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Assuming f&"&()'o, kp) not dependent on angles, Eq. (7) gives, as
first iteration:

provided (ko/4&ro) J'g (k, k')dQ'&0. Putting the value of C(k, kp)

in (2), we get

g(k, ko)+ —. f&."&(k, ko)fg(k, k')dQ'
4'-i

Gamma Radiation Following Decay of I&o&f

HARRY C. HoYT+ AND JEssE W. M. DUMQND
California Institute of Technology, Pasadena, California

(Received June 29, 1953)

~ "N view of the long time which elapsed between the erst meas-
- t- urements of P" gamma radiation with the curved crystal
gamma-ray spectrometer' and the most recent calibration of the
instrument/ these radiations have been remeasured. Three
gamma-ray lines, of approximately 364, 284, and 80 kev, were
detected and measured at this time. The wavelengths, in both
x units (Siegbahn scale) and milliangstroms, and the energies of
these lines are given in Tab1e I. The stated uncertainties are

C&"+"(k k ) =g (k kp) 1+—.fg(k, k') dQ' . (8) TABLE L Wavelengths and energies of radiation
following decay of I»'.

The criterion of convergence' may be very easily deduced. We
simply state that the absolute value of the correction amplitude
does not exceed the maximum amount of deviation of the fore-
going approximate amplitude from the exact amplitude; i.e.,

(E " ' (k ko) ~&o ", &f g(k, k')&0 and ~ko( &0,

Wavelength in x units
(Siegbahn scale)

33.946 ~0,0045
43.517%0.0073

154.336~0.0161

Wavelength in
milliangstroms

34,016~0.0047
43.607 ~0.0075

154.656 ~0.0170

Energy in kev

364.467 ~0.050
284,307 +0.049
80.164~0.0088

where 0&8&i.
The general reliability of this method may be shown by consider-

ing the scattering of positive mesons by neutrons. It will be
shown that the solution (8) gives the exact result as obtained by
Ma' and Goldberger4 using variational methods.

The relevant matrix element for this process may be written as

(p, k~ && ~po, kp) u(ai=+aoyo)uo/2oo(Wpo 3d'o),—

where 8 and Np are the usual Dirac spinors corresponding to
four-momenta y and yp, respectively. k and kp are the 6nal and
initial four-momenta of the meson, and op= (p2+q')&, where q is
the magnitude of. the momentum of either particle and p. the
meson mass. Wp is the total energy. ai= f'ilf and a:=f Wp in the
case of pseudoscalar coupling.

Writing (y, k~&& ~ypko)= (-,op)(ug(p, pp)u), the Heitler equation
reduces to

f(p, po) =g(p, po)+32, W
dQ'g(p, p')( —ov y'+2lr)f(y', po)

p

Using the solution (7), we have

f(y, pp) =g(p, po) 1
32+W f—dQ'g(p, p')( oy p'+M—)

where

=g(p, pp)/(1 —o& ),

k= (q/8orWo)g(p, po) (Eoyo+3I),

(9)

M being the nucleon mass and Ep the nucleon energy.
The same result has been obtained by Goldberger4 and Ma. '
That (9) is the exact solution may be ver'fied by iterating this

result by means of (7). The second iteration will give the same
result (9).

The author wishes to thank Dr. D. Basu for suggesting the
problem and for helpful guidance. Detailed calculations and
various applications to meson-nucleon and nucleon-nucleon scat-
tering are in progress and will be published elsewhere.
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where c&"), is the maximum of all deviations of the approximate
solutions .from the true solution.

Further, the average amounts of the deviations o&"&(k, kp),
e("+')(k, kp), , of the approximate amplitudes from the true
amplitudes converge towards zero if

1+ I c(k, ko) I+—'.f I c(k, k')
I I g(k, k') ldQ'«&,

standard deviations. As reported in reference 1, these three gamma-
ray lines form a Ritz combination. Equation (1) shows the ex-
cellent agreement of the present results when expressed in such
a form:

(284.307&0.049)+ (80.164&0.0088) —(364.467+0.050)
=0.004&0.071. (1)
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ECENTLY Kuhn and Van Vleck' have given a method for
calculating the ground-state energy ef) and the Fermi energy

eg of an alkali metal in the Wigner-Seitz sphere approximation~
without explicit knowledge of the ion-core potential or numerical
integration of the radical wave equation. The spectroscopic term
values of the free atom were the only empirical data used in the
calculation. The Kuhn-Van Vleck method appeared to give reliable
results for the ground state energy, but the values for the Fermi
energy deviated so drastically from the free electron values, at
least for potassium and rubidium, that doubt was thrown on the
validity of the method.

It is the purpose of the present note to point out a number
of simplifications of the Kuhn-Van Vleck method, which, when
applied, not only greatly reduce the numerical labor of a calcula-
tion, but also give more reasonable values of the Fermi energy,
and permit, for the first time, reasonable theoretical predictions
of the cohesive energy of all the a,lkali metals using only the
properties of the free-atom spectra. The chief remaining uncer-
tainties in the calculation are in the exchange and correlation
energies.

Kuhn and Van Vleck make use of the fact that in the alkali
metals the potential is Coulombic at the surface of the unit "ell
and that therefore the wave functions in this region may be
expressed as linear combinations of conRuent hypergeometric
functions. The improvement in the present work is that we have
found an explicit analytical form of the wave function in terms


