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Angular Aberrations in Sector Shaped Electromagnetic Lenses for Focusing Beams
of Charged Particles
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The general expression for the second-order angular aberration of sector shaped electromagnetic lenses
consisting of superimposed uniform magnetic and radial electric Gelds used for the plane focusing of di-

verging beams of charged particles is derived. The result is applied to the special cases of pure magnetic
and pure electric Geld lenses. The ion optics of a mass spectrometer employing sector electric and magnetic
lenses in tandem and which has Grst-order velocity focusing and second-order angular focusing is obtained.

HE development of electronic techniques and the,
successful application of mass spectrometers to

the measurement of isotopic abundances and gas an-

alyses suggests thy, t a mass spectrometer might be em-

ployed advantageously for the precision measurement
of atomic masses. A properly designed instrument would

have certain immediate advantages over existing mass
spectrographs and could in time be developed to the
point where it might far surpass these instruments.

An instrument employing magnetic deAection only
cannot be employed for the precision determination of
atomic masses. The spread in energy of ions from the
ion sources limits the resolution. Also, the distribution
in the energy spread depends upon the type of ion
studied with ion fragments formed from molecules

usually having an initial energy obtained in the disso-
ciation process; thus they will be focused in the instru-
ment with lower accelerating voltages than are the
molecular ions, and a measurement of their position in
the mass spectrum will not be an accurate measure of
their mass. Hence, it is customary to employ combina-
tions of electric and magnetic fields which will give
double-focusing, i.e., which will focus ions having both
a spread in energy and angle as they leave the ion

source.
In a mass spectrograph a photographic plate is em-

ployed for detecting the ions. Compromises in design are
often necessary in order to achieve approximate focus-

ing over a region of the spectrum. Since in a mass spec-
trometer focusing is required at only one point, it
should be possible to achieve a more exact focus.

The sector-shaped electromagnetic lenses usually
used in the construction of mass spectrometers are
those in which the mean ion beam enters and exits
perpendicular to the 6eld boundaries. The first-order
ion optical properties of such lenses have been worked
out by Herzog' and others. In the derivations, varia-
tions of the ion beam in mass, energy, distance from

optical axis, and angular divergence are limited to

sufficiently small percentages of the mean values so
that squares, cross products, and higher order terms
can be neglected in the treatment. The resolution of

~ Present address: Minnesota Mining and Manufacturing Com-
pany, St. Paul, Minnesota.

' G. Herzog, Z. Physik 89, 447 (1934).

systems employing the optical properties is then limited
by the effect of these second-order terms, chief of which
is the second-order angular aberration. A completely
general expression for this aberration is not available
in the literature, although formulas applicable to a
number of special cases are given by Henneberg, '
Bruche and Scherzer, ' and by Hutter. 4 These include all
arrangements for pure magnetic lenses; but for pure
electric lenses, or for combinations, only cases in which
object and image distances are both zero are covered.
In none of these special cases, nor in any of the double-
focusing systems employing two of them in tandem, can
the final second-order angular aberration be reduced to
zero. In the next section we shall derive a more general
expression for the second-order angular aberration, and
in a following section we shall show that arrangements
can be constructed in which the second-order angular
aberration vanishes. An instrument having this property
could employ a relatively large divergence angle and
hence have good intensity without a loss in resolution.

DERIVATION OF SECOND-ORDER ANGULAR
ABERRATION

To derive the expression for second-order angular
aberration we shall, as Herzog did, write the equation
of motion of a given charged particle as it approaches,
passes through, and leaves an electromagnetic lens.
Throughout the treatment the angle of divergence, o.,
will be considered large enough so that its square and
terms proportional to its square will be signi6cant.
Variations in other quantities will be considered small
enough that their squares and also all cross products
can be neglected. The first and most lengthy step will
be to find an equation of motion in the lens, or field
space, which is accurate to the second order. The pro-
cedure will be to express all quantities, including the
field intensity, in terms of the mean ion beam and its
parameters; and in particular all variables will be ex-
pressed as fractional deviations from the mean values
so that any power of these variables can be expressed
as a convergent power series.

2 Vf. Henneberg, Ann. Physik 19, 335 (1934).
3 E. Bruche and O. Scherzer, Geometrische Electronerjoptik

(Julius Springer, Berlin, 1934).
4 R. G. E. Butter, Phys. Rev. 67, 248 (j.945).
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ANGULAR ABERRATi:ONS IN ELECTROMAGNETIC LENSES

Consider a sector shaped field area of total angle C

and coordinates r, p for the particle and with object
space and image space to the left and right, respectively,
as in Fig. 1. There will be a homogeneous magnetic
field of intensity B, perpendicular to the r, P plane,
and a cylindrical electric field of intensity E=Eprp/r,
in the opposite direction to the radius vector. The values
of 8 and Ep must be such that the mean ion beam, con-
sisting of ions of charge e, mass mp, vklocity vp and
entering perpendicular to the 6eld area at rp, will de-
scribe a circle of radius rp and exit again perpendicular
to the field boundary and along the optic axis.

If we consider f to be that fraction of the centripetal
force produced by the electric field we have

f(mpvp'/rp) =eEp, (»)
(1—f) (mpvo'/rp) = eBvo, (ib)

and we can express Ep and 8 in terms of the mean ion
beam parameters and the dimensionless field charac-
teristic f Thus .f=0 for a pure magnetic field and f=1
for a pure electric field.

Now consider the motion of any given particle with
charge e, mass m, and velocity v. Forces on the particle
will have components along the unit radius vector R~,
and the unit vector perpendicular to it, t'ai. There will
be no forces perpendicular to the r, P plane. The differ-
ential equation of motion is:

mP~'rldto r(d j/dt)—P]R,
+ (1/r) (d/dt) )mr'dy/dt's tt,
= —(eEprp/r) Ri—ev XB

etLBrdy/dt+E pro—/r+,
+eB(dr/dt) P,. (2)

Equation (2) immediately gives two differential equa-
tions involving the time rate variation of r and @.
Since the equation involving P can easily be inte-
grated to
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FIG. i. Diagram showing path of a charged particle through a
sector shaped electromagnetic lens. Particle is shown leaving
object plane at a distance d from optic axis and at a diverging
angle n.

deviations from the mean mass and mean velocity.
The dependent variable p will be a function of its value
at entry into the field area, of y and P, and of the di-
verging angle e. If all these are zero p will also be zero
and the particle will follow the optic axis. Since, in this
derivation, 0, is to be an order of magnitude larger than
the other independent variables, p and dp/d@ will both
be considered roughly proportional to o. so that only
the cube and higher order terms in p and dp/dp will be
neglected. The squares and cross products of y and P
will be neglected.

Substitution of expressions (1a), (ib), (4), (Sa), (Sb),
and (Sc) into the coefficient of Ri in Eq. (2) will re-
sult in:

d p/4P (2C/"o ) (dp/d4') (d4'/dt) (1+P) (1+P)
= —(1+&)-'L(i—f) (vo/") (1+p) (4/«)-'

+f( o'I o')(1+p)-'(4I«) '3 (6-).
From Eq. (3) the constant C and therefore d@/dt in

general can be evaluated in terms of the angular ve-
locity possessed by the particle at the time of entry
into the field area. Using the subscript 1 to denote
values at &=0,

dy/dt eB/2m+ C/r' (3) (d4/«) =( o )/ = (1—l ')/L o(1+p)j (I)

it is possible to eliminate the time variable and obtain
the differential equation of r as a function of @. Before
doing so let

~o(1+p) (Sa)

where p will be a numeric representing the fractional
deviation of r from the mean value rp. If we also let:

m= mo(1+y),

v= vp(i+P),

(Sb)

(Sc)

y and P are also numerics representing the fractional

where C is a constant of integration; and since

dr'/dt! = (~/dt)'(d'r/dy')
+ (d4/«) (d Id&)'(did ) (+I«) (4)

A particle entering the field area at a point other than
rp will undergo a change 'in energy because of the
variation in potential in the cylindrical condenser. By
equating energy terms we can solve for e& in terms of the
initi. al velocity and the point of entry into the field area.
%e obtain:

C= $&+f pi' f'p, ' n'+28—+y —fp Jwo—ro/2, (8)—
ddldt= Li P fP+ pp +pfp kpi-

kf'pi'—k~'+—tslvo/~o (9).
Substitution of (8) and (9) in (6) will finally result in
an equation in which the mean values esp, ep, and rp will

cancel out, and only .the small fractional deviations

p, pi, a, tl, and p remain. These quantities can all be
expanded in convergent power series, and by doing this
and dropping all terms of higher than second order we
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b= v+ (1+f)P (10a)

The quantity 6 represents variation in the particle
other than those of position and direction in the ion

optical system.
Exact solutions to this type of equation are not

known; however, we are interested only in solutions
that will satisfy it to a second-order approximation.
To find these we can replace the second-order terms on
the right by the square of the first order s-olution and
its derivative.

The only first-order terms are those on the left-hand
side. When set equal to zero they constitute the diGer-

ential equation used by Herzog. ' The solution is
straightforward and corresponds to the Gaussian di-

optrics of the system. Calling the first-order solution

p, we have:

P, (p) =a sin((1+ f') &g)+b cos((1+f') &p)

+~/(1+f') (11)

u and b are the two constants of integration. The second-
order approximation to Eq. (10) is then:

d'P/~4'+ (1+f')P= (1+f)(~Polde)'
k(1+f'+4—f')P.' p(1+f+f'—+f')P»'

'(1+f)a—'+-b (12)

where the right-hand side is a function of P alone.
General solutions to equations of type (12) are known,

and it can be shown by the method of undetermined
coefficients that a general solution to (12) is

P(p) = a sin(»p)+b cos(»p)+b/»' 4K~(a'+b—')

+ ',Epab sin(2»p) —-(K'p/12) (a'—b') cos(2»$), (13)

where u and b are the two arbitrary constants of inte-

gration and ~, E~, and E2 are functions of the Geld

characteristic f defined as

»= (1+f')& (14a)

E = (1+f'+4f')I»' (14b)

Ep —(3+2f+3fo+6fo)I» (14c)

The constants of integration are determined by the
boundary conditions in the object space (see Fig. 1):

p(0) = (~+~to)lro (15)

where d is the object ordinate and lo is the object dis-

tance; and
P (0)= nL1+P (0)j (16)

since n is equal to the ratio of velocity components at
the field boundary. Here the prime signifies derivation
with respect to g.

get a diRerential equation as follows:

d'Pld4'+ (1+f')P b-
= (1+f)(~P/d@)' p(—1+f'+4f')P'

'(—1+f+f'+f')P ' l (—1+f) ', (10)

When (15) and (16) are carried out, it can be seen
that both u and b contain terms proportional to the
first power of 0. plus terms proportional to cP. In addi-
tion, b also contains terms proportional to 8 and d/rp.
We will assume that d/rp is a numeric of order equal to
or greater than cP, so that its square and cross product
with 0. can be neglected. This restriction is not detri-
mental, since in practice object ordinates are either zero
or the result of a second-order aberration of a previous
system. The constants of integration are then easily
evaluated as follows:

where the coefIicient of x is the divergence angle as the
particle leaves the Geld area.

Performing operations indicated in (18) and using
the above values for the constants of integration we
obtain an equation of motion in the image space which
can be divided into four groups of terms:

y=d{cos(»C) —(»x/rp) sin(»C))

+ (rpb/» ){1—cos(»C&)1(»x/rp) sin(»C))

+n{(ro/» —»xlp/rp) sin(»C)+ (lp+x) cos(»C) j
+a'{L

—(-', Ep —1)lp/» —(3K~+Ep)x/12»
—(3Ey—Ep)»xlp /12rp'j sin (»C)

+P(3EJ+Kp)ro/12» + (3Eg—Kp)lp /12t'p
—(-',E p

—1)xlp/ro$ cos (»C )
+(Kplp/6»+ (oEp —p) (1/»' —lo /ro )»xj
Xsin(2»C)+t (oEp—1)xlo/ro —(1/»'
—lp'/ro') roEp/12$ cos (2»C)

—L(1/"+l,'/r, )E,ro/4)). (19)

The largest contribution to this ordinate will, in general,
be due to the terms containing the first power of o..
Conditions under which the coefFicient of n vanishes
result in first-order focusing. We sha11 call all values of
x for which this is true l;, the image distance, and shall
also define two new symbols for simplicity as follows:
np lp/ro, ratio -—of object distance to mean radius, and
n;=l;/rp, ratio of image distance to mean radius. We
then have the well-known conditions for first-order
focusing:

npn, 1/»'= (1—/») (n p+n, ) cot(»C), (20)

Expression (19) without the terms containing n and
with x= l; then becomes the image ordinate at a first-
order focal point. The coefFicient of d is the magnifica-
tion M of the system, and the term containing b is the

a= cx/» —aolo (~~Ep —1)/ro»,

d/rp 8/» +Alp/rp+ cx (4Ey) (1/»'+lo'/ro')

+a'(Kp/12) (1/»' —lp'/rp') (17b)

We can now write an equation of motion for the
particle in the image space II (see Fig. 1) with coordi-
nates y and x:
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dispersion D due to themass and/or velocity difference:

M= cos(»c) —»n, sin(A), (21)
lA
~ &

»n;= [1,/z+cos(A) j/sin(A)

»ep ——[z+cos(A) j/sin(A).

(24)

(25)

Upon substituting (24) and (25) into the last group of
terms in (19), we obtain an expression for the second-
order angular aberration which can be reduced by
trigonometric manipulation to.

L= —{E,[(z+1)csc'(A/2)
+ (z' —z —1+1/z) csc'(A)]+E4[z'+ 1/z)}n'rp. (26)

Here I is used to denote the second-order angular aber-
ration, and E3 and E4 are combinations of E~ and E2
such that Ep (f+5f')/[2(——1+f')') and E4 (-',——,'f-—
+izf' —f')/(1+ f')'. The magnification and dispersion
are also simplified when expressed in terms of 2;.

(27)

D=rpb(1+1/z)/»'. (28)

Equations (26), (27), and (28) express the three most
significant properties of sector shaped. electromagnetic
lenses of the type discussed here.

SPECIAL CASES

The manner in which the second-order angular aber-
ration behaves with changes in any of the independent
variables will be examined by considering some special
cases.

First consider the aberration when C is an integral
multiple of n/» It will be seen that Eq. (26) fails to
yield finite answers. However, correct expressions for
these cases can be derived from the last group of terms

' With the help of the focusing relationship (20}it can be shown
that tan '(~n;)+tan '(anp)+/A=~& which reduces to Barber's
(reference 6} theorem for the pure magnetic case where a =1.

' N. F. Barber, Proc. Leeds Phil. Soc. 2, 427 (1933).

D= (rp5/»')[1 —cos(A)+»m, sin(A)). (22)

These equations are the same as found previously by
Herzog.

The last group of terms in (19) represents the widen-

ing of the image due to the square of the diverging angle
e and is thus the second-order angular aberration. It is
a complicated function of the geometry of the system
and of the field characteristic f [see Eqs. (14)). The
geometry of the system is represented by the field

angle 4 and the object and image distances. The ex-

pression can be simplified if we define a quantity inde-

pendent of C which will express the degree of asym-
metry of the system, i.e., the relation between the
object and image distances. We define s as:

z=cos(tan '(»n;))/cos(tan '(»np)). '' (23)

For symmetry eo= e; and s= 1. %hen e;= ~, s=0;
when mo

——~, s= ~. Then, in terms of s and 4,

ABEFI

Fio. 2. Angular aberration I. for pure magnetic sector lens as
given by Eq. (30). The ordinate scale for reduced dispersion is the
coefficient of Z/np rather than the coe%cient of n'rp in Eq. (3O}.

in Eq. (19).With the help of Eqs. (20), (24), and (25)
it can be shown that when C is equal to 4./», where k

is any integer, then z must equal (—1)"+' and n p ls

equal to —e;. Thus, when k is odd,

L= —[3Ei+Ep+»'ep'(3Ei+3Ep —12)jr''rp/6»'. (29)

When k is even, L=O. Inspection of Eq. (28) shows
that the dispersion D is also zero when k is even. Thus,
whenever the field angle is an even multiple of m/»,

the system behaves in the same manner as the well-
known 360' pure magnetic case.

Pure Magnetic Field

I'or a pure magnetic field f is equal to zero, »=1,
E,=O, and E4——ip. Then (26) becomes

I = —[z'+ 1/zjn'rp/2. (30)

This is the same expression as given by Bruche and
Scherzer. 3 Figure 2 shows the variation of I with s.
The second-order angular aberration has its minimum
value in an asymmetrical analyzer for which z= (0.5)&
=0.794.

In mass spectrometers employing a sector magnetic
field for making mass separations a quantity which is a
better "dgure of merit" for the resolving power than
the dispersion is the ' reduced dispersion. " It is defined
as the ratio of the dispersion to the angular aberration
and is obtained by dividing Eq. (28) by (30). Its
dependence on s is also plotted in Fig. 2. The maximum
absolute value occurs when s= &. Thus a slightly asym-
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FIG. 3. Angular aberration L, for pure electric sector lens as
given by Eq. (31).Dotted curve shows loci of points of minimum
aberration.

Simple Symmetric Systems With Superimposed
Electrostatic and Magnetic Fields

As an example of how the field characteristic f
sects the angular aberration consider the symmetric
case, i.e., s= 1. Then from (26):

1.= —[2Es csc'(A/2)+2K4)n'rs. (32)

In Fig. 4 we have plotted the value of I. for f= 1, —',, 0,
—-'„and —1. These five curves give us a general idea
of the behavior of the aberration for symmetric cases
as we vary the deflecting field from pure electric to
pure magnetic, but with both tending to bend the ions
in the same direction; and then on into the negative
values of f, where the electric and magnetic fields
oppose each other but the magnetic predominates.

Ke see that for the pure electric field the angular
aberration has its minimum value of —4n'rs/3 for the
familiar7 case, C = s/V2, when the object and image are
located at the boundary of the field. Also, it is seen that
for small negative values of f there exist cases where the
second-order angular aberration is zero. These cases are
of limited interest in our consideration. In general they
will not give energy focusing. Also the construction of
cylindrical electric condensers of sufhcient size to give a
uniform field over the region where an ion beam may
travel requires a rather large air gap in the magnet
with the result that the cost of the magnet and asso-
ciated power source may be considerable.

metrical analyzer, gives a reduced dispersion ~3 higher
than the symmetrical analyzer used in most single
focusing magnetic deflection mass spectrometers.

Pure Electric Field

For a pure electric field, f is equal to 1 a=v2
3

) 0 )

Es 4, and E4= —1/'12——, and Eq. (26) becomes

1.,= —[(3/4)((z+1) csc'(C/v2)

+ (z' —s—1+1/z) csc'(v2C)) —(s'+1/s)/12]n'rs. (31)

Unlike the pure magnetic case, the result depends upon
the sector angle C of the cylindrical condenser, and the
expression is more complicated algebraically. However,
for any given value of C the same type of double
branched curve as in the pure magnetic case can be
expected. In Fig. 3 is plotted the angular aberration L,
as a function of z for three values of C.

As in the magnetic case, the lower right branch of the
curve is the most interesting, as the other branch
produces the trivial case at z= —1. In general the
minimum absolute value of the aberration in the right-
hand branch occurs for z(1.The dotted line traces the
path of the minimum which can be seen to approach
—(4/3)mrs as C approaches s/2&. Because of the
indeterminacy discussed previously, the plot for
4 =s/21 would be a semi-infinite line extending down
s=1 from a value of —4/3.

SYSTEMS EMPLOYING ELECTRIC AND MAGNETIC
FIELDS IN TANDEM

A number of successful double focusing instruments
have been constructed employing sector electric and
magnetic deflecting fields in tandem. In these systems
the image point of the electric field serves as the object
point of the magnetic field; and they are so constructed
that any small chromatic aberrations occurring in the
electric lens are canceled by an equal but opposite
aberration in the magnetic lens. The compound system
then possesses velocity focusing as well as first-order
divergence focusing. Such a compound system is il-
lustrated in Fig. 5. It is especially true in these systems
that the second-order angular aberration is the limiting
factor in either resolution or intensity. For example,
the instrument of Bainbridge and Jordan' consists of a
s-/2' electrostatic analyzer followed by a 60' sym-
metric magnetic analyzer. The angular aberration in the
electrostatic image plane is —(4/3) u'rs. Since the
magnit'. cation of any symmetric magnetic system is
—1, the —(4/3) n'rs will be subtracted from the —n'rs
of the magnetic system leaving the net angular aberra-
tion as +—sn're. The instruments of Dempster' and
Mattauch" have similar residual angular aberrations.

~ A. L. Hughes and V. Rojansky, Phys. Rev. 34, 284 (1929).
8 K. T. Bainbridge and K. B.Jordan, Phys. Rev. 50, 282 (1936).
~ A. J. Dempster, Phys. Rev. 51, 67 (1937)."J.Mattauch, Phys. Rev. 50, 617 (1936).



ANGULAR ABERRATIONS IN ELECTROMAGNETI C LENSES

With the help of the more general formula for angular
aberrations, (26), it can be shown that it is possible
to construct instruments which possess both velocity
focusing and second-order divergence focusing.

As noted in Fig. 5, the compound system contains
eight geometrical parameters: C„r„l„,/;„C, r,
l. , and t; . The subscript e refers to the electric system
and m to the magnetic system. These are not all inde-
pendent since the first-order focusing relationship (20)
must be satis6ed for both systems, and also any pro-
portional change could be made on all the lengths in-
volved without changing the characteristics of the
system. Basically then, there are five independent vari-
ables. For mathematical work it is convenient to con-
sider these as C„C, s„s and the ratio r,/r . To
obtain the desired results, two more conditions must be
met by these parameters; the final first-order chromatic
aberration must be zero and the final second-order
angular aberration must also be zero. It is apparent
that mathematical solutions will exist even though
three of the five variables are arbitrarily specified.

For actual use solutions must be found which also
satisfy a number of practical considerations. These are
listed below:

1. All quantities must be real and all field angles
must be positive.

2. The object and image distances for the electro-
static analyzer should be positive and greater than zero.
Correction for the fringing field at entrance and exit
can then be made using the calculations of Herzog. "

lie

I
I

i
I
II (

I

I I
II

OBJECT PLANE

FIG. 5. Typical double focusing system employing electric and
magnetic lenses in tandem.

3. The final image slit must be away from magnetic
or electric fields so that it will be easy to use various
kinds of detection systems for the ions, e.g., an electron
multiplier of the Allen" type.

4. The ion source should be suKciently removed from
both the electric and magnetic analyzing fields that if an
ion source magnet is used for collimating an electron
beam in the source, its field will not aGect the analyzers.

5. The magnetic field sector must be reasonably
small, 90' or less, so that the cost of the magnet will not
be unduly high.

6. The apparatus must not have unreasonable di-
mensional tolerances which would lead to exorbitant
expense of construction.

To investigate cases where a combination of velocity
focusing and second-order divergence focusing are
possible, we will simply solve two simultaneous equa-
tions —the 6rst being the velocity focusing condition,
and the second the second-order divergence focusing
condition.

These are:
3f D,+D =0,

M I.,+1.„=0.
(33)

(33a)

0

The dispersions symbolized by D, and D are those
suGered by an ion with the mean mass, mo, but with a
small velocity difference, P (see 5c). The equations can
be solved by ordinary algebraic techniques and with the
help of the following expressions from the preceding
sections:

f o~+] '2 M = —is,
J.„=—(s„'+1/s )n„'r„/2,

(27)

(3O)

0 40' 80' 120' l 60 200' 240

I,= —{9L(s,+1) csc'(C,/v2)

+ (s,2 —s,—1+1/s,) csc'(VZC, )$
—Ls '+ 1/s, j}n 'II,/12, (31)

ol
(34)

for simplicity. From (28), with iI=P and II= 1,
FIG. 4. Angular aberration of several cases of superimposed

electric and magnetic symmetric analyzers as a function of the
sector angle C.

D„=r+(1+1/s„). (35)

"G. Herzog, Z. 'Physik 97, 596 (1935l.
~ J. S. Allen, P&ys„Rev. SS, 966 (1939);Rev. Sci. Instr. 18, 739

(&947).
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From (28), with 8=2P and ~=&2,

FIG. 6. Variation of ratios of /0, l;, l, and r, to r„as a function
of 4, for instruments which employ electric and magnetic sector
fields in tandem and for which there is first order velocity and
second order angle focusing. I'igure also shows corresponding
dispersion per r per percent of mass difference.

system with the largest dispersion. In terms of C,
and z„
A = 3/2L(1/s, ) csc'AC, /2+ (1—1/s )' csc'~2C,j

—(1/6) (1—1/s.+1/s '). (41)

It is evident that, at least for z,&0, A can be easily
made as large as desired by reducing the size of C„
so that real values of z are assured.

Very small values of z could be had if the quantity A
were near the value 4. By holding C, fixed and mini-
mizing (41) with respect to s„we can find the minimum
possible value of A, and the corresponding z as well as
z, for any given value of C,. Table I shows minimum
values of A and the corresponding values of z, and z
for values of C, between 0 and gr/v2 radians. This
covers the entire range of possible values for A„„„be-
cause of the manner in which C, enters into (41). It
can be seen that A is always greater than one, and that,
therefore, second-order focusing can be achieved with
some real and positive values of z for any values of
C, and z,. Conversely, however, second-order focusing
cannot be achieved in systems in which z is between 0

D,= red(1+1/s, ). (36)

The square of the divergence angle of the mean beam
as it enters the magnetic field, 0. ', is of course the square
of the diverging angle as it leaves the electric field—
that is Lsee (16) and (18)),

n '= pp'(C, )]'=z,'n.'. (37)

Thus in terms of the geometric parameters, C„C
s„z,and r,/r, both (33) and (33a) can be satisfied if

s„=-',aL2IC,/(s '+s )——')l (38)
and

@e

00
20'
40'
60'
80'

100'
120'
127'17'

&min

1.000
1.050
1.176
1.311
1.372
1.362
1.337
1,333

—1.00—1.092—1.568—5.975
+2.643
+1.256
+1.014
+1.00

—0.047, 1.047—0.153, 1.153—0.249, 1.249—0.289, 1.289—0.282, 1.282—0.266, 1.266—0.264, 1.264

Dispersion/r~b

—10.3, 0.978—2.77, 0.933—1.50, 0.900—1.23, 0.888—1.27, 0.890—1.38, 0.895—1.39, 0.896

TABLE I. Maximum dispersion mathematically
obtainable for various values of C,.

'/r-= (1+s-)/(1+1/'). (»)
(39) is the velocity focusing condition which is the same
as that derived by first-order theory. The quantity,
2E,/(s, '+s,), which we shall call A for convenience, is
a function of C, and z,. Thus, whenever C, and z, are
such that A is greater than 4, there will be two real
values of z, at least one of them positive, for which the
second order angular aberration is zero. C, the magnetic
field angle, does not enter into the mathematical condi-
tions since, as noted earlier, the actual size of the angle
does not inQuence the magnification, dispersion, or
aberrations in a pure magnetic system. It does enter
into the practical consideration, however. We shall
now investigate the range of values possible in A with
two objectives: (1) to find when A) es and (2) to find
the corresponding values of z . This second objective
is of interest because of the manner in which the dis-
persive power of the instrument for a given percentage
mass difference, y, depends on s . From (28) with
8=y and ~=1:

D= r„y(1+1/s„) (40)

Thus, the smallest possible value of z will produce a

and 1. It can be seen that A;„ is quite insensitive to .
changes in C,. It approaches the value 1 as C, approaches
zero, which means very small negative values of z;
however, when C, is less than about 65', values of z,
necessary for the minimum values of A are negative.
Inspection of (25) will show that this would mean a
negative value of the electric field object distance
which violates our practical consideration No. 2.

Practical systems, in which the electric field angle
C, is less than 65' can, of course, be constructed.
However, z, must be positive and therefore the values
of A will be greater than the minimums listed in Table I.
Figure 6 illustrates how, for a given positive value of z„
the geometric parameters of velocity focusing, second-
order divergence focusing mass spectrometers vary with
C,. The value of s, used is +1.C, the magnetic field
angle, has been set at 60' for purposes of calculating
values of l, and l; . Values of r,/r and of the disper-
sion per unit percentage mass difference are independent
of C .The valueof r hasbeen takenasunity. Thevalue
of the dispersion per unit percent mass diGerence is
plotted as a "figure of merit" for the systems. It can
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be seen to vary from 0.5 to nearly 0.9 as 4, approaches
180/V2 degrees. The dispersion in a typical Grst-order
divergence focusing, velocity focusing instrument such
as that of Bainbridge and Jordan' is 1.0. It can also be
seen that for C, less than 60', values of r„ t„, t;„and
I; become prohibitively large. The best dispersion
occurs for C,=180/W2 degrees. However, in this case
l„ is 0, so that practical location of ion source (or col-
lector) is not possible. The range between 4,=60' and
120' seems the most practical.

The theory developed here has been used to design
a mass spectrometer for precision mass determinations;"
numerous nieasurements" "have been made. For this
instrument C,=90' and C =60', r, and r are 18.87
and 15.24 cm, respectively. /„, 1;„l, , and t; are 6.6I,
6.61, 34.77, and 20.73 cm, respectively.

"A. O. Nier and T. R. Roberts, Phys. Rev. 81, 507 (1951).
'4 Collins, Nier, and Johnson, Phys. Rev. 84, 717 (1951);86, 408

(1952),"R. E. Halsted, Phys. Rev. 88, 666 (1952}.
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The Specific Heat Discontinuity in Antiferromagnets and Ferrites*

LOUIS N. HOWARD) AND J, SAMUEL SMART

Vnited States iVaval Ordnance Laboratory, White Oak, Maryland

(Received March 24, 1953)

It is shown that, in a molecular field approximation, the internal energy and specific heat of a ferromagnet
and antiferromagnet have the same form, regardless of the number of sets of neighbors whose interactions
are considered and of the signs of the interactions. The Noel theory is used to derive an expression for the
discontinuity in specific heat in ferrites at the Curie temperature. This discontinuity AC is in general smaller
than it would be for a ferromagnet or antiferromagnet with the same number of atoms, Numerical calcula-
tions indicate that for most ferrites AC should decrease monotonically as nonmagnetic atoms are substituted
for magnetic atoms on the A sites. On the other hand, if the nonmagnetic atoms go on the 8 sites, AC should
pass through a maximum.

HE usual approximation of exchange interactions
by a molecular 6eld gives an expression

E= ——',(1VkT,)3Sp(So+1) 'o' (1)

for the internal energy of a ferromagnet. Here E is the
total number of magnetic atoms, 50 the spin quantum
number of each atom, T, the Curie temperature, and a.

the reduced magnetization. The magnetic contribution
to the specific heat of the material is then obtained by
differentiating Eq. (1) with respect to T. It is found
that at the Curie temperature the speci6c heat should
have a discontinuity given by'

(AC)o=51Vkso(So+1) t (So+1)'+So'j '

a result which depends only on 50 and not on the mo-
lecular held or the Curie temperature.

It is easy to show that, for the same approximation,
the same results obtain, regardless of the number of
sets of neighbors whose interactions are considered and
of the signs of these interactions if the magnetic atoms
all occupy equivalent positions in the lattice. Thus
Eqs. (1) and (2) hold for antiferromagnets as well as
ferromagnets. Suppose we consider interactions of all

*This work was supported in part by the U. S. OfIIce of Naval
Research.

t Now a National Science Foundation Fellow at Princeton Uni-
versity, Princeton, New Jersey.

' See, for instance, J. H. Van Vleck, The Theory of E/ectric and
Magnetic Susceptibilities (Oxford University Press, London, ]932),
p. 345.

n

E= ', (1VglI—E/-n)P S,"H;,
j=l

(3)

where S, is the average net spin on the jth sublattice
and H, is the molecular Geld acting on atoms on the
jth sublattice. We may write

H, = Z V, ASA,
k 1

where y;ASA is the internal Geld acting on an atom on
the jth sublattice caused by its neighbors on the kth
ty» ——0, from condition (c)j. Then Eq. (3) may be
written in the form

E= —-', (IVgiIE/n) S'yS,

where S is the column matrix with elements SI,
S„, S is its transpose, and y is the eXn matrix with
elements y;~. Now if we use the result that the eigen-
values of y are given by

yS=3k t Tg & iI(ssop+1) j—'S,

sets of neighbors up to and including the ith. Then sub-
divide the original magnetic lattice into sublattices so
that (a) all sublattices are equivalent under the group
of translations of the original lattice, (b) each atom has
only one kind of neighbors on any other sublattice, and
(c) each atom has neither ith nor nearer neighbors on
its own sublattice. Let the number of sublattices re-
quired be n. Then


