate points. (See references
5, 23, and 24.)

One of the purposes of this paper is to reGne the
the comparison of the two-Quid model with measured
values by taking advantage of recent precise critical
field data. In particular, the-observed deviations from
the parabolic law may be brought within the framework
of the model by using a more general form of the
model containing an adjustable parameter, diRerent
for each superconductor.

%e also take the occasion to develop the two-Quid
model in full generality and to examine the underlying
phenomenological assumptions and show these are
plausible in the light of the usual band description of
electrons in metals and the lattice vibration interaction
theory of superconductivity. The resulting general
representation of the equilibrium properties of super-
conductors aRords an illuminating example of a second-
order phase transition which has a particularly simple,
explicit, and apparently quite accurate representation.
Thus the dependence of the various thermodynamic
functions on an inner parameter which measures the
gradually increasing degree of condensation below the
transition may be examined in detail.

4 E. Maxwell, Phys. Rev. 87, 1126 (1952); Physics Today 5,
14 (1952).
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Section 2 contains the general formulation of the
model, presented with reference to the lattice vibration
theory and the underlying statistical basis for the
model aGorded by that theory. Particular attention is
paid to the assumption that the condensation process
takes place essentially for electrons close to the Fermi
level and to the eGect of condensation on the lattice
contribution to the free energy. The interrelations of
the various thermodynamic quantities are given in
detail, since they contain all previous relations for
special forms of the model.

Section 3 shows how the general form of the model
leads plausibly to the invariance of various reduced
quantities to change of isotopic mass and discusses the
necessary assumption that the temperature dependent
part of the lattice contribution to the free energy must
be independent of the degree of condensation.

Section 4 first analyzes the requirements on the
general form of the model which follow from the
condition that the transition be second order, with no
discontinuous changes in degree of condensation. Argu-
ments are given for the conclusion that the eGective
number of normal electrons approaches 0 at O'K. The
n model of Casimir and Gorter is shown to be a plausible
assumption satisfying the requirements obtained previ-
ously, and with sufhcient Qexibility to represent present
data adequately; n is then evaluated from experimental
data for tin, mercury, thallium, and indium. The need
for precise measurements in 6xing e is emphasized,
since all values are quite close to the simple parabolic
case. The Koppe-Heisenberg form of the model with
its unique prediction for the reduced quantities of all
superconductors is compared both with the 0. model
and with, the experimental values. It is shown not to
fit all of the experimental data and also markedly
deviates from the n model at very low temperatures.
The equations for this model are given in detail in

Appendix II in substantially simplified form which
reduces them to tabulated functions. It is noted that
fundamental justification for any of these forms of the
model has not yet been established.

2. GENERAL FORMULATION OF THE T%0-FLUID
MODEL

The phenomenological formulation of the model
postulates a mixture of two electronic phases in the
superconductor when in the superconducting state. One
is a degenerate Fermi gas, the "normal" phase, and
the other a condensed phase with no temperature
excitation (hence no entropy), the "superconducting"
phase, and they are assumed to be in equilibrium with
each other (and the lattice). The degree of condensation
is measured by a parameter co, which by de6nition
takes only values from 0 to j. as the temperature falls
below the transition temperature T, (in zero magnetic
field). The free energy and internal energy of the
system decreases by the condensation energy —Pcs

where P is a constant, as the condensation proceeds.

We may think of co as measuring the "degree of super-
conductivity, " or the "fraction of superconducting
electrons" (relative to the number at O'K), or as a,

long-range order parameter in the electron distribution,
but it is essentially introduced as a measure of the
condensation energy. '

The normal phase electrons are assumed to show the
temperature excitation of the degenerate Fermi gas,
speci6c heat yT per mole, but the effective number of
normal electrons will be assumed proportional to a
function of the degree of condensation, E(co), where
E(0)=1 and E(1)=0.' This dependence on cv is not
surprising if we anticipate the statistical explanation
of the model, ' and note that in the ordinary band
picture of a metal the eGective number of electrons is
determined by the density of states at the Fermi
surface. This density may be expected to alter strongly,
in the development of the superconducting state as is
specifically indicated by calculations based on the
theory introducing interactions of electrons with
lattice vibrations.

On the basis of these assumptions, a reasonable form
for the Helmholtz free energy per mole of the metal in
the superconducting state is

Il, (T, ~) = Uo —Pcg —-', yT'E((o)+Fi, (T), (2.1)

where two further assumptions have been introduced.
First, the zero-point energy of the electron distribution
and of the lattice vibrations or internal energy of the
metal per mole at 0 K, Uo, is assumed unaltered as
electrons transfer from -the normal to the supercon-
ducting phase, except for the part speci6cally taken
into account by the condensation energy, —Pro. Thus
the model does not imply that each electronic phase
separately builds up its own degenerate Fermi distri-
bution with rapidly changing total numbers of electrons
below T,. Rather the condensation is concerned with
processes taking place at the surface of the single Fermi
distribution of all the electrons which alter electron
energies very slightly near that surface, but no change
occurs in the vast bulk of the electrons in the interior
of the Fermi sphere whose energies make up the large
zero-point energy.

Second, the temperature dependent lattice contribu-
tion to the free energy, Fl, (T), is assumed independent
of co, i.e., unchanged by the transition to the super-
conducting state. Although the lattice vibration theory
of superconductivity specifically assumes that a strong
interaction between electrons and lattice vibrations sets

'In view of the direct physical interpretation of or in the
statistical picture, it seems advisable to retain it as the funda-
mental parameter rather than use the parameter @=1—~ advo-
cated by P. L. Bender and C. J, Gorter, Physica IS, 597 (1952),
p. 600, on the basis of the analogy with the two-Quid model of
liquid helium. In fact the e6'ective number of normal electrons
is not proportional to 1-co, as shown by Kq. (2.1).

6 A discussion is given later (Sec. 4), of the significance of and
evidence for the assumption E(1)=0.

VA plausible statistical basis for the two-Quid model will be
developed in detail elsewhere by one of us (P. M. M.).



TAO —FLUI D MODELS OF SU P ERCON DUCTI V IT Y

in at the transition, this is consistent with the assump-
tion about FI.(T) if we assume that the important
interactions are only with the short wavelength vibra-
tions at the top of the frequency distribution. At the
low temperature of the transition (compared to the
Debye temperature), these short wavelengths are not
excited being present only in the zero-point oscillation,
hence change of co will acct only the zero-point energies,
not Fl, (T), and will be absorbed in the condensation
energy, —por. s

In fact, the success of the model in accounting for
the observed thermodynamic properties will be support
for the assumption that the important interactions are
with short wavelength zero-point oscillations. In par-
ticular, the correct prediction of the behavior under
change of isotopic mass will be significant because
Fl, (T) depends strongly on lattice mass, as will be
brought out later (Sec. 3).

In the normal state (unstable in the absence of a
magnetic field for T(T,), the free energy corresponding
to (1) is

F„(T)= Up ',yT'+F1.(T)—. - (2.2)

The equilibrium value of co, cv, at any temperature is
determined by minimizing F„yielding the implici't
equation for co, as a function of T,

&'( .) = —2&/VT'= &'(0) (T./T)'. (2.3)

P=Hp'U /Sm. , (2 5)

' In the Debye approximation the lattice zero-point energy
included in Vp is (9/8)hv rV, where v =kT/tr is the maximum
lattice frequency and N the atom density (per mole). The temper-
ature dependent part of the lattice free energy is FL, (T)= ——,rr'EkT(T/s)'. Condensation energies in the electron distri-
bution and decreases in the zero-point energies of lattice vibrations
cannot really be distinguished, since we are dealing with an
interaction in which the energy is not uniquely assigned to either.
A further argument that the significant interactions are with
short wavelength vibrations has been given by J. Bardeen, Phys.
Rev. Sl, 1070 (1951), namely that the transition temperature of
films or colloids, 5)(10 6 cm in dimension, is essentially the same
as for bulk material. Hence the long wavelength part of the
vibrational spectrum, comparable with 5X10 ' cm or greater,
which is affected by the small size, is not important for the
interaction producing the condensation.

.
' See, for example, P. M. Marcus, Phys. Rev. 88, 373 (1952),

Eq. (3.5) with 4 =0.

In the right hand form of Eq. (2.3), or, has been set
equal to zero at the transition temperature, T„thereby
assuming that the transition is second order and no
abrupt change of co occurs at T,.

The critical field B, at any T is related to the free
energy diGerence by

H sV /87r=F„(T) F,(T, or,) —(a)

=P~. svT'I:1 —&(~.)7,—(b)
(2.4)

on neglecting penetration effects, so that the Gibbs
free energy of the superconducting phase in the field is
obtained from F, simply by adding the term HsV /Sm.
per mole, ' where t/' is- the molar volume.

Since by definition or, =1 at T=O, Eq. (2.4) gives

where H p is the critical field at O'K. Putting Eq. (2.5)
in Eq. (2.3) gives

Hp'—V /Tos4rrIC' (0) (2.6)

a generalization of Kok's relation, derived originally
for the case of a parabolic critical Geld, " for which
case, as will be shown later, E'(0) = —rs.

Substitution of Eq. (2.6) and Eq. (2.5) in Eq. (2.4)
gives the critical Geld curve, which is, in reduced form,

(2.7)

where
h=H. /Hp, t= T/T. . (2.S)

Differentiating Eq. (2.7), and using Eq. (2.3), gives
the simple formula for the slope of the reduced Geld
curve"

dh/dt =h/t ~,/ht, — (2 9)

which reduces at the transition temperature where
t= 1, h=co, =0, to

(dh/dt), i ———
L
—(dor, /dt), ,7&.

Substitution of Eq. (2.10) in Eq. (2.6) gives

pdHq '

t dT) r=r, 4rrE'(0)(dor, /d&), i

(2.10)

(2.11).

a formula permitting y to be determined from the
initial slope of the critical field curve once the model is
fixed, i.e., once E'(or) is known.

Finally, using Eq. (2.4), the entropy differences are

rp J. A. Kok, Physica 1, 1103 (1934).Bender and Gorter (refer-
ence 5) also give an equation equivalent to Eq. (2.6) Ltheir Eq.
(12)g, in which the function r(x, T), x=1—or, replaces our X(or).
The additional generality implied in introducing T explicitly in r
does not lead in a simple way to a critical field curve expressed
in pure reduced form, as required to explain the isotope effects
(Sec. 3), and is not in accord with a statistical picture based on a
mean potential which varies with co (see reference 25). A relation
like Eq. (2.6) may, in fact, be established without a model,
simply in terms of the form of h(t) near t=0 see Eq. (2.7)), by
assuming that the entropy difference S —S, (given by Eq. (2.12))
is dominated by a linear term in t, as t—+0, which comes from the
normal state electronic entropy. This assumption leads to the
form h(t) =1—t'q(t) where q(0) is finite (and q(1)= 1), and gives
v=HpsV 9(0)/2rrT, '. It is not necessary to assume the derivatives
of q(t) exist at t=0, as is done by A. Sommerfeld, Z. Physik 118,
467 (1941), which in fact is not generally possible for the two
Quid model. Compare also Lock, Pippard, and Shoenberg, Proc.
Cambridge Phil. Soc. 47, 811 (1951),p. 818.

"Equation (2.9) also follows as a direct consequence of the
identity:

F„F,=por, + ', TB/(ST) y—(F F,), -—
a form not unlike the Gibbs-Helmholtz equation which is obtained
by using Eq. (2.12a) in Eq. (2.4). Equation (2.9) could then be
used to obtain ar, (t) directly from h(t). Equation (2.7) would then
give the corresponding value of E(or,), provided that X'(0) is
known. Alternatively, differentiatin h leads to the simple
relation E(or.)=1—X'(0)Ld(h')/d(t') which also permits evalu-
atin E(co,) from experimental data. If E(1)=0, then E'(0)
= 1 Ld(trs)/d(t )jr p. Arguments for E(1)=0 are given in Sec. 4,
and this is shown to be equivalent to lack of a linear term in S„
the assumption used in (see reference 10).
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oi;+1 t4/4[E'(0) j'.—

3. RELATION TO ISOTOPE EFFECTS

(2.16)

The implications of the generalized two-Quid model
with respect to isotopic change of lattice mass, 3E, are
obtained from the assumption that E(oi) is a function
characteristic of the electron distribution and inde-
pendent of M. In addition, y, the electronic speci6c
heat coefIicient in the normal state, a function of the
electron distribution and interatomic potential, is
plausibly assumed independent of M. The assumption
about E(o&) is not entirely obvious since the lattice
vibrations, which depend on M, interact with the
electron distribution. However, change of M affects
the amplitudes of zero-point oscillations (and the
frequencies, although not the wave numbers), hence,
may reasonably be thought to affect the strength of
the interaction but not the manner of alteration of the
electron distribution when the condensation starts,
i.e., not the particular way the mean potential alters
as the electrons condense. In other words the distortion
of the mean potential, or mean energy function for
individual electrons, and the consequent effective
number of normal electrons, is conceived to depend
only on the extent to which the electronic wave func-
tions have altered as a result of condensation, and this
extent is measured by the single parameter u. The
distortion is the same even though the same value of ~

given by

S„—S,= [r—l(F„(T) F—, (T, te))/BT)v, , (a)
= —rc)(F (T)—F.(T, ~.))/~T]F (b) "(2.12)
=yT [1—E(c0,)], (c).

which evidently satisfies the requirements of the third
law of thermodynamics. Note that ~ does not have to
be held constant in the differentiation if it has its
equilibrium value, tu„since [rlF.(T, cv)/c)cu)~=~, =0.
Equation (2.12) may also be written in terms of the
electronic entropies in the two states as

elect —+T ~ S cleat —+TE(~ ) (2 13)

Correspondingly the specific heats (all at constant
volume) are given by

C elect/~T —1 (a)
~.'""/7T=E( .)+ (E'(0)/f) (d ./df) (b) (2 14)

=E(&0 ) —2[E'(0)$'/t'E" (c0,), (c)

and the discontinuity in specific heat at T, is then

[(C,—C„)/vT, j,=,= —E'(0) (d&/df)', , (2.15)

Another useful result which follows from Eq. (2.9)
may be mentioned here. On making use of the limiting
foH11

k~1+ P/2E'(0)t~
it can be shown that

may be obtained at different T, depending on the
strength of the interaction with the lattice vibrations,
e.g. , as is brought about by change of M."Thus, P or
Hs and T, are dependent on cV, but we assume E(s&),
and p are not. Hence, t0., determined by Eq. (2.3),
and E'(0), are functions only of reduced temperature
and not of M.

The immediate result of this assumption is that the
reduced critical field curve, given by Eq. (2.7), is
invariant to change of M, as are the ratio Hs/T. by
Eq. (2.6)," and the initial slope of the critical field
curve, (dH/dT)r, by Eq. (2.11) or Eq. (2.10). These
conclusions are in agreement with experiment. ""In
addition, the reduced electronic entropy and specific
heat are invariant functions of reduced temperature,
as shown by (2.13), (2.14), (2.15), and as indicated
previously for the o. model, 4 and termed the similarity
property.

Now if the temperature-dependent lattice contribu-
tion to the free energy, FI.(T), were a function of cv as
well as of T, these conclusions about invariance with
respect to M would not follow, since the derivation of
Eq. (2.7), depending on Eq. (2.4), would turn up terms
involving Fl, (T, or) which could not be written in
reduced form. " This means the critical Geld curve
could not be given in purely reduced form, in contra-
diction to its observed invariance with respect to M.
Thus the initial assumption that Fl.(T) is independent
of co is supported.

4. SPECIAL FORMS OF K(es) AND EXPERIMENTAL
COMPARISONS

Although E(&u), the effective number of normal
electrons (relative to the normal state), cannot be
determined without a detailed theory of the interaction
producing the electron condensation, some information
about E(o&) follows from the condition that the phase
transition be a second-order transition (an assumption
already used in the general analysis of Sec. 2). Thus o&

must shown no sudden jumps at T, or at lower T (note
all considerations are for zero magnetic field). It will

follow that the n model of Casimir and Gorter is a
permissible and plausible choice to represent E(&v)
which then permits systematic and satisfactory repre-

~ For example, Bardeen's interaction term in the Hamiltonian
is assumed proportional to the lattice vibration amplitudes LPhys.
Rev. SO, 567 (1950), Eq. (2.6)g, and this makes the interaction
energy, or Htt PEq. (4.26)j, proportional to M ', as observed in
the isotope shift.

'3Note that the relation between y and q(0) in reference 10
established without any model shows that the invariance of Ht/T.
to change of 3f follows directly from the invariance of h(/) and
y, and is thus not an independent test of the model.

'4 E. Maxwell, Phys. Rev. 86, 235 (i952).
"Lock, Pippard, and Shoenberg, Proc. Cambridge Phil. Soc.

47, 8ii (195i).
"The critical Geld curve becomes

,L1—A(cu, )g L1—E(cv,)g Btr, (T, (u, )
E'(0) pE (0)

1
+putz, (T, 0) Pr(T, tt,)3. — ,
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sentation of the measured values of thermodynamic
properties.

By definition co takes values only in the restricted,
positive range from 0 to 1, and P, the condensation
energy, is an intrinsically positive quantity, as shown

by Eq. (2.5). Then E(oi) must decrease as ~d increases
from 0, for if E(oi) increased with o&, finite values of o~

would be favorable at all T since F,(T, o~), as given by
Eq. (2.1), would then decrease. Also K(0) =1, since by
definition co=0 in the normal state, corresponding to
F„given by Eq. (2.2).

Evidently values of co)0 will not be favorable as
long as (r)F, (T, co)/8~)„=s)0. The transition point,
given by

marks the beginning of the temperature range in which
finite values of co are favorable. However, if a finite
jump increase in co at T, is not to be favorable, we
must have

(O'F,(T„o))/c)oP) „=s—— ', yT—,'-K"(0))0, (4.2)

since the second derivative will dominate the change of
F, with oi at T,. From Eq. (4.1) or Eq. (2.3), E'(0) &0,
and from Eq. (4.2), E"(0) &0.

The same arguments apply at any T& T, if no finite
jumps in co are to occur and lead to the general condi-
tions ~

3-cm wavelength approach zero at O'K, hence E(o&)
should approach zero at O'K, since it is plausible that
the same K(oi) enters into the effective number of
normal electrons determining both the speci6c heat and
the Ohmic conductivity (at sufFiciently low frequencies
—at higher frequencies excited electrons produced by
internal photoeffect might be expected to produce
additional Ohmic currents) .

Now a general function that satisfies the boundary
conditions K(0) = 1, E(1)=0 can be given in the form

E(ca) = (1—oi)~&"&. (4.4)

n(~) might be reasonably expected to be a slowly
varying function of ~, since the boundary conditions
at co=0, 1 are automatically satisfied for any 6nite Q

(which is positive at co= 1). The conditions Eq. (4.3)
will now give restrictions on the slowness of variation
of n(co), namely on its derivatives, but it will be sufficient
here to show that constant Q provides enough Rexibility
to reproduce the measured values. This is the original
model of Casimir and Gorter, ' conveniently termed
the n model. The conditions, Eq. (4.3) then require"

0&Q(|. (4.3)

i,0—

The general relations of Sec. 2 reduce to special
forms for the Q model. These are tabulated brieQy for

E'(o~) &0; E"(oi) &0; 0 &oi &1. (4.3)

A further interesting general result is that co, must b'e
a monotonically increasing function of t as t decreases,
since by Kq. (4.3) E'(ro) is negative and decreasing as
o& increases, and by Eq. (2.3) which gives oi. as a
function of t, E'(cv.) monotonically decreases (algebrai-
cally) as f decreases.

In addition to the conditions Eq. (4.3) on E(or),
E(0)=1 as noted above and it is reasonable to take
E(1)=0. The latter implies that the effective number
of normal electrons vanishes at O'K, a conclusion for
which there is some evidence from the specific heat
and from the behavior of the high-frequency losses.
Thus if K(1) is fmite, there will be a linear term in the
speci6c heat of the superconducting phase. " Since no
linear term has been observed, this is also evidence that
E(1)=0. Pippard" has shown that the losses in tin at

'7 The argument is really repeated at ~=co. for each t&1, at
which (8F,(T, ca,)/&ca) =0, but this covers 0 &a&(1. Conditions
similar to (4.3) are obtained by Landau and Lifshitz at the Curie
point of a general order-disorder transformation, also by con-
sideration of expansions in powers of the order parameter. See
L. Landau and E. Lifshitz, Statistical Physics (Oxford University
Press, London, 1938), e.g. , p. 20'7, Eq. (69.5).' If E(1) were finite it would follow from Eq. (2.13) that S."'
would contain a linear term (plus higher order terms). Conse-
quently C,'"'~ would also contain a linear term. Otherwise stated
a linear term in Eq. (2.14b) would arise only from Z(1)&0,
since, as a consequence of Eq. (2.16), the term PE'(0)/tg(des, /dt)~
0 as t—+0.

'9 A. B. Pippard, Proc. Roy. Soc. (London) A203, 98 (1950).

i.0

FIG. 1. Reduced critical Geld curves according to the a model for
various values of n.

2'In a certain sense a 'superconductor with larger a may be
regarded as more strongly superconducting since n—+1 tends to
convert the second-order transition into the stronger first-order
type. Smaller 0, makes the transition less abrupt (possibly non-
superconductors can be interpreted as having +&0). 0, measures
how strongly the electron condensation a6'ects the mean potential
acting on all electrons, but does not measure the size of the
condensation energy which is what determines T,. It will be
readily seen that 0( is given by —E'(0), the rate at which the
effective number of normal electrons decreases as the condensation
process starts.
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reference in Appendix I together with the special simple
case n=-,' which leads to the well-known parabolic
critical field law and has a special place in the theory.

The significance of the case 0.=-, with its particularly
simple formulas is shown by the reduced critical field
curves in Fig. 1. The curves cross at t=0 and 1, and
all have zero slope at t=0. In fact the curves for the
general case with arbitrary E(~) are all parabolic for
small t, although with di6erent curvatures, since the
temperature-dependent part of (2.4) is then dominated
by the term —~yT' which arises from the Fermi-Dirac
statistics. "In addition the curves are rather insensitive
to change of n around —,'; thus a 20 percent change from
0.5 to 0.4 produces a maximum deviation in h values of
only 5 percent. The curves therefore all tend to look
parabolic, and rather good precision (of the order of a
few tenths of a percent), only recently attained, is
required to fix n more exactly from experimental data.

Curves showing the deviations from the parabolic
case, h~ —h, plotted in Fig. 2 against P, are convenient
for analyzing the experimental results. "Some of the ex-
perimental data for tin, thallium, indium, and mercury
are shown in Fig. 2, for purposes of comparison.
The general trend of these data is consistent with the
form suggested by the n model in the measured range
of temperature. The fact that tin, thallium, and indium
appear to be characterized by the same value of n (0.38)
is probably without significance. The internal con-
sistency of the data is good, as indicated by the rela-
tively small scatter. Nevertheless the degree of con-
vexity of the experimental curves, and consequently the
appropriate 0., is sensitive to small changes in the value
of LID used for normalization. Ilp is obtained by an
extrapolation procedure which involves fitting the data
to some smooth function, in the case of Fig. 2, a cubic
equation. However with another and equally reasonable
choice of smoothing function it was observed that the
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Fxo. 2. Plots of the deviation of the critical fields from parabolic
form for the o. model, the E model, and the experimental data.

O' E(i)=0 and (1—co,)jP—+0 as $~0 as in reference 19.
~ E. Maxwell and O. S. I.utes (to be published).

indium and thallium points shifted down to the neigh-
borhood of the o.=0.45 curve while the tin points
continued to cluster around +=0.40. Nevertheless the
curves are definitely convex in spite of the fact that 0.

cannot be precisely specified. For mercury, however,
the data are very closely parabolic. A fuller discussion
of these and other experimental matters will appear in
another paper. "

Also plotted in Fig. 2 are the predicted values given
by an interesting special form of the two-Quid model
due to Koppe" which has been used in two recent
papers to compare with experimental results. '4 Koppe
obtains a unique form for E(co) and the various thermo-
dynamic functions by means of a statistical assumption
derived from Heisenberg's theory of superconductivity.
Koppe's curve is not inconsistent with the indium and
thallium data, if we take into account the uncertainties
in Hp discussed above. There would appear to be a
small, but not very serious disagreement with the tin
data. For these three metals both the Koppe model
and the o. model are plausible descriptions at tempera-
tures above 1'K. The mercury data are, however,
accurately parabolic and hence conQict with Koppe's
model which predicts a universal (nonparabolic) critical
field curve for all superconductors. The parabolic
behavior was first observed both in a mercury sample
contained in a glass capillary and later confirmed for a
single-crystal free rod, thus minimizing the possibility
of secondary eGects due to strain.

No single value of a will fit Koppe's curve, as shown

by Fig. 3 where the equivalent n values, i.e., the values
of constant n giving the same h at that t, are plotted
against f. LThese are not quite the values of n(cv) that
would occur in a representation of Koppe's curve in

the form Eq. (4.4).$ The difference from the n model is.
particularly marked at low t, where Koppe's values for
the effective number of normal electrons, n„propor-
tional to E(a&), decrease more rapidly than any n model
and the decrease is, in fact, exponential as shown by
(II.18).Analysis of electronic specific heat and thermal
conductivity measurements should be useful here,
since they depend directly on e„whereas h is rather
insensitive to e, at low( (all curves becoming parabolic
with zero slope at 1=0; Koppe's curve has also the
same curvature as the simple parabola of the case
n=-', ). (See remarks under footnote 26.)

Koppe's equations follow from the assumption that
the density of electron states (in energy) has a discon-
tinuity at the Fermi level (for O'K), co, remaining the
same below eo, but being reduced by the factor (1—cv)

above ep. This is qualitatively deduced from Heisen-
berg's picture of a condensation of a portion co of the
electrons at the Fermi surface resulting from Coulomb

3 H. Koppe, Ann. Physik (6), 1, 405 (1947).' Reference 5 and %'orley, Zemansky, and Boorse, Phys. Rev.
87, 1142(L) (1952).
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FIG. 3. The equivalent values of n for the Koppe model expressed
as a function of t.

interactions between electrons. "The density of states
is thus not de6ned at the Fermi level because of the
discontinuity, but it is not surprising that the statistical
calculation gives for E(tp) a value close to the geometric
mean of the two values above and below the discon-
tinuity, namely (1—&o)&. Koppe's formulas may be
obtained in simpli6ed form by evaluating the Fermi-
Dirac integrals differently (without the usual integra-
tion by parts), and in fact reduced to tabulated func-
tions, so that it seems worth while to repeat some of
them here, and they are listed in Appendix II."Good-

man has independently obtained simpli6cations of
Koppe's equation similar to those given here (Cam-
bridge thesis, unpublished) .

In view, on the one hand, of the recent successes of
the lattice vibration interaction theory and, on the other
hand, of various severe criticisms of the Heisenberg
theory, it would seem that the original basis for Koppe's
assumptions is very doubtful. His resulting value for
E(cu) is, however, quite reasonable, although it is
quantitatively in disagreement with experimental
results for mercury, The greater flexibility of the o,

model permits fairly accurate characterization of all the
measurements, although it too has as yet no funda-
mental justi6cation.

It is noteworthy that Koppe has made a definite and
quite simple statistical assumption in deriving his
results, thus, going one stage further back than the
discussion of the 0. model given above. However a
similar, although not as simple, statistical assumption
could easily be introduced to obtain the o; modeP'. and
eventually the lattice vibration theory may derive some
statistical basis of this kind. Meanwhile the adequacy
of the o. model should be tested by additional measure-
ments, both on more superconductors, and at lower
temperatures where the predictions of the two models
above diGer substantially with regard to the eGective
number of normal electrons.

The authors are indebted to Dr. J. Bardeen for
helpful comment and discussion.

APPENDIX I
Tabulated Relations for the e Model

General o. Case n= ~z

(1 gs)s

2

E ((p) (1—~) (1—~)' (I.1)
E'(0) CX (I.2)

Mg )2/(1—a) (I.3)

E(tp,) Pa/(1 —e) f2 (I.4)
h' = 1 t'/e+ (1/rr 1)P'—"— (I.5)

(dh/dt) t r
—— $2/(1 —n) j& (I.6)

Hps V„/T.'4 nor Hp'V /T, s2tr (I.7)
= (dH/dT)&r r,V (1 rr)/Srrrr — (dH/dT)sr T,V„,/Ss. (I.S)

g elect/+T pe/{1—e) P (I.9)
C elect/+T gta/(1 —a) (1+&)/(I ) 3P (I.10)

(C.—C„)/yT. = 2tr/(1 —n) (I.11)
~~ The relation of Koppe's theory to a more general statistical treatment of the superconducting condensation will be given in more

detail separately (see reference 7). This treatment relates the condensation to the usual band theory of metals by introducing a mean
potential for any of the electrons, which depends on and which determines the quantum levels over which all the electrons are dis-
tributed according to the Fermi-Dirac statistics. The treatment is qualitatively linked to the lattice vibration interaction theory.

"Preliminary reports of thermal conductivity measurements at very low t do indicate an exponential form for the effective
number of normal electrons; B. B. Goodman, Cambridge thesis {unpublished) also Report on Oxford Conference for Very Low
Temperature Physics (1951); Proc. Phys. Soc. (London) A66, 217 (1953); J. G. Daunt et oL, Proceedings of Schenectady
Cryogenics Conference (1952). Thus while the a model may be adequate for f)0.3, a form of E(ee) like that of Koppe's may be
better at lower t, although it should be noted that Koppe predicts the same exponential for all superconductors, as shown by (II.18).

"Assume the density of states for energies greater than ee is reduced by a factor g(co) rather than (1—ce). Then for each a, g(te)
can be determined to give E(te)=(1-te) . (II.1), (II.2) are simply modified by replacing by 1—g(cu) wherever te appears
explicitly. (II.4), (II.5) have similar, although slightly different, replacements.
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APPENDIX II

Simpli6ed and Limiting Forms of Koppe's Model

E((o)= (1—ce) (1+3a'/H(u)

+(6 / ')f(1/(1+ ) (TI1)

comparison with the n model. Thus, when

t~1
~ %&~0, 8&~0)

a—(o (1+(v/2) ln2+ 0 (c0'),

(II.6)

(II.7)

E(ce)=E(0)+(oE'(0)+ (co'/2) E"(0)+0((o') (II.8)

a = a/In(1+e'),

ao

f(x) = — dx ln(1 —x)/x= P x"/e'

E'((u) = —1+3a'(1—2')/s-'c0'

(II 2)

(IT.3)

= 1—(ce/2) —(3/m') (In'2)(v'+ 0 (aP),

(o —(vr'/6 ln'2) (1—t)+0[(1—t)'j, (IT.9)

[(C,—C„)/yT„,jc g
——(7r'/12 In'2) = 1.7118; (II.10)

and similarly when

E"(ce) = —(6a/n'cv) (da/de) .

t—+0, w,—+1, a,~~,

(1—ca)= (e
—/a)+0(e —"/a),

(II.11)

(II.12)

a,—(c/t) (1—t'+0(t4)+0(e ~ /a, ),

c= (~'/6) '*= 1.2826,

a', = 1—(t/c)e ' '[1+tc+ (1+c'/2)t'

Tog th ith Eq . (2.3)—(2.1 ) (II.1)—(II.5) p 't
simple numerical calculation of the various thermo- E'{~)=—1—3a'/~'+6e '/~'+0(ae ' ), (II.14)
dynamic functions and the critical field curve. The
function f(x) has been discussed and tabulated by (II.15)
MitcheB." In the present application the complete
range of interest is 0~&x~&0.5 for which the series (TI.16)
converges rapidly; in the worst case, x=0.5, only 8
terms are required for four place accuracy.

Of particular interest are the limiting forms of the 0 P)g 0 -',), II.17OP Oe—'~ a,),functions in (II.1)—(II.S) and various other functions,
as t aPProaches 1 and 0, since these Permit direct E( ) (e

—gc/2ct)[1+. (c+,2/c)t+(3+ca/2)ts
' K. Mitchell, Phil. Mag. 40, 351 (1949). f(x) is tabulated

over x= —1.00(0.01)j..00: 9D and over x=0.000(0.001)0.500: 9D. +0(t'))+0( "') (II 18)


