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Phase shifts for p-d and #n-d scattering are calculated in Born
approximation for partial waves with />1. These are used as a
starting point for a phase shift analysis of the p-d data in the
energy range 0-10 Mev. For [ >1, the phase shifts resulting from
‘the phase shift analysis agree with those calculated in Born
approximation. The 45 and %S phase shifts have a reasonable
energy dependence; that is, the “k cots” plots are smooth func-
tions of the energy and _extrapolate to a set of scattering lengths
near one of the known sets of n-d scattering lengths. It is con-
cluded that the correct set of n-d scattering lengths is

24=6.2+£0.2X1078 cm, @;=0.8+0.3X1078 cm.

Since this is in disagreement with some previous theoretical con-
jectures, the scattering lengths and S phase shifts in the energy

region 0-10 Mev are calculated using a variational method with
neglect of polarization (a theoretical estimate of the effect of
polarization is made) and the results support the conclusion.
N-d angular distributions are calculated and compared with experi-
ments. The agreement of the theoretical results with the experi-
mental ones provides a strong a fortior: justification of conclusions
drawn from the theory about the importance of the internucleonic
potentials in low energy p-d and n-d scattering. The scattering is
nearly independent of the odd parity #n-p potentials and of the
forces between like particles. Furthermore, it is nearly inde-
pendent of the shape of the 35 and S-un-p potentials. However,
the 25 scattering length is sensitive to the singlet even parity »n-n
potential, and is calculated as a function of the depth of this
potential. It is insensitive to other n-z potentials.

I. INTRODUCTION

UR primary purpose is to find out what can be
learned about the internucleonic forces from the
p-d and wn-d scattering data. Of course, a complete
solution of the three body problem is not possible, but
the program described in the next section leads to a
clarification of the importance of the forces between
like particles and the odd parity »-p forces in the p-d
and #n-d scattering. Unfortunately, it will be shown that
these forces influence the scattering to only a minor
degree, and the scattering is determined by the 35 and
1S n-p force. Furthermore, the scattering is insensitive
to the shape of the 35 and 1S #-p potentials.

An important result is obtained from a phase shift
analysis of the p-d data in the energy range 0-10 Mev.!*
It is concluded that the correct set of #-d scattering
lengths® is the set

24=6.240.2X 10~ cm,

1
a;=0.84-0.3X107% cm. M

Because this is in disagreement with some previous
theoretical conjectures®® even though in agreement
with others,’ we have recalculated the scattering
lengths, and the results support the concluion. As a
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( ; ?l)lred, Armstrong, Bondelid, and Rosen, Phys. Rev. 88, 433
1952).

5D. G. Hurst and N. Z. Alcock, Can. J. Phys. 29, 36 (1951);
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further test of the results of the phase shift analysis,
we have calculated the S phase shifts in the energy
region 0-10 Mev, and the calculation conﬁrms the
results of the phase shift analysis.

II. PROGRAM

The calculations are carried out for a general central
nuclear potential with either a Yukawa or Gauss radial
dependence. These potentials are adjusted in range and
depth to fit the low energy #-p'%!! and p-p*? data and,
in the case of the Yukawa potential, the high energy
n-p data.’® Tensor forces are not taken into account
since the #-p data can be well described by an “equiv-
alent central potential” and possible relatively weak
tensor forces in p-p and n-p odd parity states are ex-
pected to play a small role in #n-d or p-d scattering
(Sec. VIII-A.2). Any effects attributable to inelastic
scattering have been neglected throughout because the
experimentally determined inelastic cross section is
much smaller than the elastic cross section at these
energies (see also Sec. VIII-A 4).

The first step is to calculate the phase shifts for />1
using Born’s approximation with the symmetry of the
like particles taken into account (Secs. ITI, IV). The
validity of this approximation is discussed in detail in
Sec. VIII-A.1. It may be expected to yield reasonable
results . for the higher angular momentum states
because of the large spatial extent of the deuteron -and
the presence of the centrifugal barrier. Further justi-
fication comes from the smallness of the calculated
phase shifts.

The next step is to determine the %S and %S phase
shifts so that calculated and experimental angular

10 J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).
"H A. Bethe, Phys. Rev. 76, 38 (1949).
127, D. Jackson and J. M. Blatt Revs. Modern Phys. 22, 77
(1950).
B R, S. Christian, Repts. Progr. Phys. 15, 68 (1952).
1“4 J. H. Coon and R. F. Taschek, Phys. Rev. 76, 710 (1949).
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ELASTIC SCATTERING OF

distributions. for p-d scattering in the energy range
0-10 Mev agree within quoted experimental error (Sec.
V-A). Improvement in the fits is obtained by allowing
the P phase shift to change from its value calculated
in Born approximation. When this is done, it is found
that the change in the value of the *P phase shift is
small and a smooth function of energy.

The 4S and %S phase shifts found in this manner have
a reasonable energy dependence. That is, the “% cots”
plots extrapolate to zero energy to give a set of scat-
tering lengths near one of the known sets of n-d scat-
tering lengths. We find for the p-d scattering lengths

ay=12.541.0X1072 cm, (2)
a;=1.441.0X1072 cm.

Because of the connection between #n-d and p-d- scat-
tering lengths (Sec. V-C), this means that the scattering
lengths (I) are the correct n-d scattering lengths, in
disagreement with some previous theoretical work.5—8
A careful recalculation of the scattering lengths is
undertaken in order to resolve this difficulty.

The calculation of the #-d scattering lengths is
carried out using a variational method neglecting
polarization of the deuteron (Sec. VI-A). The varia-
tional treatment is similar to that used by Massey and
Buckingham!® and Verde.®1¢ In its details, the work
has some similarity to the work of Motz and Schwinger.?
The-neglect of polarization (discussed in Sec. VIII-A.3)
is not expected to be serious in the case of the quartet
state because the exclusion principle prevents the three
particles from being close together simultaneously at
low energies. Because the phase shift analysis shows
that the doublet state makes only a small contribution
to the low energy scattering, errors attributable to
neglect of polarization are of little consequence for the
angular distribution calculations. The results of the
calculation,

as=5.9X 1071 cm, 3)

check the scattering lengths (1) closely for the quartet
state and are even in fair agreement for the doublet
state. However, they definitely rule out the other set
allowed by the experiments:

a4=24X10"3 cm, “4)

“The quartet and doublet n-d S phase shifts at
energies up to 10 Mev are calculated using a somewhat
more crude approximation than that employed for the
the scattering length calculation (Sec. VI-B). The
energy variation of the “k cotd”” plots is in fair agree-
ment with that found from the phase shift analysis.

n-d angular distributions are calculated (Sec. VII-A)
using the theoretical corrections to the p-d phase shifts
necessitated by the absence of the Coulomb forces

a;=1.5X1071 cm,

a:=8.3X10713 cm.

18 R. A. Buckingham and H. S. W. Massey, Proc. Roy. Soc.

(London) A179, 123 (1941)."
16 M. Verde, Helv. Phys. Acta 22, 339 (1949).
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’ (Sec. IV-D). These are compared with the experi-

mental data.

In Sec. VII-B the problem of deducing information
about the #-n forces from the #-d scattering data is dis-
cussed. It is shown that the angular distributions are
not sensitive to the n-n forces. The 2§ scattering length
is, however, and is calculated as a function of the depth
of the singlet even parity #-z potential. It is shown to
be insensitive to other #-» potentials. The 45 scattering
length depends only on the triplet odd parity #-n
potential, to which it is very insensitive.

III. THE BORN APPROXIMATION

Others have described the formulation of Born’s ap-
proximation for #-d'7:*8 and p-d*® scattering.

There are eight two body potentials 3V ,,%, 3V,
Woasty Wap™, Wosty 3Vap s Wan®, 3Vna . The super-
script to the left of 3V ,,*, for example, specifies that
3V .p" is the potential for a triplet state, while the super-
script to the right specifies that it is the potential for a
state of even parity. The subscript specifies that 2V ,,*
is the potential between a neutron and a proton. Thus
3V .p" is the potential for the deuteron ground state.
We suppose that all of these potentials have the same
radial dependence, so that, for example, 'V,,*(r)
=1V, U(r), the V’s becoming pure numbers. U(r)
is taken to be the potential for the ground state of the
deuteron, so that *V,,*=1. U(r) is understood to be
multiplied by 4M/3%? which reduces it dimensionally
to the reciprocal of the square of a length. Let

7.0)= f exp(— ik (| r)U(la+3r])
Xexp (ik-q)¢(|r|)drdq,

7,6)= f exp(— ik’ 9o (|t U(|lq+3r])

Xexp[—ik- (3a—31) 1o (| q+3r[)drdq, (5)
10= [ esp(=ik () U(la+1r])
Xexp[ —ik- (3a+41)J¢(|q—3r|)drda,
where
. r=r3—r;, q=—1+35(r+15), (6)
are the center-of-mass coordinates; k, given by
8 M
B=-—FE(lab), @)
9 i

where E is the energy of the incident nucleon in the

17 M. Verde, Helv. Phys. Acta 22, 339 (1949).

18T.-Y. Wu and J. Ashkin, Phys. Rev. 73, 986 (1948). In the
last of their Egs. (29), the coefficient of A2 is 1 instead of 3.

1 J. L. Gammel, “Elastic scattering of neutrons and protons by
deuterons,” Cornell thesis, 1950 (unpublished).
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laboratory, is the wave number vector of the incident
particle, and k’ is the wave number vector of the scat-
tered particle. Because the scattering is elastic,
|k| = |k’|. The angle between k and k' is the scattering
angle in the center-of-mass system, 6. ¢(r) is the wave
function for the ground state of the deuteron.
For n-d scattering, the scattering amplitude is given
by
4 f(0) = ot 1(0)+BJ2(6) 17T 3(6), ®)
where
a= % 3Vnp++% 3Vnp_+3Vnn~,
B=—V.p", (9)
Y= % aVnp+_ %‘ Wap —*Van™,
for S=$%; and
a=% 3Vnp++?1§ 3Vnp_+% IVnp++% 1Vnp_
+% 1V”l’ﬂ++i sVﬂ'ﬂ_)
B= +% 3Vn:0+a
=% 3Vnp+_% War +3 Woart—3Wap
+% ann_*__% 3Vnn_,

(10)

for S=13.

Corrections to Eq. (8) required by the presence of the
Coulomb force in p-d scattering are discussed in Sec.
IV-D. ‘

The phase shifts are computed from

kf(0)=2"1(2141)8;P:1(cosh), (11)

and these phase shifts are substituted in the rigorous
formula for the angular distribution, which for p-d
scattering is

2 2 1
ke (6) =%‘ exp(in In: )-l——— > (214-1)
. 3|1—cosf 1—cosf 21 1 .
2
X [exp (2i*8:)— 1] exp (i¢1) P1(cosf)
1 1
+~’ exp(in In: )+— > Qi+1)
3|1—cosf 1—cosf 2 1

2

X [exp (24%6;) — 1] exp (i¢y) Py(cosh) | , (12)

where the superscript on the §;’s specify the spin state
for which they are the phase shifts, and :

n=¢*/hv, ¢=phasel (I+141n).

Reasons for using the exact expression (12) rather than
f2(6) corrected for .S phase shifts are discussed in Sec.
VIII-A.S.

Each of the above integrals forming the scattering
amplitude can be given a simple physical interpreta-
tion® in the sense of validity of Born’s approximation,

(13)

2 The physical significance of these integrals has been discussed
by others. See the papers of reference 29.
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since only a single collision takes place. J1(f) represents
potential scattering in which the incident particle
scatters off one of the two particles in the deuteron.
J3(0) represents a type of scattering or direct ‘‘knock
out” in which the incident particle exchanges directly
with one of the particles in the deuteron so that the
“struck” particle is ejected from the deuteron and the
original incident particle remains to form the deuteron.
(This exchange is attributable in part to the exclusion
principle and in part to explicit exchange forces.) J» (6)
is a manifestation of the exclusion principle and repre-
sents pickup by the incident particle of a dissimilar
particle in the deuteron to form a new deuteron, the
remaining particle becoming the scattered particle. It
can, therefore, be expected that J(6) is peaked in the
forward direction. J3(f) should also be peaked in the
forward direction since in order to reconstitute a deu-
teron the incident particle must transfer most of its
momentum to the struck particle. [Actually J;(0) is
almost spherically symmetrical.] J5(0) is peaked in the
backward direction since following the pickup process
the “new” deuteron is most probably traveling in the
direction of the incident nucleon.

IV. COMPUTATION OF PHASE SHIFTS

The integrals J1(6), J2(6), and J3(f) are calculated
using Gauss and Yukawa radial forms for U(r) with
ranges adjusted to fit the low energy data. .

A. Zero Range Approximation

In order to gain some further insight into the nature
and magnitude of the terms in Eq. (5), we first consider
the “zero range” approximation. Actually, this need
not be thought of as strrictly a zero range approxima-
tion; it can be thought of as an approximation in which
it is assumed that the other terms in the integrands in
Eq. (5) vary slowly compared to the potential. This
would be the case if the range of U(r) were very small
compared to the deuteron radius and the wavelength
of the incident particle. With the potential

U(r)=Uds(|x]), (14)

where §(|r|)=1 for <7y and 8(|r|)=0 for »>r,, and
U, is a potential depth such that Ug,® is a constant
whose value is 27/3, we find

47
BO=— @Ts [ ex(=ik-we(2al)
Xexp (k- q)dq,
4 . .y
0= QrPUng(ro)n f exp(—ik'-q)
Xo(|2q|) exp(—2ik-q)dy,

4
730 =— @V | exp (k" a)g*(|2])
Xexp(ik-q)dq,

(15)
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(¢(70))a is the average value of the deuteron wave
function for 7<ro. In this approximation we may evi-
dently use the zero range deuteron wave function

o(r)=(a/2m) e /7, (16)

inside the integrands as we are only interested in its
low Fourier components. The results are

10-(3) s ()

T20)= 81\ 2 » 2T %‘| 2
o h( 3 ) [m(d’(m ""( a /) Jacr+ 1 (5+4 cost)
8m\?

T
h( 3 ) 42+ F2(5+4 cos)
LO=16,

(¢ (70))n was calculated for square wells, and in evalu-
ating J,(6),

o H ™

O e
r0—0 2T 27’0
is used.

We note that J;(f) is peaked in the forward direction
as is J3(0) and J»(6) is peaked in the backward direction
in agreement with our physical arguments of the last
section.

Also we note that J;() and J3(6) are of order
(roa)J2(8). Detailed analysis shows they also have less
angular variation than J,(f), and the contributions of
J1(8) and J5(0) to the phase shifts fall off more rapidly
with increasing / than the contribution of J5(6).

In calculating J;(f) and J(6) for other radial forms
of the potential, it is convenient to make the trans-
formation

qt+ir=w, r=z.
Then

710)= f exp(—i(k—K')- 32)¢*(|z| )dz

Xfexp(i(k——k’)-w)U({w])dw,

T2(0)= f exp(—i(k+3k) -2 (|2] )dz
X [ exp(=ite 440 W WU (| w]a.

From these forms we note several things. First, as the
energy increases, the angular variation of J1(f) in-
creases more rapidly than the angular variation of
J2(6) primarily attributable to the part of J;(f) con-
taining ¢?(|z|) in its integrand. Thus at very high
energy the elastic scattering becomes potential scat-
tering. Second, J1(f) is sensitive to the shape of the
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potential. At low energies, it is larger for potentials
which have a long tail. Third, the potential may be
eliminated from J»(f) by making use of the two-body
equations of motion

U(w)¢ (w)= (V2= a?)¢ (w).
Then J»(0) is of the form

726)=[ (k+K)+ o] f exp(i(k-+3K) - 2) (2)dz

Xfexp(-—i(k’—{—%k)-ww(w)dw. an

At low energies, J»(f) is practically independent of the
shape or range of the potential.

J3(0) cannot be separated into the product of two
integrals nor can the potential be eliminated. We have
seen that in “zero range” approximation it is J,(8).
However, this is an overestimate for finite range. A
detailed examination of the expansion of J3(f) in
spherical harmonics shows that its contributions to the
higher phase shifts are less than those of J;(f) because
there is no line up of the potential and a deuteron wave
function or two deuteron wave functions, which makes
it necessary to perform an average over P;(cosy), where
¥ is the angle between q and 3q+42r which varies from
0° to 3are/2 (about 30°). The effect is more pronounced
the longer the tail of the potential.

B. Gauss Radial Form

We use
U(r)=Uqexp(—(r/N)?),

Ui=86.4 Mev, A=1.332X107" cm. (18)

In this calculation, the unit of length was taken to be
1.332X 107 cm, so that

k?=0.03806E.

- It is necessary to represent the deuteron wave func-
tion by the sum of three Gauss terms:

¢ (x)=0.02133 exp (—0.03x?)4-0.08582 exp (—0.16x?)
+0.18115 exp(—0.76x2), (19)

which approximates the actual deuteron wave function
for the potential (17) to within 3 percent to three times
the deuteron radius. Wu and Ashkin'® have given for-
mulas for J1(6), J2(8), and J3(6) in this case.

Each of the integrals is of the form

(k/47r)](0)=/é > acexp(—b:k?) exp(—c.k? cosh), (20)

where the a’s, b’s, and ¢’s are given in Table 1.
A partial wave analysis of £J1(0), kJ2(6), and kJ;(6)
is made as follows:

(k/4m)T ;(0)=2>_"1 (214-1)5*P1(cosh). (21)



104 R. S. CHRISTIAN AND J. L. GAMMEL
. TaBLE I. Constant for Gauss potential.

g Je Js3
: ai bi ci ai bi ci ai bi ci
1 0.37966 2.5834 —2.5834 1.0197 10.720 8.5760 0.36854 2.3659 —1.8062
2 0.53992 1.1579 —1.1579 3.4332 10.686 8.5489 0.51846 0.95370 —0.39784
3 0.13499 0.65822 —0.65822 3.8774 10.594 8.4752 0.12840 0.45752 0.089197
4 0.49912 0.89061 —0.89061 1.1217 2.2225 1.7780 0.44144 0.65104 —0.13021
5 0.43223 0.63585 —0.63585 1.2668 2.1307 1.7045 0.35617 0.39603 0.10081
6 0.21063 0.58224 —0.58224 0.25829 0.58874 0.47099 0.13153 0.28604 0.12157
7 0.33314 2.2566 1.8053
8 0.05854 0.64716 0.53405
9 0.22869 0.68058 0.54528

J1(6) and J3(0) do not contribute to the phase shifts
for 1 >3.
8:%, 8%, and 83! are presented graphically in Fig. 1.

C. Yukawa Radial Form

In this calculation, the unit of length was taken to be
102 cm, so that

k*=0.0214E.

For the deuteron wave function we use

We use exp(—r/N) o) [aﬂ(oH—B) r exp (— ar)—exp(—pr) 23
1’ =
Y= 27(at6)? r L
(22) Wwhere® :
Up=68.0 Mev, A=1.18X10"8 cm. a=0.2316, pB=1.268. (24)
1
o 8! . -8, o -8
2 4 /// ~-~§\\\\\\c4 _
T 473 4 103 -
A2 P i I~ ,/ - //
.08 = | B e
foe 7 Vs
04 i | .0l =
// — - s
. % o—,r’/| ! ! ] | L lol 1 1 ! | ! | | o/‘T/ | ! ! | ] !
3 .
% .06 a 2| 1-+-14 .
: 82 14 pe—— 82 /
o [ B ST i 3 /
‘ 12 /. )
04 |0~ // o //
R L 7 9 /
/ vg—-
03 / // 3 a
= . // - //
02 V4 — —F 2 i
- / /,/ 4 / + | //
.0l < B .
Ny et A I
oltZ177 ! ] ! Lol ! ] L i | Lol et l ] [
0O 2 4 6 8 10 12 40 2 4 6 8 10 I2 140 2 4 6 8 10 12 14
E (Lab, Mev)

F16. 1. Plots of 8;* for the Gauss (dotted curves) and Yukawa (solid curves) potentials as a function of energy.

21 G. F. Chew, Phys. Rev. 74, 809 (1948). We have used Chew’s value 8=5.5¢. More recently, R. L. Gluckstern and H. A. Bethe,
Phys. Rev. 81, 761 (1951), have given 8="7.0a. This makes little difference (see their footnote 32).
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We find for J,(6):

k 2k K K
—J.100)= *[tan“l—— 2 tan™! -
8T K 4o 2(a+B)

K7 ¢
+tan—1—] , (25)

481+ K2
where
1 6 AM  aB(atp)
v=— K=2ksin-, g=—-U\— -=1.056, (26)
A 2 32 (a—pB)?
and for J5(6):
, 1
ol
8 K'LK"?+p K’+a?
K’ K’
X [ tan~l———tan™! ] g, (27)
r+a v+8
where
K'=k(cosb+5/4)%. (28)

A partial wave analysis is also made of these. Again
J1(6) does not contribute to the phase shifts for /> 3.
The calculations with a Gauss potential show that
J3(0) is nearly spherically symmetrical and does not
contribute appreciably to the phase shifts for />1,
and exploratory numerical calculations of J3(6) showed
that with a Yukawa potential it gives even smaller
contributions to the phase shifts for />1. Rather than
evaluate J3(f) numerically, we have assumed that it is
also spherically symmetrical for a Yukawa potential.

;% and 85! are presented graphically in Fig. 1.

D. Effect of the Coulomb Force in p-d Scattering

The #n-n potentials are replaced by p-p potentials, of
course. There are two additional integrals

1

aM 1
O)=—¢ [ exp(—ik-
e~ [ ep(=ik-a(le))( }thI)

lq]

exp(ik-0)6(|x])drdg, (29)
AM 1 1

Cx)=— [ e -q>¢<1r|>(m— pren

Xexp(—ik- (3q+2r)¢(|q—3r|)drdg. (30)

These allow for the fact that the deuteron’s charge is
not concentrated at its center, but distributed through-
out it. The scattering amplitude is given by

drf(0)= PLaJ1(6)+BT2(0)+vJ5(6)
+C10)+C5(0)], (31)

where

(32)
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1.4

L/

x.oo ’ o ) [

0.2 0.28

Fi1G. 2. f, a correction factor to the usual Coulomb penetration
factor, defined by Eq. (34) versus ».

and P is a penetration factor given by

21y

P=fC¢? C¢= (33)

exp (2my) — il

C¢? is the penetration factor one might use offhand.
However, the regular Coulomb function F(p)/p is
greater than Co?4,(p).2 Therefore, C¢* over estimates the
effect of the Coulomb force in reducing the p-d phase
shifts from the »-d phase shifts. To correct for this, we
have defined the penetration factor P as follows

1 o
- f exp(—2aq)Fu(kg)F1(2kg) (dg/q)
pe 0

=fCe.  (34)

.

J exp(—2aq) 7. (kg) j(2kq)qdq

We have used the zero range approximation for this
simply because it is the only case for which the integrals
with Coulomb functions can be handled. f furns out
to be independent of /. It is plotted as a function % in
Fig. 2.

Actually, we have used only a mean value of f in
calculating the Born approximation p-d phase shifts;
namely

f=1.273. (35)

The integrals C;(0) and C3(6) are found to contribute
nothing to the phase shifts for /> 1.

2 Bloch, Hull, Broyles, Bouricius, Freeman, and Breit, Revs.
Modern Phys. 23, 147 (1951).
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TasiLE II. Born approximation phase shifts for p-d scattering (radians).

For 1 >3, %1=—3% 4

E (lab, Mev) 451 462 453 454 455 456 261 282
9.66 0.549 —0.127 0.0478 —0.0154 0.00618 —0.00246 —0.058 0.103
5.18 0.466 —0.101 0.0336 —0.0094 —0.116 0.064
3.49 0.380 —0.074 0.0204 —0.0049 —0.118 0.043
3.00 0.345 —0.064 —0.113 0.036
2.53 0.307 —0.053 0.0120 —0.0025 —0.110 0.029
2.08 0.264 —0.042 —0.096 0.023
1.61 0.212 —0.029 —0.082 0.016
1.51 0.200 —0.027 0.0043 —0.0006 —0.078 0.014
1.495 0.196 —0.026 —0.077 0.014
1.355 —0.022 0.011
1.23 0.162 —0.019 —0.065 0.010
1.105 —0.0164 0.0082
0.985 —0.0130 0.0065
0.825 —0.0099 0.0049
0.73 —0.0082 0.0041
0.6 —0.0062 0.0031
0.48 —0.0047 0.0023

V. ANALYSIS OF p-d EXPERIMENTS
A. Phase Shift Analysis

According to Egs. (8), (11), and (21), the phase
shifts are given by

0= 04511‘|‘5521+7531, (36)

where «, 8, and v are given by (9) for S=% and by (10)
for S=3.

In calculating the phase shifts, we have taken
Wapt=1, W,pt=0.69 in agreement with the low
energy n-p data. We have taken the odd parity poten-
tials to be zero in agreement with the high energy #-p
data. We have assumed that #n-n, p-p, and #n-p poten-
tials are equal in equivalent states. Because of the
small size of §;' and 83! compared with &, for />1, and
because §;' depends only on 3V ,,*, it does not matter
much (not at all for />3) what we take for the odd
parity forces or what we assume about the #-n and p-p
potentials, a point returned to in Sec. VII-B. The phase
shifts are tabulated in Table II.

Using these phase shifts as a starting point, a phase
shift analysis of the p-d data in the energy range 0-10
Mev'—* is made using the rigorous expression (12). The
method used in making the phase shift analysis is the
same as that used by Dodder and Gammel in analyzing
the p-He* elastic scattering data.® The phase shift
analyses were performed on IBM card-programmed
electronic calculators. The decks were prepared so that
if fits could not be obtained with the .S phase shifts
alone, the P phase shifts could be changed from their
values calculated in Born approximation and the data
analyzed for them ; the same is true of the D phase shifts.

The results of the phase shift analysis are given in
Table III. Some improvement is obtained by allowing
the 4P phase shift to change from its value calculated in
Born approximation. The ¢P phase shift found if this
is done is compared with that calculated in Born ap-

2 D. C. Dodder and J. L. Gammel, Phys. Rev. 88, 520 (1952).

proximation in Fig. 3. The 2P phase shift and phase
shifts for />2 agree with those calculated in Born
approximation. In analyzing for the .S phase shifts or
the S and *P phase shifts, the 2P phase shifts and phase
shifts for />2 used are those calculated with the
Yukawa shaped potential. No significance is to be
attached to this since those calculated with the Gauss
shaped potential would have served as well.

Calculated and experimental angular distributions
are compared in Fig. 4. The effect of omitting the con-
tribution of partial waves with />3 is illustrated in
several figures, making it clear that the higher phase
shifts are certainly necessary in the analysis.
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P phase shifts.



ELASTIC SCATTERING OF PROTONS AND NEUTRONS 107

TasiE III. Results of phase shift analysis.

4P on Born approx.

E 4S 2S P rms _4S 25 rms
9.66 73.34° 79.05° 31.78° 3.2 percent 72.64° 78.65° 4.72 percent
5.18 —78.93° —39.84° 29.73° 3.56 percent —178.23° —40.45° 5.13 percent
3.49 —66.94° —22.2° 24.5° 6.70 percent
3.00 —66.27° —19.3° 23.77° 2.63 percent
2.53 —61.01° —17.1° 21.78° 2.0 percent ,

2.08 —54.89° —14.1° 18.93° 1.9 percent
1.61 —52.48° 14.67° 0.9 percent
1.51 —46.92° —10.5° 15.76° 3.2 percent
1.495 —49.27° 15.60° 1.46 percent
1.355 —45.38° 14.33° 1.73 percent
1.23 —44° 13.0° 2.1 percent
1.105 —42.40° 11.54° 1.9 percent
0.985 —38.50° 9.50° 1.67 percent
0.73 —32.09° 6.69° 3.75 percent
0.6 —27.5° 6.83° 2.58 percent
0.48 —23.19° 5.08° 1.6 percent

The question of how well the data determines a
given phase shift is an important one. The p-d data at
5.2 and 9.7 Mev were carefully examined to determine
how well the 4S and 2S phase shifts are determined with
the phase shifts for />1 given values calculated in
Born approximation. Figures 5(a) and (b) show plots
of the sum of the squares of the percent deviations
from the experimental points (3_) as a function of the
S phase shift for several values of the 45 phase shift.
These make it possible to visualize a surface

2-=2_ (480, %o).

It can be seen that at 5.2 Mev. there are two solutions
for the 2S phase shift. The solution with 2§,=>57° can
be ruled out after the calculations of Sec. VI-B make it
certain that the “k coté” plot for the S state has a
certain energy dependence. At 9.7 Mev, these two
solutions blend, which makes for a very great uncer-
tainty in the value of the 25 phase shift. The 4S phase
shifts are reasonably well determined, however. All this
has its origin in the fact that the doublet state makes
only a small contribution to the elastic scattering.
Unfortunately, only the 25 phase shift is sensitive to
the n-n forces in »-d scattering, and it is sensitive only
to the singlet even parity #-» potential. As this analysis
shows, the 25 phase shift is hard to determine from the
experimental data. In Sec. VII-B, further illustrations
of the fact that wide changes in the 25 phase shift do
not affect the angular distribution are presented.

Uncertainties in quantities (phase shifts, “k cot §”")
deduced from experiment are indicated on the graphs.
These are based on studies similar to those described
in the previous paragraph.

B. p-d Scattering Length and Effective Ranges

Plots of
“k cot 8”=C¢®k cotd+h(n)/R,

R=3(#*/Me*)=21.6X10"1 cm,
for the %S and %S states are shown in Fig. 6. The scat-

37)

tering lengths are the set (2), and the effective range
for the 45 state is

pa=1.9940.07X 10 cm. (38)

For S=1, the scattering length is very short so that an
effective range theory is not very useful. The large
uncertainties in the %5 phase shifts make it unadvisable
to quote a value of p; deduced from experiment.

C. Connection between p-d and n-d
Scattering Lengths

Blatt and Jackson? give the following connection
between the p-p and n-p scattering lengths

1 1 1 )
—=—+—[In—+0.330]. (39)
RL R

ap OaN
They use for the wave function in the “internal” region
u=sin (wr/2r).

Our wave functions (Sec. VI-B, Fig. 9) have maxima
at about 2.0)X 107 cm. Taking this as an estimate of 7,,
we find

1/a,—1/ay=—0.095.

For the 45 state, with our value of %¢,=12.5X 10" cm,
this gives

tay=>35.7X10"3 cm.
For the %S state, with our value %g,=1.4, it gives
Zay=1.2X10"1 cm.

Of course, the value for the doublet state means almost
nothing because we cannot get an accurate value of
%a, from the experiments. Had we used a slightly larger
value of 7o, the value for the quartet state would have
been in better agreement with (1).

However, the set (4) is definitely ruled out, and the
p-d scattering lengths indicate that the correct set of #-d
scattering lengths is the set (1).
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Fi16. 4. p—d angular distributions calculated using S phase shifts adjusted to give best fits to experimental data. The
The ordinate is the dimensionless quantity k2% (6).

VI. S-STATE CALCULATIONS v are

A. Scattering Lengths, Effective Ranges TY'=—=3Uy/—3(UY=UY"), (40)
TW'= =305 (U = U'Y").

This is written in Verde’s notation.'®* This can be

written

To support the conclusion of the last paragraph, we
have calculated the #-d scattering lengths.
For S=4%, assuming for purposes of illustration that

’ ’
the nuclear potentials are spin independent but that T(¢ )= (V) (ll/ ), (41)
the odd parity forces are zero, the equations of motion /4 /4
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where (U) is a matrix. Verde'® gave the variational
principle

¢/
5 f (¢',¢")[T—(U)]( )dndmdm=0. (42)
‘pll

In the no polarization approximation, ¥’ and ¢’ are
written

¥V'=33{6(12) /(3)—6(13) f(2)},
¥'=—0¢(23)/(1)+36(12) f3)+32¢(13)/(2),

where ¢ is the wave function of the ground state of the
deuteron and f is a function to be determined. The
coordinate are labeled such that a pair of numbers
indicate a vector extending from the first particle of
the pair to the second number while a single number
indicates a vector extending from that particle to the
center of the other two remaining particles.

Substituting Eq. (43) into Eq. (42), eliminating
integrals with f(1) by permuting 1 and 2 (the integrals
are invariant with respects to these permutations),
varying f(2) and f(3) independently, and equating the
coefficients of 6/(2) and 6(3) to zero leads to a differ-
ential equation for f(3):

(43)

(VR (3)— f $(12) (Va4 B)f (D (13)drdrs
- f $(12)U(12)6(13)/ (2)dridrs

-1 f 6(12)U(13)6(12)f (3)drsdrs

3 f $(12)U(23)6(13)f Qdridrs. (44)

The second term on the left and the first term on the
right may be put in a different form by making use of
the fact that ¢(13) is a solution to the deuteron problem.
We may then replace Eq. (44) by

(V32+k2)[f(3)— f f(2)¢(13)¢(12)dnd12]
- f $(12)U(13)$(13)/ (2)dridrs
—1 f $(12) U (13)6 (12)f 3)dridrs

—1 f S(12)U(23)$(13)drdrs.  (44)

Equations (44) and (44’) lead to identically the same
results if ¢ is'an exact solution of the deuteron problem.
The exact time dependent equations of motion satisfy
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the reciprocity theorem;* that is, the transition prob-
ability for a process and its inverse (obtained by re-
versal of time) are equal. To insure this property for
any choice of a trial function in which ¢ is not an exact
solution, we must use a fifty-fifty mixture of Eqgs. (44)
and (44").

Use of the zero energy Green’s function 1/47|r;— 15|
=1/4wRy in (44’) leads to

f3)=1+ f F(2)6(13)¢(12)dridrs
1
+f4—E¢(12)U(13)¢(13)f(2)d71d72d73

1
3 [ 612 U8)6 (127 @)dridradr,
47 R

L A%}

1
-3 f 6(12)U (23)6(13)f (2)dridradrs. (45)
47I'.R3

The first integral, which we call the “orthogonality”
integral arises from the Pauli principle and vanishes in
Born approximation. (Because of this term it appears
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F1c. 5. Plots of the sum of the squares of the percent deviations
of calculated points from experimental points versus the %S phase
shift for several values of the 4S phase shift (the curves are labeled
with one-half of the value of the 4S phase shift). At 5.2 Mev, 13
points are used; at 9.66 Mev, 15 points are used.

% B, A. Lippman and J. Schwinger, Phys. Rev.'79, 469 (1950).
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Fi1G. 6. Plots of “% cotd” defined by Eq. (37) for the 4S and %S phase shifts.

as though the interaction would be different from zero
even if the force between the incoming particle and the
deuteron were zero. However, the interaction between
the deuteron and the incoming particle cannot be zero
because of the identity of the two like particles unless
the interaction of the two particles forming the deuteron
is also zero.) When Born’s approximation is made and
the second, third, and fourth integrals examined asymp-
totically in the variable 3, they are of the form J:(f),
J1(0), and J3(6), respectively, and are labeled accord-
ingly. ‘
Calculations were performed with three forms of Js;
namely, (1) that resulting from Eq. (44), (2) that
resulting from a fifty-fifty mixture of Eqgs. (44) and
(44’), and (3) that resulting from Eq. (44’). In all
these calculations, only the form of O in Eq. (44) or
(45) was used. This means that the scattering lengths
resulting with the first and second forms of J, are not
stationary as is the scattering length resulting with the
third form. However, if ¢/ and ¢/' (Eq. (43)) were
exact solutions of the wave equations, ¢(12) f(3), ¢(13)-
f(2), and ¢(23)f(1) would also be exact (unsym-
metrized) solutions of the wave equation, and both
forms of O used with any combination of Jy’s would
lead to the same results. Thus a comparison of the
results of the calculations with the forms (1) and (2)
of J, and the results of the calculation with from (3)
of J, reflects in some manner the adequacy of the no
polarization approximation.

Motz and Schwinger had equations similar to Eg.

(45), but their derivation is not based on a variational
principle and did not contain the orthogonality integral.

For the rest, the procedure is the same as that of
Motz and Schwinger. For this calculation we use the
potential (17) and the wave function (19). The dummy
variable and angle variables are integrated out leading
to an equation of the form

o (@=q+ f K(g, )df(¢)dq, (46)

where

K(q,q)=—80(g, {)+a/r(g,7)
+872(q, ¢)+vTs(g, ¢)-  (47)

Here the dependence on the two body potentials has
been put back in. Contour plots of the kernels O(g, ¢'),
J1(g, ¢'), both forms of J2(g, ¢’) and J;(g, ¢’) are shown
in Fig. 7. Equation (46) was solved by replacing it by
set of linear algebraic equations. Twenty points were
used for this. Contributions to the integral from four
times the deuteron radius were required and retained.
The sets of linear equations were solved on the
MANIAC.

The results of the calculation are summarized in
Table IV. Graphs of #(g)=¢f(g) are shown in Fig. 8.

Effective ranges can be derived from u(g). Verde?
and Breit?® have given formulas for the effective ranges.

25 M. Verde, Atti accad. nazl. Lincei 8, 228 (1950). (See also
reference 6.)
26 G. Breit, Revs. Modern Phys. 23, 228 (1951).
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TaBLE IV. Results of scattering length calculations.

a4 az
Case 3Vapt Wapt 3Vap~ Wap™ Want 3Van~ Form of J2 (X107 cm)
(1) Asin Eq. (44) 6.398 1.651
1 1 0.69 0 0 0.69 0 (2) Fifty-fifty mixture 5.871 1.544
(3) Asin Eq. (44') 5.334 1.520
(1) 6.398 2.507
2 1 0.69 0 0 0.552 0 2) 5.871
3 5.334
(1) 6.398 4.280
3 1 0.69 0 0 0.345 0 (2) 5.871
3) 5.334
1) 6.398 11.75
4 1 0.69 0 0 0 0 2) 5.871 9.774
3) 5.334
5 (1) 6.396
5 1 0.69 1 0.69 0.69 1.0 @) 5003 1.412

These reduce in the no polarization approximation to
27’03

p4=—;{f[(—q+a4)2—u2(q)]dr1
ay

+ o, q')u(q)u(q')dqdq'}, 48)

for S=3, and

pz=%§{f[(—q+a2)2—u2(q)]dq

-1 [0, q')u(q)u(g’)dqdq'}, (49)

for S=%. The effective ranges are calculated with the
wave functions resulting with the form (1) (see Table
IV) for J, and the potentials of cases 1 and 3 of Table
IV. The results are
pe=2.9X10"8 cm, py=45.1X10"B cm. (50)

However, we wish to stress that since these are not
variationally determined quantities the error in using

sin (kq)

fl@Q=

x¢(} o) o

. the no polarization approximation may be considerably

larger than in the case of the scattering lengths.

B. S Phase Shifts 0-10 Mev

A very approximate calculation of the S-phases in
the 0-10 Mev energy range was considered necessary
from a theoretical standpoint because of the uncertainty
in the experimental determination of the 2S phase
shifts. Most situations investigated so far in potential
scattering have a bound state lying close to zero energy
and the “% cotd” plot extrapolates reasonably well into
the negative energy region using the scattering length
and zero energy effective range to give the binding
energy approximately (as it does for the 35 state in the
two body problem). A square well which gives the
binding energy of the extra neutron in the triton and
the short n-d 2S scattering length has a negative
effective range. To eliminate this possibility, it was
thought that a very elaborate calculation was not
necessary since there is little likelihood that an equiva-
lent potential could be found for the three body problem.
We consider the finite energy extension of the no polari-
zation approximation Eq. (45)

( )f«zS(I q+—q’ (l_q/+_ql f(q)dq+( )ffexp@qu )
(el DK

4r|q—q"

2
—q’+gq” )f (¢"dq'dq”

(ik )
2 ff el —————*([q"DU(|a"+3q" ) f(¢")dq'dq”

4r|q—q'|

xp(ik|q—q"])
( )ff‘e I;w!qqqq

(l ’+q

D

—q --q l)¢(l-q’+—q I)f(q’)dq’dq”



ELASTIC SCATTERING OF PROTONS AND NEUTRONS

113

Employing the “zero range” approximation allows us to write

sm ( kq)

—q+ q

O

)

~q’+—q' )f (¢"Hdq'

1 N exp(iklq+2q'[) =
+5[ (2r0) (?) U (r0))a f*——*—*tb( ) f(@")dq’

4r|q+2q']

\ exp (ik|q+24|)
+(7’0)( )Uo((#(o))mf mq,l (o}

() o)

Thus in “zero range” approximation the net effect is
simply to change the “Green’s function factor” from

1 exp(ik|q—q'})
=

: 9
drlq—q'| dr|q—q|
for J1(g, ¢') and J5(g, ¢’) type terms, and
1 exp(ik|q+2q’|)
_, expGik| l , 58)
drlq+2q'| . 4r|q+2q]
for the first form of J1(q, ¢'), and by
1 exp(ik|q+3d’])
—— D s

4r|q+3q’| 4r|q+3q’|

for the third form of J:(g, ¢'). O(g, ¢’) remains un-
changed. (It should be noted that only the spherically
symmetric term in the expansion of the source function
is necessary ; however, to simplify the writing we have
not indicated this. It is also interesting to note that
these “zero range” forms of the “Green’s function
factor” for J:(g,q’) are physically intelligible and
represent a pick up process even when Born S approxi-
mation is not valid. The reason that 3q’ and 2q’ occur
instead of q' when integrating the wave function in the
neighborhood of the source function is that the neutron
that we were originally following was picked up by the
proton in the deuteron and afterward the wave function
describes the motion of the “freed” neutron which will
not originate at the point of collision. In the same
manner we see it is justified to say that J3(g, ¢")
represents a direct knock out” process.) We thus
divided our zero energy kernels K (g, ¢’) of the previous
section by the zero energy “Green’s function factor.”
We believe this procedure eliminates most of the error
arising from the fact that the range of the forces is not
very small compared to the deuteron radius. The
method should be satisfactory as long as kro<1. As
9.7 Mev, kry=0.6.

With these kernels we proceed as before, replacing
the integral equations by sets of 20X 20 linear systems.
The wave functions are shown in Fig. 9, and the

k !’
#20) /(¢ — <2m>8( ) f ewﬂgﬁgﬂq’)ﬂq’)dq

(9" f(ddq }

(52)
4m|q—q

“k cots” plots are compared with those deduced from
experiment in Fig. 6. The theoretical “effective ranges”
determined in this way are in good agreement with those
calculated in the preceding section. The results con-
clusively rule out the possibility mentioned at the
beginning of this section. They also rule out the solution
for the S phase shifts at 5.2 Mev which has 25,=57°
(see Sec. V-A, Fig. 5).

VII. n-d SCATTERING
A. n-d Angular Distributions

A phase shift analysis of the 14-Mev n-d data¥ is
made. The results are summarized in Table V. Phase
shifts for [>2 agrees with those calculated in Born
approximation. The phase shift analysis makes it

2
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Fic. 8. Graphs of the zero energy radial wave functions u(q)
calculated with the “no polarization” approximation. Curves are
labeled by J»(1), J2(3), and J1(2) dependmg upon whether the
form of Ja(g, ¢’) has the form it has in Eq. (44), the Motz-
Schwinger form, or a fifty-fifty mixture of the two, respectively.
(Note: the 2S on the right in the figure should read S.)

27 Allred, Armstrong, and Rosen (preceding paper), Phys. Rev.
91, 90 (1953).
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Fi1c. 9. Graphs of the radial S wave function #(g) calculated with the “no polarization” approximation at
several energies. The fifty-fifty mixture form of J2(g, ¢’) is used in this calculation. The normalization is such

that for large g, #(g) =[sin (kg)+tans cos(kg) ]/k.

possible to pin down the 14-Mev points on the n-d
“k cots” plots as shown in Fig. 6. The n-d “k cots”
plots are completed by drawing them to intersect the
zero energy axis at the points determined by the known
n-d scattering lengths.!

This makes it possible to find the .S phase shifts for
any intermediate energy. Phase shifts for />1 are
taken from the Born approximation. Angular distri-
butions computed at 14, 5.5, and 3.27 Mev are shown
in Fig. 10 and compared with the experimental data.?s:®
The agreement is good except for the low angle measure-
ments at E=3.27 Mev. This suggests that this data is

TaBLE V. Phase shift analysis of 14-Mev #-d data.

Phase shift analysis Born approximation

15 57.53°

ENY 66.23°

P 33.23° 29.91°
P 0.0+£1.7° 0°

‘D —3.217° —3.217°
D 3.37° 3.37°
rms 26 points, 9.3 percent

23 points, 6.2 percent

28 Hamouda, Halter, and Scherrer, Phys. Rev. 79, 539 (1950);
I. Hamouda and G. de Montmollin, Phys. Rev. 83, 1277 (1951).
2 E. Wantuch, Phys. Rev. 86, 679 (1952).

not reliable because of a hydrogen contamination in the
target.

B. Sensitivity of n-d Scattering to n-n Forces
1. Angular Distribution

In Fig. 11, the effects of various potentials on angular
distributions are shown. Effects of these potentials on
partial waves with />1 could be estimated using Eqgs.
(9) and (10) because it has been found that the Born
approximation is satisfactory for them. (When an
increase in the *P phase shift was necessary to achieve
a fit with experiment, it is assumed that all of the
increase occurs in J»(f) in making these estimates; this
is justified in Sec. VIII-A.1.) While there is less basis
for estimating the effect of the #-n potentials on the
S phase shifts it is shown in Fig. 11 that large changes
in the 2S phase shift do not affect the angular distribu-
tions. At 15 Mev, appreciable changes do occur near
the minimum, but it is just at this point that the experi-
ments are most inaccurate. The 4S phase shift does not
depend on 'V,,* and is weakly dependent on 3V ..~
because *V,,~ occurs with different signs in the coef-
ficients of Ji() and J;(8) (see the following Sec.
VII-B.2).
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F16. 10. Calculated and experimental #-d angular distribution at several energies.

2. Scaitering Lengihs

Table IV shows that the scattering lengths do not
depend on the z-n potentials. The exception is the
sensitive dependence on 'V,,* of the 2S5 scattering
length. From the data of Table IV. a graph of the 25
scattering length as a function of 'V ,,* is prepared and
shown in Fig. 12.

Why is the #-d scattering insensitive to the #-n
forces? The answer is contained in Egs. (9) and (10).
For states with [>1, J5(8) is large compared to J1(6)
and J;(6), but the coefficient of J»(6) depends only on

3V.pt. For S states, Ji(q, ¢) and Ji(g, ¢’) are about
equal, so that terms with odd parity potentials cancel,
since these occur with opposite signs in the coefficients
of Ji(g, ¢) and Js(g, ¢'). The S phase shifts do not
depend on the even parity #-z potential, and the 25
state contributes so little to the scattering that it
hardly matters what the 2S-phase shifts are.

Were our theory stronger, we could deduce a value
for 'V,,* from Fig. 12. At first glance, Fig. 12 might
suggest that 'V,,* is small and the second of the scat-
tering lengths (4) is permissible, but it must be re-

1~
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FiG. 11. Effect of the n-n potential on the #-d distributions. 1V,,*=0.69 is the \(alue obtained assuming Va,*
=1V,,T=1V,,*. Also the effect of varying the S phase shift is shown.
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F16. 12. The 25 scattering length versus the ratio 'V ,,*/1V " for
the first and second (mixed) form of J2(q, ¢’).

membered that the first of the scattering lengths (4)
does not follow from any combination of potentials
allowed by the low energy two body data. Figure 12
strongly suggests that 'V,,*=1V,,". It could not be

much larger than 'V ,,*, otherwise there would exist

a bound singlet state of the ‘“di-neutron.”

It is clearly indicated that a comparison of the binding
energies of H® and He?® should make it possible to set an
accurate limit on 'V, 7/1V 5t

VIII. THEORETICAL CONSIDERATIONS
A. Validity of Approximations

To discuss the various approximations made let us
consider the quartet states using ordinary forces (no
charge, spin, or parity dependence of the potentials).
We assume the wave function for the #-d system may
be expanded in the complete set of deuteron function
labeled ¢, (r) for the continuum states, so that

46,0 =6()f @+ [[6.0 . (ad
=6 () f@+x(r, 9.
Substituting the antisymmetrical combination

¢A(r) q)=¢(r, q)*'ﬂb(q_l—%r) %!‘— %q)
=\I/(ra q)—¢(t7 q))

fl(q>=jz<kq>+(—1>l(§)3 f ¢( )¢( :
N e

(56)

(7

4 2

2 4
-q——q’
33

4 2
><¢( -q'+—q"”
3 3

X (—1) ;G) et kq”>¢(

%q’+gq”
33
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—-q——q’
3

%q/_*_gq//
33
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into the variational principle (42) we find the following
coupled integral equations for f(q) and x4 (r, q)

f@=exp(k-q)+ f 6 (D6 (x) F(@)+xa(r, 0) Jdr

trla—q'|
Xo()[U(1q+3r )+U(ld~3¢ )]
+L6 (") S (@)~ () /@)+xa (¥, 4) Jirdg)

+ f exp(ik|q—q'[)

38)
xa (1, @)= f K ;q)[U(lq+3¢ D+ U(la=3r))]

X[ f(@)— () f@)+xa (v, ¢) Jdr'dy,

where

K(r'; q9)
exp (i(B— o?— )} q—q')
- [ aww ()
4r|q—q'|
K2 <k?—a?
exp(— (®—k+ ot q—q'|)
n f dugse (1) ’@(r'),
. 4r|q—q'|
2>k —a? (59)
and
xa(r, @) =x(r, q)—x(, q). (60)

x4 (1, q) gives the effect of including excited states of
the deuteron in the expansion and therefore contains
the effects of polarization (not caused by the exclusion
principle) and inelastic scattering.

Let us consider then the effect of neglecting x4(r, q),
(the so-called no polarization approximation). We may
then make a partial wave analysis of f(q) in the usual
way

J@=2 @' 2+1) exp(i5) f1(9) Pu(k, q),  (61)

where

Sulg)—sin(kg— 3lm+6,)/ kg, (62)

so that the resulting integral equation for f;(q) becomes

)Pz(cosqq’>f 1(@)dq’

%q//_i_ Eq/
3 3

)+

)]

: 1
)Pz(cosq’, qa) fu (q’)dq’dq“—g f Gi(kq; kg (¢ VU (|9 +39") f1(¢")da'dq"”

)(

22 2 4
-q'——q" )¢( -q'+-q" )
33 33

XP(cosq’, q”) f1(¢")da'dq”", (63)
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where

Gi(kg; kq') = kji(kg<) j1(kg>), (64)
where 7;(kg) and j_;(kq) are the regular and irregular
spherical Bessel functions of order /, respectively, and
¢< means the lesser of ¢ and ¢’. In the above a fifty-fifty
mixture of the possible forms of J»(g, ¢') is used. We
have adopted the half exchange force and changed the
normalization of fi(¢) from that of Eq. (62). In the
case of the S state these equations have been solved
numerically. For the higher partial waves only the first
Born approximation has been computed; that is,
wherever fi(¢g) occurs inside the integrals it has been
replaced by 7:(kq).

1. Validity of First Born Approximation for 1>1

We shall compute the first-order distortion of the
wave function and the corresponding second Born
approximation to the phase shift. Fortunately, the
distortion arising from J:(g, ¢’) and Js(g, ¢’) is small
and may be neglected compared to that arising from
J2(g, ¢') and O(g, ¢’). This is most easily seen from the
“zero range’’ approximation in which the integrands in
J1(q, ¢') (exclusive of the Green’s functions) are of the
nature of weak long-range potentials (exactly for J1(g,
¢’)) for which it is known that the Born approximation
is quite good. The first-order distortion of the incident
plane wave caused by terms which give rise to §* and the
“orthogonality” integral have been calculated numeri-
cally. In the case of the orthogonality term this has been
done using the Gauss potential (17) and the deuteron
wave function (19). The “‘zero range” approximation has
been used in the calculation of the distortion caused by
the J2(q, ¢’) type term. This is not believed to lead to
any appreciable error since the results of the first Born
approximation for the zero range, Yukawa, and Gauss
potentials were nearly the same (see Fig. 1). The first-
order distorted P wave function at 5 Mev is shown in
Fig. 13. The corrected P phase shift is 0.38 radian as
compared to the first Born approximation value of 0.41
radian. The correction to the 2P phase shift is 40.016
radian. This shows that the use of Born’s approximation
in the no polarization approximation leads to very little
additional error. The distortion of the-incident wave
is even smaller for D and higher partial waves. Further
justification comes from the calculation of Buckingham
and Massey'® who numerically integrated the no
polarization equation (cast in a somewhat different
form) and found results for the phase shifts agreeing
closely with those of the Born approximation.

2. Neglect of Tensor Forces

Let us consider. next the effect of tensor forces which
are known to be necessary in the two body problem.
‘When tensor forces are included, integrals of the type
J1(0), J2(6), and J5(8) still occur.!® Those of the type
J1(8) and J;3(6) are small compared to those of the type
J2(0), so that the most important effects of tensor
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forces arise from integrals of the ‘type J»(6). For-
tunately, however, it is possible to eliminate the two
body potentials in the Born approximation for J,(6).
The result has been given previously in Eq. (17). In
the presence of tensor forces the deuteron function is

¢(r)+$—2_Pz (o, Do (7), (65)

so that

7.0)= §<P2+ o) { [oriuporar
+éP2 (0, P) f () jg(Pr)ﬂdr}
><{ [owinryrear

! P ; 24,
+E 2 (0, Q)fw(r)]Q(Qr)y r}, (66)

where

P=3k+k, Q=k+ik.

From the above expression it is clear why J»(f) is not
dependent upon the tensor character of the two body
potential. First the S state part of the deuteron wave
function is very little changed even in the presence of a
strong tensor force. Secondly, the additional term in
Eq. (66) which depends upon the D state part of the
deuteron ground-state wave function are small because
the D state part of the deuteron wave function is at
most 20 percent of the amplitude of the S state part
even for extremely strong tensor interactions. Its effect
is further diminished because the Fourier-Bessel coef-
ficients of order two rather than zero occur together
with w(7) in Eq. (66). ’

This argument is weakened for the .S state calcula-
tions because J1(g, ¢’) and J3(q, ¢') are not small and
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F1c. 13. The first-order distortion of the P-wave radial wave
function #(g) at 5 Mev.
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the potential cannot be eliminated. However, J2(q, ¢')
is still the most important kernel in determining the
wave function for the quartet state. Since the potential
may again be eliminated from this kernel, the effect of
the tensor force in causing transitions to the %S state
and altering the scattering length must be small. The
effect on the 25 state is probably more pronounced, but
large errors in the 2S5 phase shifts can be tolerated in
calculating the angular distributions. However, neglect
of tensor forces adds to the doubt about the accuracy
of the 2S5 scattering length calculation and makes it
impossible to draw quantitative conclusions from Fig.
12.

3. Effect of Polarization

The effect of polarization has been estimated for zero
energy using Eq. (58). The first approximation to
x4 (1, q) is calculated from the second equation using
the no polarization result. Then this is substituted into
the first equation to find a correction to the scattering
length. Again use is made of the ‘“zero range” approxi-
mation in that all terms in which the combination
o(la+3r[)U(lg+31]) or ¢u(q+3r)U(lq+3r]) does
not occur in the integrands are neglected. All other terms
are expected to be smaller by the first or second power
of the ratio of the range of forces to the deuteron radius.
The correction due to terms of the type retained is

Af(g)
—= oMV (la"+3r))éx(q+31)
q 1672 —q"|
XCXP(* (k+a)t| 39" —r+q'])
[39"—$r+q'|
XMV (|a'+31')¢(|a’+31'])
M dq'dq" drdr'dk. (67)
l3q'— 3’|
For large ¢,
1/la—q"|=1/g. (68)

Using the ‘‘zero range” approximation, the correction
to the scattering length is

1 4 2
Aa=—- f dq"'dq'dkex (0) V% (0) [—(21'0)3]
1672 3

exp(— (B*4-a?)*|2q"+-q'|) f(2¢")
X (") S e (20— (69)
[2q"+q'] 2q
Let
29"4+4¢'=0Q, o'=¢" (70)
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The Jacobian of this transformation is §. Then

11 o
Ag=— " f dk¢k(0)V02¢(0)[-(2r0)3] f dq’
16728 3

exp(— (B4 o)} Q[)
10|

xfdo¢(|0—q'l)

(29"
q|

X¢x(2q (71)

Now, with (16) for the deuteron wave function and
B= (a?+ k%)%, the integral over Q is

GIE

4 i
o E;) {exp(—-ag') f sinha exp(—BQ)dQ

exp(—a|Q—q'|) exp(—BQ)
|Q—q'| Q

~+sinhag’ f exp(— (a+B)0)dQ |,

q

“aalar) () e

X (1—exp(— (B—a))q"),

dr s a\?
z——(—) exp(—ag), k<a, (72)
2\ 27

or
| dr fa\?
z;;;(;) exp(—aq’), k>a,
so that
do= f dhi(O) V' 2¢<0)[ (sz*]

eXp(—aq)

) fd "bx (2q’)

+—-f dk (0) V02¢(0)[ (27’0)3]

1672 8
a\? 2q
(—) s
2r 2q'

4
X f dq”
kg

exp(—aq). (73)
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We take
exp (2480) L exp (tkr)
e =—(explik 1)+ ). o
(2m)} 24 kr
so that
lim g (r0) DD
1m 7ok (7o) = exp (2 .
r9—0 e (Z’II')?f ’ k
Then
lim 70¢k (7'0) = lim 7’0¢ (7’0), k< o, (76)
r9—0 mTa? rg—0
since in zero range approximation
sindo= — k(a4 k%)%, W)
For k< a, we take
1 /a\iexp(—2a¢)
6 20) = (—) — =59
2wat \2m 2aq

that is, we assume that the shape of the wave function
for a low excited state of the deuteron is the same as
the shape of the ground-state wave function out to the
deuteron radius for k< a.

The second integral with k>a cuts off for several
reasons. It can be seen from Eq. (75) that ¢x(0)
decreases as 1/k. The zero range approximation is not
very reasonable for large £ because the continuum
wave function oscillates inside the potential once
kro>1 which of course cuts off the integral. In the
following we drop out the second integral.

Let

47 34 M
=§(270) E%U(@(O)‘ (79)

Substituting Eq. (78) and Eq. (76) into Eq. (73), the
integral over k gives just (4w/3)a®. Then if ag’=x,

382; fo L (%x) exp(—3x).  (80)

Aa=

In “zero range” approximation, the part of the scat-
T . . 7’ .
tering length arising from terms of the type J»(q, ¢') is

= (-2%); fowdxf(%x) exp(—22).  (81)

The integral which occurs in (81) is less than the

PROTONS AND NEUTRONS 119
integral in (82) because of the exponential factors.
However, taking as an estimate of the effect of polari-
zation just the ratio of coefficients

Aa 4B /2m\}
—=——~—(—) ~0.19.
a 384m\ «

Thus it seems that polarization could change the 45
scattering length calculations by about 20 percent. The
third form of J»(q, ¢') gives a 4S scattering length which
is about 15 percent too low. One does not believe the
estimate for the 25 state because the scattering length
is so short (were the scattering length calculated in
‘“‘zero range” approximation zero, the percentage cor-
rection would be infinite). Probably the absolute cor-
rection is about the same for both states, about 11071
cm, so that our %S calculations are untrustworthy.

(82)

4. Inelastic Scattering

Our calculated total elastic cross section at 14.1 Mev
is 0.62 barn as compared to an experimental total
cross section of 0.79 barn. This makes the inelastic
cross section about 0.17 barn. This is larger than the
value 0.05 barn quoted by Coon and Taschek.*

S. Use of the Exact Scattering Formula

We wish to emphasize that it is necessary to use the
rigorous scattering formula in the calculation of the
angular distributions even though the higher phase
shifts are calculated in Born approximation. The
imaginary part of the scattering amplitude [Eq. (12)]
is not small compared to the real part because the S
phase shifts are large. Thus, for example, even if the D
phase shifts are small, S-D interference may lead to
considerable angular variation in the cross section
arising from the imaginary part of the scattering am-
plitude.

Use of the rigorous Eq. (12) guarantees that the
scattering matrix is unitary so that at least one does
not get theoretical nonsense.

It is worth noticing that a variational expression for
the higher phase shifts can be derived similar to that
derived for the .S phase shifts, where now the form of
f1(g) is not varied but the trial function is the appro-
priate plane wave component times a deuteron wave
function. Then instead of Eq. (36) we find

tan61= a51’+[3521+ 7531,

where §,! is given as before by Eq. (21). Because the
6;s are small, Eq. (36) and the equation above give
numerically equivalent results. The point is that if we
use the rigorous scattering formula, we have a varia-
tional calculation of the angular distribution.
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Fic. 14. Comparison of the zero energy radial wave functions
determined by Verde (reference 25) and the present authors.
(Note the difference in the zero of the ordinate for the quartet
and doublet states.)

B. Comparison with and Criticism of Previous Work

It has been thought that since states of higher angular
momentum appear at lower energies in p-d and #-d
scattering than in #n-p or p-p scattering the exchange
nature of nuclear forces would be determined at lower
p-d and n-d energies. This argument received some
support from the calculations of Buckingham and
Massey. At that time, (1941), nuclear ranges were
generally taken somewhat longer than recent deter-

minations have shown are necessary. Furthermore, -

nothing was known about the exchange nature of the
forces and they assumed large forces in the odd parity
states. It is known from #-p and p-p scattering that
actually the odd parity forces are quite weak. Thus
their two assumptions combined to give great theoretical
promise for the determination of exchange forces in the
5- to 10-Mev region. The calculations presented here
with more realistic internucleonic forces suggest that
the scattering is determined primarily by the even
parity #-p- potentials. Possibly the only advantage to
be gained in #-d or p-d scattering stems from the
increase by a factor 1.33 of the energy in the center of
mass system. This advantage is more than offset by the
greater theoretical complexity of the problem.
Critchfield® has made a phase shift analysis of the
data of reference 2. He assumes that the %S and 2§
phase shifts are equal and finds some justification for
this in the work of Buckingham and Massey. However,
it is known that the 4S and 2S n-d scattering lengths are
unequal, so that it is unlikely that the 4S and 2S phase
shifts are equal. With a different approach to the phase
shift analysis, we were able to avoid this assumption.

% C. L. Critchfield, Phys. Rev. 73, 1 (1948).
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The data at these energies admit of many solutions for
the phase shifts and it is necessary to start with some
idea of what they should be in fitting the data. We have
used the scattering lengths as a guide in finding the S
state phase shifts and the Born approximation as a
guide in finding the phase shifts for partial waves with
1>1.

Othere-workers® studying the 5-Mev data on #-d
scattering have used Critchfield’s method and tried to
draw conclusions from the work of Buckingham and
Massey about the exchange character of nuclear forces.
Latter and Latter® avoided the assumption that the
%S and 25 phase shifts are equal. Although the neglect
of partial waves with 7> 3 is not justified at 5 Mev (see
figures) perhaps the most severe criticism of both these
works is that data at only one energy is examined, and
it is impossible to correlate the results with the known
n-d scattering lengths.

Previous calculations of the scattering lengths exist.
Gordon” replaced the #n-d interaction by an effective
central potential. This could be done if O(g,¢’),
J2(g, ¢'), and J3(q, ¢’) had the form of Ji(g, ¢'); that
is, if for a given ¢’, they were linear in ¢ to ¢=¢’ and
constant thereafter. However, they do not have this
form.

Prohammer and Welton® assumes that the “k cots”
plot for the doublet state in #-d scattering should extra-
polate to the binding energy of the triton, just as the
n-p “kcots” for the triplet state extrapolates to the
binding energy of the deuteron in #-p scattering.
However, since we know that the potential Eq. (17)
gives the scattering lengths Eq. (3) and the binding
energy of the triton at least approximately, we can
conclude only that this is not the case for the 25 state
in the three body problem.

The wave functions found by Troesch and Verde®
are compared with ours in Fig. 14. Our calculation is
equivalent to theirs except we have a continuum of
variational parameters where they had only a few.

IX. CONCLUSIONS

The excellent fits obtained of both #-d and p-d
angular distributions attest to the reasonableness of
our calculations. The close agreement between phase
shifts calculated using Born’s approximation in states
with />1 and a “no polarization” approximation in the
S states with those found from the phase shift analysis
provide strong a posterior justification for the ap-
proximations. The neglect of deuteron polarization has
been shown on theoretical ground to give little error in
the case of the %S state, and because of its unimportance
in scattering, to give no serious discrepancy for the %S
state. In higher angular momentum states polarization
is of even less importance and it has been shown that

31 M. M. Gordon and W. D. Barfield, Phys. Rev. 86, 679 (1952).
3 A. L. Latter and R. Latter, Phys. Rev. 86, 727 (1952).
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for the P states the distortion of the incident waves
may be neglected, allowing one to use the Born ap-
proximation. Since the major physical process that
determines the phase shifts in the higher angular mo-
mentum states at low energies has been shown to be
the pick up by one of the particles in the deuteron of the
incident particle to form a “new”’ deuteron, the two body
force of primary importance is the triplet even parity
n-p force. It has been further shown that only very
slight differences occur in the phase shifts depending
upon the range, shape, or tensor nature of this force,
it being sufficient to bind the deuteron. Thus tensor
forces may be replaced by central forces in the higher
states. In the .S states, the neglect of tensor forces is
not so justified ; however, even here the pickup process
accounts for a major portion of the scattering.

The calculated phase shifts are hardly dependent
upon the nature of the odd parity two body interaction
for any reasonable choice of the parameters.

The %S phase shifts are sensitive to the even parity
singlet interactions. However, since this is the state in
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which the calculations are most susceptible to error due
to the “no polarization” approximation in the calcu-
lations and the difficulty in determining the phase shifts
from experimental data, the limits on the singlet #-»
potential in terms of the singlet #-p potential can not
be accurately determined. It is extremely improbable
though that the singlet n-z potential depth is less than
0.7 that of the singlet #-p potential depth if they both
have the same radial dependence. It is quite likely that
very accurate limits on the #-» singlet depth could be
determined by a comparison of the binding energies of
H3 and He?. ) .

It is a pleasure to acknowledge the continued encour-
agement of John Allred, Alice Armstrong, and Louis
Rosen of group P-10 of this laboratory. Many members
of group T-1 assisted with the hand calculations, espe-
cially Max Goldstein and William Anderson. Richard
von Holdt developed the method for solving systems of
linear equations used in the .S state calculations, and
Lois Cook coded this method and prepared the S state
calculations for the MANIAC.



