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however are very small and were not entered in the
tables.

5. CONCLUSION

The foregoing should enable correct treatment of
first forbidden transitions with an arbitrary amount of
pseudoscalar admixture. This is at present particularly

valuable in the case of the decay of RaE; there, how-
ever, additional corrections due to the finite size of the
nucleus must be calculated. ' '

The author wishes to thank Professors K. Feenberg
and H. Primakoff sincerely for suggesting this work and
for extending their advice.
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Field quantization is applied to an electrical oscillating circuit. Damping effects are treated by perturba-
tion theory. Quantum effects occur both in the damping and in the noise, and are discussed in detail. An

interpretation is given of the in6nite zero point contribution which appears in the theory of Callen and
%elton. The average electromagnetic 6eld energy of an oscillator with capacitance C, conductance G, and
natural frequency ou as a function of time is given by

U= —,'Ao)+
Acr

L1 e a//c5+—Uee al/o
exp (Aa /k T)—1

The mean squared noise voltage which would be measured in an experiment with a damped oscillator is

given by

C '
exp(k/o/kT) —1

'

The maximum noise power which a conductance G at temperature T can transfer to a damped oscillator
approaches the value

GAco

CLexp(hc/ eTk) —1j '

The vacuum fluctuations are shown to be observable in certain noise experiments.

INTRODUCTION

IRTUALLY all of the phenomena occurring in
electric circuits are described classically in a

satisfactory way by Maxwell's equations. Application
of classical statistics has led to a satisfactory under-
standing of most electrical fluctuation phenomena. The
classical description is usually adequate because ordi-
nary measurements are made at room temperature with
circuit currents exceeding noise currents. If measure-
ments were made at low temperatures, with smaller
currents, the quantum sects would be significant. No
experiments have been carried out under such condi-
tions. The present-paper is an eGort to provide some
basic work for a general quantum theory of circuits and
noise.

Recently Callen and Welton' presented an elegant
quantum theory of noise. Their results showed as one
of the quantum eftects an infinite zero-point noise con-
tribution for a pure resistance. The theory to be pre-
sented here gives insight into the origin of the infinite
zero-point contribution and predicts finite quantum
effects in certain experiments.

* Supported by the U. S. Once of Naval Research.
' H. B. Callen and T. H. Welton, Phys. Rev. 83, 34 (1951).

AN OSCILLATING CIRCUIT WITH NO DISSIPATION

We consider first an electrical oscillator which we

imagine made up of perfect conductors with no radia-
tion. One is tempted to treat such a system as Fig. 1
as an ensemble of particles and to discuss its behavior
in terms of charges and currents. This procedure leads

to diKculties because with perfect conductors there are
no tangential electric fields near the conductors. In
order to allow currents to change without electric fields,

charged particles without mass or an infinite number of
carriers with mass would be required. To avoid these

diKculties we choose to discuss the fields. The energy is

where 8 and H are the electric and magnetic fields,

g,nd the integral is throughout space. We represent the
magnetic vector potential as the product of a time-de-

pendent and space-dependent part q(t)A (r). In terms of
the vector potential,

E= —(1/c) jA, H= qv't& A.
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FIG. 1. Electrical os-
cillator with no dissi-
pation.

From (2) we get, using Maxwell's equations,

vxH=
l v(v A) —vsA)q= —(1/c') jA. (3)

The fields are entirely outside of the perfectly con-
ducting boundaries, and the most generaP solution of
Maxwell's equations can be expressed in terms of po-
tentials such that the divergence of A is zero, and
the scalar potential is also zero. If q oscillates har-
monically with time, with angular frequency &o, (3)
becomes

V A+ (Co A/c )=0.

Our variables p and q must be noncommutable opera-
tors; otherwise it would be possible' to measure in the
same region simultaneously the electric field and the
magnetic field with arbitrarily great precisian. We there-
fore adopt the commutation rule:

Ptf tfP=

Expressions (8) and (9) make the problem of the un-

damped electrical oscillator formally identical with the
harmonic oscillator. The wave functions for q are the
well-known harmonic oscillator wave functions. The
allowed values for the energy are U= (rt+ 2)hto—

HARMONIC OSCILLATOR WITH DISSIPATION

We represent a damped oscillator by an oscillator of
the type discussed above, coupled to a resistance, as
shown in Fig. 2. We follow the general method of
Callen and Welton. ' The Hamiltonian can be written as

We normalize A so that

~ A 2d T= 47) G

a=-,'(p'+ 'q')+a, +Q l E dl. (10)

We introduce a variable p canonically conjugate to q
by letting p= j; from (2), E= —(1/c)pA. The total
energy in the electric field becomes

1 t' p I' p'—l' Ed7= A 47=—.
82r& v 82rc2" 2

The magnetic energy is

Here IIg is the Hamiltonian of the ensemble of par-
ticles making up the resistance; Q is a function of the
coordinates and momenta of the particles of the re-
sistance, and the line integral is over the length of the
resistance. In terms of the capacity C we can write

1—,E2d7. =-,'C
8x& y

Making use of (11) the Hamiltonian becomes

~=l(p+ y)+~.+(pQ/«) (»)
We treat the last term as an interaction term which

will cause transitions with exchange of energy between
the I,C circuit and the resistance. We assume that the
oscillator is weakly damped; if we use first order per-
turbation theory, the transition probability can be
sh'own to be:

+ tA. P'(V 3) Vsdjdr . (6)— .

Substitution of (2) into the first term on the right side
of (6) reduces it to

2'
W, = [p (Ett+h~) (Et—t l Q l

EIt+ h~&'f
(qc/8~co) EXII ds,

S x (Et:l P/& c
l
Et has)2+ p(Ett hco)— —

1 q
Hsdr= '(VX&)—2dr= — A. XVX' dg.

8x& y 8m~ y 8~ ~s

1 p $2~2
H2d7 =——

8&, (7)

The Hamiltonian (1) is now

jj—2 (p2+ ~2qs) (8)
~ L. I. Schiff, QNantlm Mechanics (McGraw-Hill Book Com-

pany, Inc. , New York, 1949), p. 265.

where the surface integral is over a closed surface sur-
rounding the circuit. From Poynting's theorem this
term is proportional to the radiated power which is
postulated to be zero. Equation (6) becomes

x(E~ IQlE~ —h~&'«.
I p/FACIE. +h~&'j (»)

The symbol (EttlQlEtt+ha&) indicates the matrix ele-

ment of the operator corresponding to Q between the
quantum states of the resistance with eigenvalues E&
and EIt+hto, (Er l p/Q C

l Et h&o) has the corresp—onding

meaning for the quantum states of the field. p(Ett+hoo)
is the density in energy of the quantum states of the
resistance in the vicinity of the energy Ez+hto. Ex-
pression (13) gives the total transition probability from

' W. Heisenberg, Physecat Preuceples of the Quarttum Theory
(Dover Publications, New York, 1950},p. 50.
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an eigenstate of the unperturbed system in which the
field has the eigenvalue Ep, and the resistance has the
eigenvalue E~. We may assume that initially the cir-
cuit is in an eigenstate (before being coupled to the
resistance). There will never be enough information
about the resistance to say that it is in an eigenstate,
but its state will be partially specified in that its tem-
perature will be known. It is therefore necessary to
average (13) over an ensemble of similar systems, the
result is

2 p
oo

W, =— E/ —E/: 5&v —' p(E„+Ito/)
/t/ . gC ~s

X«, l(JIE,+k )'p(E, )f(E,)dE,

p
2 ~00

+(s —s +ha p{z,—iira)
QC Jg„

X(E,I g IE„—k~)'p(E„)f(E„)«„. (14)

U= —,'hei+
exp(A o//kT) —1

X 1—exp l
kcoS

[1—exp —(Ard/k T)]t
2C

AMS

+Us exp — [1—exp —(hoi/kT) )t . (19)
2C

energy, depending upon e. It is interesting that the
equilibrium value of e [for which (18) is zero] is

I= 1/[exp (hei/k T)—17.

The principal quantum effects are evident in (18);
classically the rate of energy loss would be proportional
to the energy at time f,. This is only true in (18) if n
is large.

If the relation for the energy, U= (e+-', )hoi, is in-
serted into (18) and the resulting equation integrated, f
we obtain

Consider f(E) the statistical weighting factor, and
f(E+hco)/f(E) =exp —(ho//kT). The second integral
has &co as a lower limit because energy is conserved in
these transitions, and no resistance in the ensemble can
undergo transitions which reduce its energy if its energy
is less than ken. We introduce the quantity

271 f
S=—

~ p(E„+a )(E„lqlE„+a~)'
e~.

&) (E )f(E.)dE' (15)

In Eq. (19), U is the average energy of a circuit in the
ensemble as a function of time and the initial energy
Us, C is the capacity, and S is defined by (15). For
large energy (classical limit) the second term is the only
significant one. Comparing this with the known classical
solution U= Uoe ~"~, where t" is the conductance,
we obtain:

A(oS
G= [1—exp —(ho&/kT) 7= 7ro/[1 —exp —(hrd/kT) 7

2

By making a change of variable in the second integral
of (14) and making use of (15) we can put (14) into
the form:

U=. —,'/t/, oi+ [1 e
—gg/c]+ U e

—Gi/0

exp (Aa&/k T)—1
The first term of (16) is the probability per unit

time that the circuit and fields will lose a quantum,
and the second term is the probability per unit time
that the circuit and fields will gain a quantum. The net
probability that a quantum will be lost will be the dif-
ference of the two terms. The average rate of change of
energy of a circuit in the ensemble will be

(19a)

EQUIVALENCE OF RESISTANCE AND A NOISE
GENERATOR

In this section we prove the following theorem: The
Johnson' noise plus "spontaneous" emission is entirely

d U/dt =SI'to/[(E p I p/Q C
I
E/+ho/)s exp (kM/kT—)

—(E Ip/&CIE —& )'7 (17)

in agreement with the result of Callen and Welton. In
r ~~ S~

~ ~~
~

~

~

~ ~~ ~~~~~ 2

2
terms of (20), (19) becomes

+ (E/ I p/4 C
I
E~+Ao/)' exp —(Ao//kT) 7. (16)

SQ)

If we insert the well-known harmonic oscillator
matrix elements into (17) the result is

Fro. 2. Damped elec-
trical oscillator. C G

dU S(koi)'
[(e+1) exp —(fi/d/kT) t/7, —

dt 2C
(18)

t The procedure of this section is based on the discussion of
E. C. Kemble, The Fundamenta/ Pnnc~p/es of Quuntum Me-

where e is the quantum number of the circuit. Fquation Chapter 12.
(18) states that the circuit may either gain or lose 4 J. B. Johnson, Phlrs. Rev. 32, 97 (1928).



980 J. WEBER
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I'zG. 3. Electrical oscillator and current generator.

equivalent to all damping e8ects which the resistance
has upon the oscillating circuit. The noise is seen to
play a role in the damping process. To show this let us
imagine that the resistance is removed, and that it is
replaced by a "current generator" which has an infinite
internal impedance.

It may readily be shown by comparison with the
classical differential equations that the Hamiltonian of
the system of Fig. 3 is

There is still the last term of (24). It is apparent that
the last term in (24) is just the transition probability
at T=O, that is, the transition probability if the re-
sistance is in its lowest state and the quantum number
of the circuit is n. This is closely analogous to the spon-
taneous emission which atoms undergo even if the
radiation fields are in their lowest states. We therefore
conclude that the transitions required by (24) will be
produced by a noise current generator described by
(25) plus spontaneous emission, that is, plus the effect
of the absorber in its lowest state.

We can get a more formal analogy with the spon-
taneous emission induced by the radiation modes in
atoms if we imagine the second term of (24) to be
equivalent to that of a current generator which can
only induce downward transitions. Comparing the
second terms of (23) and (24) we see that the equiva-
lent current for such a generator is

H =
~ (p'+~'q') —(qi/Q C) sin (&v,t). (21) [i'(~) ]A,

——2'(o/~. (26)

It is well known that an interaction term of the form
of the last term of (21) will not give a transition proba-
bility proportional to time. To obtain transitions
equivalent to those of the resistance we need a current
generator with a continuous spectrum in the vicinity
of or, Under these conditions the transition probability is

This result is formally analogous to that obtained in
the treatment of spontaneous emission of radiation by
Park and Epstein. '

MEAN SQUARED NOISE VOLTAGE AND
AVAILABLE POWER

Z CO Ay[«.Iql& +k &'

CA'

where C is the capacitance, and the mean square value
of the current over a range de is [i'(~)]A,dry Insert. ing
the harmonic oscillator matrix elements, (22) becomes

We can calculate the result of precise measurements
of the mean squared noise voltage of the damped oscil-
lator by averaging the equilibrium value of the quantity

+(&» ~q~&» &~)'], (22) —[fE dl]' over the ensemble. From (11) we obtain

Av

Wg = [(e+1)+I],
2CSG7

(23)
2-(&»~ I

P'/C
I &») expL —(~+I)&~/kT]

~ (27)
P„exp[—(»»+-,')I»&o/k T]

G (e+ 1)+n8'„=— +Pl
C exp(kcu/kT) 1—(24)

Comparison of (23) and (24) shows that the transi-
tion probability will be the same, in so far as the first
term of (24) is concerned, if

Av

~[exp (k(o/kT) —1]
(25)

Equation (25) is the Nyquist' formula in the equivalent
current representation, modified for quantum effects.

5 H. Nyquist, Phys. Rev. BS, 110 (1928}.

where n is the quantum number of the oscillator.
In order to compare the transition probability in-

duced by the current generator with that induced by
the resistance we insert the appropriate matrix elements
into (16).Making use of (15) and (20) and rearranging
terms, (16) becomes

Carrying out the summations indicated in (27) we
obtain

AG7

V'= —~Au&+
C exp (ka&/kT) —1

, (28)
exp (b~/k T)—1

where her is the classical half-breadth. The first term of
(28) is her/2C and represents noise which would be
observable even if the oscillating circuit were in its
lowest state. It represents the fluctuations of the vac-
uum surrounding the circuit. It will now be shown that
this term cannot be removed by making formal changes
in the Hamiltonian which remove the zero-point en-

ergy. ~ The proof follows the discussion of the corre-

' D. Park and H. T. Epstein, Am. J. Physics 17, 301 (1949}.
~ The author is indebted to the referee for suggesting investiga-

tion of this point.
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sponding problem' in the quantum theory of the 6elds ances G& and 02 this is
in vacuum. We introduce the auxiliary variables p and.
p*, defined by 1

q= p+p*, p= r'—(o(p p—)

The Hamiltonian 8 can be written

exp (ha&/kTr) —1 exp (h&o/k Ts) —1

(Gr+ Gs). (32)

H =2resP*P= -'(P'+(u'q') ——'hu& (29A)

The eigenvalues of the Hamiltonian (29A) do not have C . exp(h~/kTr)
the zero-point energy, but the eigenfunctions of this
Hamiltonian are the same as those of the Hamiltonian
(8). The quantity

(E» I
P'/C

I E»)= 4 ~~*(P'/C)4»d~

Gr G2
!+—

&exp (h~/kT&) —1 exp(her/kT, ) —1)

(Gr+Gs) . (33)

&=~'D3*P+PP* j. (29) The average rate at which Gr transfers energy to the
system is obtained from (18) if we insert the stationary

The correspondence with the classical theory is equally
value oi n as given by ~32'. The result is

good ii j29j is written

is unchanged, and the summation (27) is also un-
changed. The zero-point noise contribution is seen to
be independent of the choice of zero-point energy. It is
in fact due to the random interaction of the apparatus
for measuring the electromotive force, with the circuit,
and is related to the uncertainty principle. Equation
(28) does not assert that one can observe the zero-point
energy; it does assert that one can observe the zero-
point Quctuations.

Another quantity which is speci6ed in the classical
discussion of resistance noise is the available power. To
calculate the power which a resistance would transfer
to another resistance within a specified frequency range
we consider the experimental arrangement of Fig. 4.
The Hamiltonian of such a system is

(30)

We can deduce the expression for the rate of change
of the field energy in the same manner as (18) is ob-
tained, the result is

d U (hs))'
LSrL (e+ 1) exp —(ho/kTr) —I]

dt 2C
+SsI (x+1) exp —(h~/kTs) —nj], (31)

where

2' t

Sr= p(EBr+hG7)(EBrIerIEBr+hco)
5~0

Xp(Ear) f(Err)dEzr,
2K

Ss=— p (Ezs+hre) (Ezs I es IEzs+ho))'
h~,

Xp(Ezs) f(Ezs)dEz, .

The stationary value of dU/dt is obtained for a value
of e which makes (31) zero. In terms of the conduc-

%. Heitler, QNuntum Theory of Radiation (Oxford University
Press, London, 1944), p. 60.

Equation (33) gives us the net power transferred to the
system by G&. Equation (33) will be a maximum if
Ts~0 and Gs/Gr~~.

G rhea) hre (6(0)r

, : (34)
CI exp(h(o/kT&) —1j exp(h(o/kT&) —1

where (d,or)r=Gr/C. Equation (34) is somewhat dif-
ferent from the classical value because we have chosen
to specify the maximum power in a way which is dif-
ferent from the classical one but more precise for our
purposes.

NOISE MEASUREMENT EXPERIMENTS

Callen and %elton have "given an integral for the
noise of a pure resistance. They did not discuss the
spectrum of the noise, and their integral contains an
infinite zero point contribution.

Vile might measure the power spectrum of the noise
by employing a filter with a Qat response within the
pass band and in6nite rejection outside of the pass
band. For simplicity we choose instead to measure the
power spectrum in the vicinity of co by connecting an
LC circuit of natural frequency co to the resistance, as
in Fig. 2, and measuring the expectation value of the
square of the electromotive force. The result of such an
experiment is given by Eq. (28). Although (28) was

C

FIG. 4. Electrical oscillator coupled to conductances
at different temperatures.
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calculated as an average over the ensemble, the ergodic
theorem guarantees that the same result will be ob-
tained if repeated measurements are made with a single
resistance. This is because the measurements do not
aGect the known partial specification of the state of the
system. This measurement gives the noise contribution
in the vicinity of co. To obtain the noise over all fre-
quencies we would need an infinite number of circuits
of the kind discussed in this paper. The resulting zero-
point contribution is therefore infinite. This is believed
to be the interpretation of Callen and Welton's result.

All resistances have physical size, and there will

always be a certain amount of inductance and dis-
tributed capacity. We would always have an arrange-
ment somewhat similar to that of Fig. 2. In making
the measurements we can always couple to either a
single mode or at most a finite number of modes, and the
zero-point noise contribution is finite.

Equation (34) shows that the maximum power which
a resistance can transfer to a system tends to zero at
low temperatures, while according to (28) the mean
squared value of the electromotive force approaches
the limith &u/2C. Lawson' suggested noise measurements
as a method for measuring temperature. If the noise
measurements are made by measuring the transitions

' A. W. Lawson and E. A. Long, Phys. Rev. 70, 220 (1946).

induced by the resistance (power measurements) there
will be no zero-point contribution, according to (34).
On the other hand if we measure the mean squared
value of the electromotive force there will be a zero-
point contribution as given by (28).

CO NCLUSION

In this paper we have examined some of the conse-
quences of the application of field quantization to elec-
trical circuits. The theory gives the familiar classical
sects and includes in addition the noise and quantum
effects. It shows clearly the role of noise in damping.
The zero-point noise contribution which appeared first
in the theory of Callen and Welton is shown to repre-
sent an observable e8ect, independent of the choice of
zero-point energy. Experiments at low temperatures
and high frequencies oGer an opportunity to study in
detail the quantum e6'ects of a single mode of the elec-
tromagnetic field. When precise noise measurement
techniques are developed it should be possible to observe
directly the vacuum Auctuations in a low temperature
noise experiment. In a subsequent paper the interaction
of circuits with radiation fields and with electrons will
be discussed. I wish to acknowledge stimulating discus-
sions with Dr. M. H. Johnson.


