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Assuming f&"&()'o, kp) not dependent on angles, Eq. (7) gives, as
first iteration:
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~ "N view of the long time which elapsed between the erst meas-
- t- urements of P" gamma radiation with the curved crystal
gamma-ray spectrometer' and the most recent calibration of the
instrument/ these radiations have been remeasured. Three
gamma-ray lines, of approximately 364, 284, and 80 kev, were
detected and measured at this time. The wavelengths, in both
x units (Siegbahn scale) and milliangstroms, and the energies of
these lines are given in Tab1e I. The stated uncertainties are

C&"+"(k k ) =g (k kp) 1+—.fg(k, k') dQ' . (8) TABLE L Wavelengths and energies of radiation
following decay of I»'.

The criterion of convergence' may be very easily deduced. We
simply state that the absolute value of the correction amplitude
does not exceed the maximum amount of deviation of the fore-
going approximate amplitude from the exact amplitude; i.e.,

(E " ' (k ko) ~&o ", &f g(k, k')&0 and ~ko( &0,

Wavelength in x units
(Siegbahn scale)

33.946 ~0,0045
43.517%0.0073

154.336~0.0161

Wavelength in
milliangstroms

34,016~0.0047
43.607 ~0.0075

154.656 ~0.0170

Energy in kev

364.467 ~0.050
284,307 +0.049
80.164~0.0088

where 0&8&i.
The general reliability of this method may be shown by consider-

ing the scattering of positive mesons by neutrons. It will be
shown that the solution (8) gives the exact result as obtained by
Ma' and Goldberger4 using variational methods.

The relevant matrix element for this process may be written as

(p, k~ && ~po, kp) u(ai=+aoyo)uo/2oo(Wpo 3d'o),—

where 8 and Np are the usual Dirac spinors corresponding to
four-momenta y and yp, respectively. k and kp are the 6nal and
initial four-momenta of the meson, and op= (p2+q')&, where q is
the magnitude of. the momentum of either particle and p. the
meson mass. Wp is the total energy. ai= f'ilf and a:=f Wp in the
case of pseudoscalar coupling.

Writing (y, k~&& ~ypko)= (-,op)(ug(p, pp)u), the Heitler equation
reduces to

f(p, po) =g(p, po)+32, W
dQ'g(p, p')( —ov y'+2lr)f(y', po)

p

Using the solution (7), we have

f(y, pp) =g(p, po) 1
32+W f—dQ'g(p, p')( oy p'+M—)

where

=g(p, pp)/(1 —o& ),

k= (q/8orWo)g(p, po) (Eoyo+3I),

(9)

M being the nucleon mass and Ep the nucleon energy.
The same result has been obtained by Goldberger4 and Ma. '
That (9) is the exact solution may be ver'fied by iterating this

result by means of (7). The second iteration will give the same
result (9).

The author wishes to thank Dr. D. Basu for suggesting the
problem and for helpful guidance. Detailed calculations and
various applications to meson-nucleon and nucleon-nucleon scat-
tering are in progress and will be published elsewhere.
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where c&"), is the maximum of all deviations of the approximate
solutions .from the true solution.

Further, the average amounts of the deviations o&"&(k, kp),
e("+')(k, kp), , of the approximate amplitudes from the true
amplitudes converge towards zero if

1+ I c(k, ko) I+—'.f I c(k, k')
I I g(k, k') ldQ'«&,

standard deviations. As reported in reference 1, these three gamma-
ray lines form a Ritz combination. Equation (1) shows the ex-
cellent agreement of the present results when expressed in such
a form:

(284.307&0.049)+ (80.164&0.0088) —(364.467+0.050)
=0.004&0.071. (1)

We wish to thank Mr. Floyd Humphrey for his assistance in
preparing the gamma-ray source and Dr. James R. Wilts for his
assistance in evaluating the data.
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ECENTLY Kuhn and Van Vleck' have given a method for
calculating the ground-state energy ef) and the Fermi energy

eg of an alkali metal in the Wigner-Seitz sphere approximation~
without explicit knowledge of the ion-core potential or numerical
integration of the radical wave equation. The spectroscopic term
values of the free atom were the only empirical data used in the
calculation. The Kuhn-Van Vleck method appeared to give reliable
results for the ground state energy, but the values for the Fermi
energy deviated so drastically from the free electron values, at
least for potassium and rubidium, that doubt was thrown on the
validity of the method.

It is the purpose of the present note to point out a number
of simplifications of the Kuhn-Van Vleck method, which, when
applied, not only greatly reduce the numerical labor of a calcula-
tion, but also give more reasonable values of the Fermi energy,
and permit, for the first time, reasonable theoretical predictions
of the cohesive energy of all the a,lkali metals using only the
properties of the free-atom spectra. The chief remaining uncer-
tainties in the calculation are in the exchange and correlation
energies.

Kuhn and Van Vleck make use of the fact that in the alkali
metals the potential is Coulombic at the surface of the unit "ell
and that therefore the wave functions in this region may be
expressed as linear combinations of conRuent hypergeometric
functions. The improvement in the present work is that we have
found an explicit analytical form of the wave function in terms
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v= »r'(~4»/~»») ' (2)

where qbo is the logarithmic derivative defined in reference 1.
This expression is rigorous, involves only the surface values of the
wave functions, and so can be computed from Eq. (1), using the
functions tabulated by Kuhn. This makes a substantial change
from the values of p calculated by Kuhn and Van Vleck, as shown
in Table I. The new values of a (defined in references 1 and 4)

TABLE I. Values of y (the effective mass constant)
and a for the alkali metals.

of the extrapolated quantum defect. This is, in terms of the
conventional Whit taker3 functions:

4'~(r) = sin(x8~) W„, ~+, (2r/n)

+ (—1)'f(e+l)!/(2l+1)!) sin (x(N+B~) )3f'„~+t (2r/n), (1)

where I=1/g», » in Rydbergs, and 8~ is the quantum defect
which can be found as a smooth function of the energy parameter
~ by straightforward extrapolation using the free atom term values
for each l. The ground state energy «depends on the s-functions,
while the Fermi energy depends on the p-functions. The latter
also depends on a quantity y, first introduced by Bardeen, 4

which is related to the normalized value of the s-function at the
surface of the signer-Seitz sphere. Recently Kohn' has shown
that p is given by

Ecnh=Ay8 1+~y8 +( ys —3 (3)

The equilibrium lattice constant was determined by minimizing
with respect to y, . In order to compare results with compressi-
bility data, the relation between p and y,, was determined by
differentiation of (3). The theoretical pressure corresponding to
observed values of r, was determined and compared with the
pressure at which this value was actually observed. The result is
shown in Table III. The pressures were calculated for room tem-

TABLE III. Test of theoretical pressure-volume relation for the alkali
metals. The pressures at which r, was actually observed are given in
parentheses.

perature. The theoretical results were obtained by using the new
value~ of n from Table I. The «values were taken from Kuhn
and Van Vleck after a check calculation with the new method on
5a showed that «was not altered significantly. The Li and Cs
values were calculated by the new method, since these elements
had not previously been treated by Kuhn and Van Vleck. The Li
results showed good agreement with the recent calculation of
Silverman and Kohn, ~ thus providing an additional check of the
method. Plane wave values of Coulomb, correlation, and exchange
energies were used (Table II).

The calculated total energies at three lattice constants were
fitted to an expression:

Kuhn and Van Vleck
Element z, = (8r,)& a

Present method
7 a

Element
Theoretical pressure &(10 3

(kg/cm2)

Li 4.5
5.0
5.5

5.0
5.5
6.0

1.120
1.020

. 0.930

0.962
0.980
1.013

1.197
1.052
0.993

1.206
1.046
0.935

0.471
0.674
0.819

1.001
0.984
0.999

Li
Na
K
Rb
Cs

40.0
40.1
38.6
22.3
24.2

(4o)

89.4
83.8
82.8
50.2

(1oo)

Cs

5.5
6.0
6.5

6.0
6.5
7.0

6.0
6.5
7.0

0.835
0.930
1.043

1.011
0.964
1.153

0,745
0.909
1.122

0.132
0.427
0.781

1.272
1.108
0.986

1.182
1.036
0.901

1.372
1.156
1.027

1.114
1.074
1.057

1.129
1.099
1.073

1.223
1.189
1.173

TABLE II. Comparison of theoretical and experimental cohesive energies
and lattice constants (at O'K).

show that the "plane wave" approximation for the Fermi energy
is a moderately good one as anticipated by Kuhn and Van Vleck.

The resulting theoretical values of cohesive energy and lattice
constant (at O'K) are shown for all the alkali metals in Table II,

perature and include an approximate correction for the thermal
pressure as determined by the Mie-Gruneisen equation of state. '
The agreement is fairly good for Li, Na, and K, but Rb and Cs
are theoretically too soft. A rough calculation indicates that the
discrepancy may possibly be explained by ion-core repulsion.

The present method is more general than the conventional
cellular method in that the ion core need not be represented by
the same potential for s, p, and d functions. This is probably
rather important in practice since Gorin found it was impossible
to devise a unique Prokoviev potential for potassium and the
situation is probably worse for rubidium and cesium.

The proof of Eq. (1), which is the heart of the present method,
can be carried out with the aid of the WKB asymptotic repre-
sentation developed by Kuhn, o Kuhn's equation contains an
error which does not affect his conclusions. His equation (6)
should be:

Element

Li theory
experiment

Na theory
experiment

K theory
experiment

Rb theory
experiment

38.7
36.5

26.5
26.0

.22.2
22.6

20.8
18.9

3.40
3.46

4.27
4.25

5.16
5.24

5,45
5.60

Cohesive energy
(kcal/mole) Lattice constant (A)

P & cos(s+rt »x) +!P!&-—-
&&Lsinrt, exp[s~+s exp( s»t) exp( ——[s~)j, (4)

as follows directly from his Eq. (2). Expressing g in terms of the
quantum defect in accordance with Kuhn's procedure, and com-
paring Eq. (4) with the known asymptotic forms of the conQuent
hypergeometric functions, Eq. (1) finally results.

Further details and applications of this calculation will be
published at a later date.

The author is indebted to Dr. Kuhn for access to his original
calculation sheets and for many stimulating and fruitful discus-
sions.

Cs theory
experiment

19.7
18.8

5.74
6.05

with the experimental results for comparison. The experimental
lattice constants are those for liquid air temperature. In the case
of Rb and Cs the experimental O'K values may be slightly
smaller because of the high compressibility and low Debye tem-
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