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Previously a procedure was given for carrying out numerically an iteration method to get approximate
solutions for wave functions in momentum space and for eigenvalues. This procedure is applied to the ground
state of the deuteron in nonrelativistic approximation, using central potentials only. Tables illustrating
the rapidity of convergence of the iterations are given. Values for the momentum space wave functions
corresponding to different potential shapes are tabulated, and simple analytic approximations are given.

1. INTRODUCTION

N a previous paper,! hereafter referred to as I, an
iteration procedure suitable for numerical treatment
was discussed with relation to solutions of the Schréd-
inger wave equation in momentum space. The present
paper is a continuation of I; the iteration procedure is
here applied to the ground state of the deuteron. We
consider only central potentials and obtain nonrela-
tivistic wave functions for several different potential
shapes. Two to three iterations were carried out, both
to determine the momentum distribution in the deu-
teron and to investigate the rapidity of convergence of
the iteration. Details of the method and results are
given in the following two sections. Some approximate
analytic wave functions for the deuteron ground state,
both in position space and in momentum space, are dis-
cussed in Sec. 4.

The notation used is the same as that of I, and fre-
quent references to Table I of I will be made. We
express all momenta in units of v, where Ay~ is the
deuteron radius, viz.,

vy=(2MEp)i=45.69 Mev/c
=h(4.317X10~8 cm)~L (1)

M is the reduced mass of the neutron-proton system
and Ep is the deuteron binding energy (2.225 Mev).
The experimental probable error in vy is about #0.1
percent.

In Table I of I, a momentum pu, fixing the range of
the position space potential Uy(7), is defined for three
forms of the dimensionless function Uy(r), corre-
sponding to Yukawa, exponential and Gaussian
shapes. The corresponding momentum space potentials
[(27)3Vo(p)], which are the Fourier transforms of
Uy(r), are also given in I, Table I. We write the triplet
neutron-proton potential in position space U(r) in the
form

U(n)=Nw/2M)Uo(7), )

where M\ is a dimensionless parameter proportional to
the “coupling constant.” An analysis of low energy
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experiments on the neutron-proton system?—* gives a
value for the triplet effective range of the n—p po-
tential of

pi(0, —Ep)=1.703(12=0.02) X108 cm.  (3)

An effective range theory analysis,® using a compromise
between Eq. (3) and data on photodisintegration of the
deuteron,’ then yields values for the momentum u for
the three potential shapes. We adopt the following
values:

v/u=0.313 (Yukawa) (4a)
v/u=0.154 (exponential) (4b)
v/u=0.349 (Gaussian). (4c)

The probable error in (y/u), coming mainly from the
experimental uncertainty in the effective range, is
about #2.5 percent in all three cases.

2. METHOD

The nonrelativistic® Schrédinger equation in mo-
mentum space for the spherically symmetric ground
state of the deuteron has the form

P*+v)e(p)
P f ks (k) f daVo(p+B—2pkx).  (5)

In Eq. (5), (27)3V, is one of the momentum space po-
tentials defined in I, Table I, ¢(p) is the momentum
space wave function to be determined, and A the
“coupling constant,” Eq. (2). We assume vy and u to
be known and consider A as the eigenvalue of the
problem.

It is convenient to define a modified function x(p) by

x(0) = (*+v")9(p). (6)

As discussed in I, we write the nth iterated function

2 Burgy, Ringo, and Hughes, Phys. Rev. 83, 512 (1951).

3J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).

41H. A. Bethe, Phys. Rev. 76, 38 (1949); E. E. Salpeter, Phys.
Rev. 82, 60 (1951); G. Snow, Phys. Rev. 87, 21 (1952).

5 D. H. Wilkinson, Phys. Rev. 86, 373 (1952).

6 We shall consider the nonrelativistic equation (5) for all mo-
menta p. Actually (20v/c) is approximately equal to one nucleon
m;ss, and Eq. (5) has, of course, no physical justification for
$220y.
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TasrLE I. Iterated values of a.(p) and of the coupling
constant An41 for a Yukawa potential.

Pym 0 1 2 ® Ang1
ao(p)  1.858  1.858  1.858  1.858  2.359
a1(p) 1.759 1.796 1.848 1.937 2.3764
ax(p) 1758 1797  1.854 1943  2.376,

TaBirE II. Iterated values of a.(p) and of the coupling
constant A\,41 for an exponential potential.

p/n 0 1 4 o A4l
ao(p) 1.380 1.380 1.380 1.380 2.070
a(p) 1.382 1.393 1.326 1.232 2.0634
ax() 1.379 1.395 1.322 1.229 2.062,

TasrLE III. Iterated values of @.(p) for p/2u=0 and 2, of
bn(p) for p/2u=4 and «, and of the coupling constant A, for a
Gaussian potential.

/2w 0 2 4 © Anat
ao(p), bo(p) 1.170 1.170 1.000 1.000 3.880
o) bi(p) 1165 1209 0819  1.015  3.864
as(p), ba(p) 1.164 1.214 0.766 1.0175 3.863,
as(), bs(p) 1.1635 1.215 0.757 1.018 3.8625

Xn(p) in the form

xn(p)=[1+p"/ e ()T (Yukawa) (7a)
xu(p)=[142"/a>(p)w’]™ (exponential) (7b)
xn(p) =exp[ —p*/4a.*(p)u*] (Gaussian).  (7c)

The function a@.(p), defined by Egs. (7), is a slowly
varying function of p» and hence more suitable for
numerical work than x.(p) itself. For the initial wave
function of the iteration procedure, we take ayo(p) to
be a constant, a.

In I, Sec. 2, the iteration procedure was discussed
in detail. Once a@,(p) is known, the integral equation (5)
furnishes a value N\, .1 for the coupling constant by re-
quiring that x.+1(0) be unity. The integral equation
then gives ¢.11(p) and hence @,1(p). In all three cases,
an analytic expression for @;(0) as a function of a,
could be found with relative ease. The requirement
that ¢1(0) equal @ gave the following values for ao:
1.74, 1.38, and 1.17 for the Yukawa, exponential, and
Gaussian potentials, respectively. For the exponential
and Gaussian potentials, these values of ao were actu-
ally used in the iteration. For the Yukawa potential,
the ranges of integration involving large momenta were
also found to be fairly important. For this reason, the
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value of a@¢ for which a;() equals @y was also calcu-
lated. The mean between these two values for a,, 1.86,
was (rather arbitrarily) adopted for the iteration in the
case of the Yukawa potential.

For the Yukawa and exponential potentials the first
iteration can be carried out analytically, but the for-
mulas for xi(p) are rather complicated. For all three
potential shapes, a:(p) was evaluated for about ten
values of p and a simple interpolation method used
for intermediate values of p. Using these values of
a1(p), a second iteration was then carried out giving
values for A, and a2(p) for a few values of p. At least
for fairly small values of p, a:1(p) and as(p) differed
from each other by only a small fraction. Finally, one
single further integration, using the interpolated values
for ax(p), gave A;. Values for A\, and a(p), for a few
values of the momentum p, are given in Tables I, II,
and III.

As may be seen from the tables, the rapidity of con-
vergence of the iterated values of A is very good in
all three cases and of a,(p) fairly good for the Yukawa
and exponential potentials. For the Gaussian potential
the convergence of @,(p) is also fairly rapid for pZu
but becomes progressively worse for large values of
#/u. In fact, the correct asymptotic behavior of x(p)
for p— is a much more slowly decreasing function
of p than xo(p), Eq. (7c). Because of the rapid decrease
of the Gaussian function, x.y1(p) depends mainly on
the behavior of x,(k) for values of % in the neighborhood
of p. For large values of p, therefore, the iterated func-
tions x.(p) do not approach the correct function
rapidly, once a function xo(p) with an incorrect asymp-
totic behavior has been used.

The correct asymptotic form of the wave function
for the Gaussian potential can be obtained as follows.
We write ¢(p) in the form

¢(p) ~exp[—pf(p)], ®

where f(p) is a function to be determined. For p>>u,
the integral equation (S5) takes the following asymp-
totic form:

2 exp[—#(#)]
= (wy/20) f kil expl— (p— B/ 4~ (BT (9)

The integrand has a sharp maximum near k=[p
—3f(p)]; the integral can be evaluated approximately
by using a Taylor expansion for the integrand about

TasLE IV. Extrapolated values for a(p), b(p) and of the coupling constant N for three potential shapes.

b/n 0 0.5 1 2 3 4 5 ® bN
Yukawa a(p) 1.758 1.772 1.797 1.853 1.888 1.906 1.918 1.946 2.377
Exponential a(p) 1.380 1.390 1.397 1.385 1.353 1.321 1.301 1.228 2.062
Gaussian a(2p) 1.163 1.167 1.176 1.215 3.862
Gaussian b(2p) 0.940 0.82 0.75 0.70 1.018
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TasLe V. Extrapolated values of x(p) as a function of (p/v) for three potential shapes.

/v 0 1 2 3 4 5 6 8 10 12 14
Yukawa ° 1.000 0.970 0.890 0.785 0.678 0.580 0.496 0.362 0.269 0.205 0.160
Exponential 1.000 0.976 0.908 0.811 0.700 0.589 0.485 0.317 0.203 0.130 0.085
Gaussian 1.000 0.978 0.914 0.818 0.700 0.453 0.252 0.123 0.052 0.020

0.575

this value of % and dropping higher powers of u/p. The
resulting equation for f(p) has the solution

J(p)=2[In(bp) I},

where b is a known function of the coupling constant
)\, independent of .

The iteration procedure for the Gaussian potential
was modified slightly by using Eq. (7c) only for p<4y,
and using instead” for p>4u the form

én(p)= A exp{—25p[Inb.(p)p ]} (11

In Eq. (11), A, is a constant determined by requiring
the two formulas for ¢.(p) to agree for p=4u, and b,(p)
is a function analogous to @.(p). The function be(p)
was taken to be a constant b, and was determined by
requiring 1(%) to be equal to bo. This modification of
the iteration procedure improved the rapidity of con-
vergence of ¢.(p) for p>4u, but is unnecessary for
small p and for evaluating X\.® Some iterated values for
b(p) are given in Table III.

(10)

3. RESULTS

In Tables I, I1, and III, the iterated values of A, and
of a,(p) are given for a few values of p, merely to dem-
onstrate the rate of convergence. In Table IV we give
the final estimates for A and for a(p) as a function of
p/u for each of the three potential shapes. For the
values of v/u given in Eq. (4), the computational errors
in the numbers given in Table IV are about =35 in the
last figure given, or less. For values of p/u not given
in Table IV, a simple interpolation method can be used
for a(p). The probable errors in a(p) and in A due to
the experimental uncertainty in the values used for
v/u, Eq. (4), on the other hand, are slightly more than
half a percent.

Using these values for a(p) and Egs. (4), (7), and
(11), values for the modified function x(p), Eq. (6),
can be calculated. In Table V we give these values for
x(p) for the three potential shapes, with the momentum
p expressed in units of the constant v, Eq. (1). For the
values of y/u given in Eq. (4) the probable errors, from
computational sources alone, in x(p) are of the order of
magnitude of £=0.002 for relatively large values of .
The experimental uncertainty in the values used for
v/p introduces much larger errors for x(p). This ex-

7 The logarithmic derivatives of the two forms for ¢(p) are
approximately equal for p=4u.

8 In fact, the asymptotic behavior of ¢(p) is only of academic
interest, since the nonrelativistic approximation, used throughout
this paper, breaks down for momenta p not much larger than 4u.

perimental probable error in x(p) is of the order of
magnitude of 40.010.

In Fig. 1, we give a rough plot of the wave function
x(p) as a function of p/v for the three potential shapes.
It will be seen from this graph that for p<5y =230
Mev/c, the momentum space wave functions (nor-
malized to the same value at p=0) for the three po-
tential shapes are very similar, although the Yukawa
wave function decreases slightly more rapidly than the
other two wave functions. For larger values of the
momentum, however, the Yukawa wave function de-
creases much less rapidly with increasing momentum
than the exponential wave function and the Gaussian
wave function much more rapidly.

4. APPROXIMATE WAVE FUNCTIONS

It will be seen from Table IV that the functions a(p)
vary only slightly with p for all three potential shapes.
One therefore obtains fairly accurate but simple ap-
proximations to the momentum space wave functions
by replacing a(p) in Egs. (7) by a constant @, as was
done for the initial wave function in our iteration
method. Using Table IV, an appropriate value can be
chosen for the constant e, if the momentum space wave
function is required to be most accurate for a par-
ticular range of momenta. We also give below the values
for ¢ which give best agreement with the experimental
effective range of the triplet neutron-proton system.

1.0,

F1G. 1. The modified wave function in momentum space*
x(p) for four different potential shapes.
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For the Yukawa and exponential potentials, the
Fourier transforms of these approximate wave func-
tions are also simple functions. These approximate
position space wave functions are (unnormalized)

(Yukawa) . 'Qby(r):r_l(e—“ﬂ__ —a/.n-) ;

Bolr) =i (e —eom) = Beew,

(12a)
(exp): (12b)

where B=(a?u®—+?)/2au. The potentials in position
space, for which these wave functions are exact solu-
tions of the Schrodinger equation, are (except for con-
stant multiplying factors) ‘

(Yukawa): V(r) < e /rpy(r); (13a)
(exp): V(r) e e /dhe(r). (13b)

The values of the constant ¢ which give the correct
experimental effective ranges®™® are a¢=1.84, (au/v
=5.9) for the Yukawa potential and a=1.38, (au/v
=09.0) for the exponential potential.

The Fourier transform of the approximate momentum
space wave function for the Gaussian potential® is not
very simple. It is, however, similar to the wave function

Yo=r[e 7 —exp(—duri—ar)], (12¢)

where
a= 2+’

and d is a constant of the order of magnitude of unity.
The wave function, Eq. (12¢) is the exact solution for
a potential similar to the Gaussian potential, namely,

V(r) = (1+d%/a) exp(—dwr*—ar) /Ya(r).  (13c)

The value of the constant d, which gives the correct
effective range is d=0.98, (o/y=4.0).

9 N. Svartholm, thesis, Lund (1945), unpublished.
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Wave functions corresponding to an attractive posi-
tion space potential with a “repulsive core”'%!! may be
of some interest for the deuteron problem. We consider
a position space wave function of the form

Yre(=r{e—[1+(a—y)re}, (12d)
corresponding to a position space potential of form
V(r) < [1—(a+v)r]/rdre(r). (13d)

This wave function is zero at the origin, the potential
repulsive at short distances (with an 72 singularity
at the origin) and attractive at large distances (with
asymptotic form exp[ — (e—+)r]). This potential thus
bears some similarity to those employed by Jastrow!®
and Levy,!! but the effect of its repulsive singularity
is much less marked than that of an “infinite repulsive
core.”

The momentum space wave function corresponding
to Eq. (12d) has the form

dre(p) < [alat27)— 921/ (P4 (P42, (14)

which changes sign as does the potential itself. The
value of o which gives the correct effective range is
approximately 11.yy. This wave function is illustrated
by the dotted curve in Fig. 1, from which it will be seen
that the function is similar to that for the Gaussian
potential for small momenta but has a much larger
“tail” of opposite sign for large momenta.

We are indebted to Mrs. D. Kellog, Mr. P. Kellog,
and Mr. R. Margulies for extensive help with the

computations and to Dr. McWeeney for pointing out

related calculations.!?
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