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Inner'Bremsstrahlung in 1-Meson Decay*

A. LENARD
Department of Physics, State University of iowa, lotoa City, lovoa

(Received December 8, 1952)

The transition probability for the decay of a tL4-meson resulting in the simultaneous ejection of an electron
and a photon is computed. Its dependence on the energies of the two emitted particles and on the angle
between their direction of emission is given for the general case of an arbitrary mixture of three basic Fermi-
type interactions for the p,-decay process.

I. INTRODUCTION

'ONER bremsstrahlung, i.e., photon production ac-
~ - companying charged particle transformations, has
been studied in the past in. connection with nuclear
P-decay, ' ' E capture, ' ' charged meson production in
high energy nucleon collisions, '' and the decay of
charged x-mesons. "The occurrence of inner brems-
strahlung in p-decay has also been considered, "but the
calculations have been made with: the now abandoned
one-neutrino model of p,-decay. It is the purpose of the
present paper to derive the transition probability for
inner bremsstrahlung in p,-decay on the basis of the
presently accepted model. "

The results may be of more than theoretical interest.
The interaction Hamiltonian responsible for p,-decay
can be chosen in a variety of ways, and, in the general
case, can be expressed as a sum of certain basic inter-
action types. The coupling constants appearing in such
a sum are to be determined by experiment. It is known,
however, " that even a complete knowledge of the en-
ergy spectrum of the decay electrons can yield at most
two relations between these coupling constants. For
this reason, one is naturally led to search for other
phenomena involving the basic p-decay that depend on
the coupling constants, in order to obtain further rela-
tions between the latter from experiment. Inner brems-
strahlung is such a phenomenon. This investigation
shows that, indeed, a suKciently accurate measurement
of certain features of the phenomenon would yield
additional new information on the coupling constants,

*Based on a thesis submitted to the Graduate College of the
State University of Iowa in partial fulfillment of the requirements
for a Ph. D. degree.
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although the eGect is small and its detection would re-
quire the production of large p,-meson densities.

II. GENERAL FORM OF THE INTERACTION

The interaction Hamiltonian density for the p,-decay
is constructed out of the quantized spinor field com-
ponents %', P, and ip of the tt-mesons, electrons, and neu-
trinos, respectively. The presently adopted model re-
quires the emission of two neutrinos in the basic decay
process, consequently, the Hamiltonian is quadratic in
io, while it is linear in both 4 and it. The procedure for
forming Lorentz-invariant Hamiltonians from four
spinors and their Hermitian conjugates is well known
from the theory of nuclear P-decay. I.et us write sym-
bolically I"a=1, I'v=t'p„, " I'r ——s»„= ', i(p„p-„p„p„—),
r& ——~„~„where &5

——pop»2&3, and Gnally r~=~, .
Furthermore, let x& and X2 be any two spinors. It is
known that, if we define the- spinor conjugates as"

x= x*~
with A deGned by

AyA '= —y„~, A =3 t,

the five expressions (xtl'sxs)(t=S, V, T, A, P) have the
transformation properties of a scalar, vector, anti-
symmetric tensor of second rank, axial vector, and
pseudoscalar, respectively, under Lorentz transforma-
tions excluding the time rejections. Thus, from four
spinors one forms the Gve invariants,

(xti" txs) (xsi'tx4), (3)

where summation convention with respect to the sup-
pressed tensor indices is understood. It is convenient
to consider, together with any spinor p, its charge
conjugate,

C 'x*

where C is deGned by

C C~ ~ C~ C~

For quantized Geld operators charge conjugation means

"y„are four Dirac matrices satisfying Y„p„+y„y„=2g„„,where
gcI=g2s=g33= —goo=1 gy„=0 for pWv."It will be understood that, if x is a quantized field operator,
X* denotes the hermitian conjugate operator. Matrix multiplica-
tion with respect to spinor indices is indicated unambiguously by
the order of factors. t denotes Hermitian conjugation with respect
to spinor indices.
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simply the replacement of Jordan-Wigner operators of
particles by those of their antiparticles. Under Lorentz
transformations, x' behaves the same way as x; conse-
quently, one can replace each spinor in (3) by its charge
conjugate without destroying relativistic invariance.
Further arbitrariness is involved in the order in which
the four spinors appear in (3).

All this is well known, of course. Perhaps it has not
been sufIiciently emphasized in the past, however, that
the number of physically different interaction Hamil-
tonians is much smaller than the above considerations
would seem to indicate. In particular, the classes of
interactions designated by various authors as "charge
retention, " "charge exchange, " etc.'4 do not really
represent physically different theories. The reason for
this is to be found in the following two theorems:

where

Theorem 1

(xii'~x2) = —l ~(x~'I'~xi'),

1 s=t~=i i =1,
fr=fr= —1

Theorem 2

2 —2 1 —2
—8 —4 0 4

Fg~~= 8 24 0 —4 0
—8 4 0 —4

2 2 1 2

Theorem 1 follows easily from the two

Al'gA —'= Fgt

2
8

24
8
2

relations,

Ci')C '= 1'gi" g*

together with the antisymmetry property of the matrix
A~C,"

A*C= —(A*C)r= —CrA. (10)

Equation (10) is verified most easily with the fre-
quently used standard representation of the Dirac
matrices, but it is not dependent on it. Theorem 1 has
been used in the past in various contexts. ""Theorem 2
is also known and was erst given by Fierz."

The immediate consequence of these theorems is
that the order of the four spinors in an expression like

' This terminology was introduced by J. Tiomno and J. A.
Wheeler, Revs. Modern Phys. 21, 144 (1949).

"The superscript T denotes transposition with respect to
spinor indices.

' An interesting application has been found by S. R. De
Groot and H. A. Tolhoek, Physica 16, 456 (1950)."M. Fierz, Physik 1Q4, 553 (1937).

(x,i',x,)(x,r,x,)=P,,P„.(x,r„x,)(x I' .x ), (7)

where F« is a square matrix whose rows and columns
are labeled by the 6ve interaction types S, V, T, A,
and I' in this order: (r,r, v2') (r21',v—i') = (1+|,)(r,i',v, '), (12)

where we have used Theorem 1. But in the last line,
we have precisely the matrix element of the Hamil-
tonian (pi'~q) for the emission of two neutrinos, multi-
plied by a numerical factor 1+i &. This establishes the
equivalence of the two theories and also shows that
(11) is indeed the most general form. We may also
remark that, if the Majorana theory" of the neutrino
is adopted, there is no choice in the matter to start
with, because then y= y' is true as an operator identity.

From a practical standpoint a further restriction is
possible. Consider, for instance, the relationship of
the scalar and pseudoscalar interactions. Since y5 anti-
commutes with all four Dirac matrices y„, P, and ps'
satisfy Dirac equations with opposite sign of the elec-
tron rest mass. Thus, the relationship between matrix
elements is simply that of reversal of the sign of the
rest mass. But, in view of the largeness of the p-meson
rest mass compared to the electron rest mass, momenta
of all particles participating in a reaction will be large
compared to the electron rest mass over an over-
whelming portion of their momentum space. Thus, the
difference between the scalar and the pseudoscalar
cases can be neglected for all but the smallest momenta.
A similar argument applies to the vector and axial

"We shall use units such that k=v=1, thus energies and
momenta are measured in wave numbers.

"See, for instance, W. Pauli, Revs. Modern Phys. 13, 203
(1941).

(3) is purely conventional and can have no physical
signihcance, provided linear combinations of all five
interaction types are admitted. It will become evident
in the following that there is a particular order which
is more convenient than the others. We 'shall adopt this
one and write for the Hamiltonian density for p-decay'.

B'~„)——P&g&(41',P)(pi'tp)+Herm. conj. , (11)

where g& are five coupling constants of the dimension of
the square of a length. "We may point out immediately
that replacing 4' by 4', for instance, will also not alter
the physical content of the interaction Hamiltonian
(11), for this transformation leaves unchanged its
matrix elements between states speci6ed physically in
terms of occupation numbers, momenta, spins, and
charges of particles involved. Somewhat less trivial is
a similar question raised in connection with the neu-
trino 6eld operators. We are concerned with replacing
the factor (pi'&y) by (&pl'&y') and want to inquire
whether this change can have any physical signihcance.
The matrix elements of (qrI'~y') corresponding to the
emission of two neutrinos are antisymmetric in the
quantum numbers characterizing the neutrino states.
On the other hand, (pi', q&) can only emit a neutrino
and an antineutrino, so that no requirement of anti-
symmetry arises from the exclusion principle. Note,
however, that the antisymmetric matrix element from
the Hamiltonian (pi', y') is
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vector interactions. We shall thus retain only the three
interactions (scalar, vector, and tensor) and, consis-
tently with this approximation, neglect all terms that
are multiplied by the electron rest mass.

III. ELECTRON SPECTRUM FROM p-DECAY

We shall recall here the computation of the energy
spectrum of electrons resulting from p-decay, because
it illustrates the method that will be used in the inner
bremsstrahlung calculation without the additional
complications of that case. In particular, a short method
of integrating over neutrino momenta had to be devised
to prevent calculations in the latter case from becoming
prohibitively lengthy. It was found that this problem
can be dealt with rather satisfactorily by making full
use of relativistic covariance properties.

The transition probability per unit time for the
decay of a p-meson into an electron of given momentum

p and two neutrinos is given by

(P(„id'p= (2ir)
—' "d'k ~d'k'oi

X-', 2 l(f1&I') I'~(&—p —k —k')&'p (13)
spms

Here k and k' are neutrino momenta and the argument
of the 8-function contains the energy-momentum four-
vectors E, p, k, and k' of the initial p,-meson, the electron,
and the two neutrinos. The transition amplitude

(f ~

A
~
i) is obtained from the Hamiltonian (11)by first-

order perturbation theory in the usual way. We take
note of the fact that this matrix element is actually a
product of two factors, one involving the p,-meson and
electron momenta and one involving the neutrino
momenta only. It is evident from the form of the
Hamiltonian that these two factors have the respective
transformation properties of a scalar, a vector, and an
antisymmetric tensor of second rank and are contracted
over corresponding tensor indices. We may now square
the neutrino factor, carry out the spin summation, and
integrate over neutrino momenta, regardless of the
other factor which contains dependence on quantum
numbers of the observed particles only. The advantage
of this procedure is that the same integral occurs in
the problem of inner bremsstrahlung or, for that matter,

. in the expression for the probability for any process
which involves the basic interaction (11) in a linear
fashion (this condition can always be regarded as
satisfied on account of the smallness of the coupling
constants g,). We write then"

+(w) Q M ~ —,
' T {(Pr)I',(P"r)I', .}J.. . (14)

2(2~)'eE iit'

where e= (p'+m')' E= (P'+M')~, m and M being the
rest masses of electron and p,-meson, respectively. The

'~The Lorentz invariant product of two vectors a and b will
be denoted by (ub) =a„b"=a. 1—aflbo.

I„.= ~t
~i d'kd'k'8(P p —k —k')—k„k./~~' (16)

~ and 2 are neutrino energies: ~= ~h~, ~'= ~k'~. In
(14), terms proportional to m have been neglected al-
ready. The integral (16) can be evaluated eKciently by
noting that it depends only on the vector

that it is of the dimension of a momentum squared,
and that it is a symmetric tensor under Lorentz trans-
formations. These conditions suKce to 6x its form as
I„„=AG„G„+Bg„„(GG),where A and B are dimen-
sionless numerical coeKcients. One can easily find them
for a special tensor component. The result is

J"= 6~I 2G.G +Z"(GG)3

We next observe the important fact that, for t/t',

Tr{y"I'iy "I'~ }= —Tr{y "I'iy"I'i }. (19)

This has the consequence that the double sum in (14)
reduces to a single sum and that the transition proba-
bility for a general linear combination of interaction
types appears as the linear sum of transition probabili-
ties computed from pure interactions with the squares
of the respective coupling constants as coefficients.
This simple result holds only if the order of field opera-
tors is chosen as in (11).Equation (19) actually holds
for t as well as t' running through all five types. The
evaluation of (15) is immediate, and we list the results
below:

Js, s= J=~(GG),
Jv, v= J., p= 32~[(GG)g.,—G&p],

Jr, r =J.p, .i,= 3~[Gp&g.i G.G.g pi,+G.Gig p. —
GnGC«j+ 3 (GG) Lg«f ~& K~Cn~ j.

(20)

Here we have again written out the tensor indices for
the sake of clarity. One can even go one step further.
The tensors (20) are always contracted with expres-
sions of the form

—,'Tr{QI',Q'I', .}, (21)

where Q and Q' are two Dirac matrix products de-

pending on momentum vectors. It is easy to verify
that the following results obtain:

~ Tr{QI'sQ'I's}J8 s= m (GG)—' Tr{QQ'}, (22)

4 Tr{QI'iQ'I'~}J~, i.= 3~B Tr{Q%v)Q'(&)}
—(GG)l Tr{Q~"Q'~.}3, (23)

—:T {QP.Q'P.}J;.=(8-/3)[-: T {Q(G )~.Q'(G )~ }
—(GG)~ Tr{QQ'}$—3x(GG)~ Tr{Qv„„Q'y""}. (24)

contribution of the neutrinos is included in the tensors

(15)
where
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The last term in (24) can frequently be omitted, since
it vanishes whenever Q or Q' contains an odd number of
y-factors.

The foregoing results can be now applied to evaluate
(14). The result will be expressed in terms of the in-
variants (pP) and (PP)= —M'. It is customary to
write it in the rest system of the initial p,-meson. One
obtains the following:

&m

(P(,) = (gs'+2gv'+8gr')(e e)—
(2tr)4

FIG. 1. Feynman
graphs for inner brems-
strahlung in p,-decay,
(a) Contribution due to
meson acceleration, (b)
Contribution due to elec-
tron acceleration.

&k'

Q

K
I

+(2gv'+ 16gr')- (23)
3

Here c =M/2 is the maximum electron energy. Inte-
grating over all energies the lifetime of the p,-meson
becomes r, where

5

—=4tr I (P(„)e&de= (ge'+4gv'+24gr'-). (26)
& o 6(2tr)s

— p-meeon Itne

electron line

--~—neutrino line~ photon tins

polarization of the outcoming photon; we sum over
this variable, since detectors are assumed to be in-
sensitive to polarization.

The Hamiltonian is now written

(31)&=&i.i+&i&iThese are the results derived by Michel, "provided one
sets

p= (3gv'+24gr')/(ge'+4gv'+24gr').
the second term being the electromagnetic interaction.

(2&) The latter consists of two terms,

The two quantities 7. and p are subject to experimental
determination from the simple p-decay. According to
present experimental evidence, ""

and
r= (2.22&0.02) X10 ' sec,

p =0.26&0.26.

(28)

The considerable uncertainty still attached to the
value of p, as well as the fact that only two of the
coupling constants can be determined so far, makes it
worth while to explore further consequences of the
theory. This leads us to the problem of inner brems-
strahlung which is the main subject of this paper.

6'(~)d'pd'K=(2tr) s d'k d'k' ', Q Q((f~—R~i)~'
spina p

X b(P K p k k') d'p—d'K—, (—30)—

where now the matrix element (f~R~i) must be ob-
tained from second-order perturbation theory with a
Hamiltonian that takes into account the electromag-
netic interactions of the charged particles involved in
the reaction. In (30), p denotes the state of linear

"L.Michel, Phys. Rev. 86, 814 (1952), Eq. (1).~ W. E. Bell and E. P. Hincks, Phys. Rev. 84, 1243 (1951}."H. W. Hubbard, Thesis, University of California (1952),
unpublished.

IV. INNER BREMSSTRAHLUNG

The transition probability for the decay of a @,-
meson into an electron plus a photon of energy-
momentum K= (W, K) is given by

(32)

where A& is the transverse" electromagnetic potential
field operator, and e= (4tr/13'/) &. The two terms involve
the current vectors of the p,-meson field and the electron
6eld. Correspondingly, the total amplitude for the
transition desired will be a sum of the two amplitudes
arising out of these two terms. The Feynman graphs
corresponding to the two contributions are shown in
Fig. 1. Evidently, in one case, the acceleration of the
p,-meson into the intermediate state is responsible for
the photon emission, while, in the other case, the emis-
sion is caused by the acceleration of. the electron from
the intermediate to the final state. One obtains the total
amplitude by applying the Feynman rules" to the two
graphs. The result is

(f(R(i) =eP tg, Lv( k)F vt( k) 1

(~v) (qv)+i~
Xi tt(p) r,

(2W) & (qq)+ttt'

(Qv)+'~ ( v)+r, V(P) . (33)
(QQ)+M' (2W) & ]

Here v(k), u(p), and U(P) are properly normalized
eigenspinors belonging to indicated momentum values,
for instance, (u(p)u(p)) =tts/e, etc. ; m=re(p) are two
unit polarization vectors perpendicular to the photon

~ For a justification of using the transverse field for computing
transition amplitudes see, for instance, F. Coester and J. M.
Jauch, Phys. Rev. 78, 149 (1950), Sec. IV.

ss See, for instance, F. J. Dyson, Phys. Rev. 75, 1736 (1949).
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momentum and each other

w'=0, (ww) =1, (wE) =0,
Fr = ( ~ (GG) L3P—(GG))+cV4 4—(pE) (PE)}4/W'

(34) 327r

and q and Q are momenta in the intermediate states +4(GG)+ (EG)'L(GG)+4(PP))l(pE) (PE)

g= p+E,
Q=P K. —

+4L(PE)' (P—E)')L(PG)+(PG))/(pE)(PE) (42)
(35)

Here we have used the abbreviation

where

+(v) = e Zg~&4
(2s-) '16EeW

(37)

(wV)
5:,=p J, „-,' 'r (pv) ((pv)+(Ev)) r,(pE)-

(wV) (wV)—r, ((Pv) —(Ev)) (Pv) r, .((pv)+ (Ev))
(PE) (pE)

(wV)
((pv) —(Ev))r 4 (38)

(PE)

Here we have written two different indices t and t' in
order to indicate unambiguously which pairs of tensor
indices are being contracted. There are, of course, no
cross terms between different interaction types; and
this is so for the same reason which has been pointed
out in Sec. III. A property of the F&, providing a valu-'

able check at various stages of the calculation, is

e,(p, P, E)=ff,(P, p, —E). (39)

This symmetry has its origin in the relationship of the
two graphs of Fig. 1 which contribute to the process.

Further steps in the calculation involve the applica-
tion of the formulas (22)—(24) to the expressions (40)
and Anally the reduction of the resulting traces to a
sum of products of invariants involving the vectors p,
P, E, G, and w. By judicious application of (36), one
obtains the following results:

1—Fs= —(GG) L(GG)+M')C/W'
27r

—2(GG)(EG)'/(pE)(PE), (4o)

3
&v= ( —(GG)L(GG)+M'/2)+M4/2)C/W'

Sx
—4(GG)+ (EG)'L —2(GG)+M')/(pE) (PE) (41)

Squaring and summing over spins is carried out in the
usual manner. As has already been observed, the in-

tegral over neutrino momenta has the same form as
(15), the only difference being that now the photon
momentum E also appears in the argument of the 6-

function. The result (18) is still applicable, provided
we set

(36)

This will be understood in the following. The result of
these manipulations can then be written as

(wp) (wP) '
4I—=W'Q

(pE) (PE)
(43)

The function 4 does not depend on the photon energy,
only on its direction of emission.

( P sin9

(1—P cose)
(44)

where P is the velocity of the emitted electron. This
function has a sharp maximum in the "forward" direc-
tion e= m/e. It is convenient to express all the remaining

angular dependence in terms of the function

&m

Here, as before, e =M/2 is the maximum energy
attainable by the electron. The significance of 8'0 may
be clarified by the remark that 8'= 8'0 is the solution
for 8' of the equation

(GG) =0, (46)

which is an expression of the fact that the two neu-
trinos have been emitted in the same direction. This,
in turn, means that the photon energy is a maximum,
consistent with given e and 0. In this notation one can

'
write, for instance,

(GG) = —4e (e —e)(1—W/Wo)

(EG)= —2e (e —e)W/Wo,

etc. Making these substitutions, one then rewrites

(P(~) in terms of the desired variables. Since these sub-
stitutions are of a rather trivial nature, we shall not
write down the results but merely call attention to
some special cases.

I.et us consider 6rst the limiting case of small photon

V. DISCUSSION OF RESULTS

In order to visualize the significance of these results,
it is advantageous to rewrite them in the rest-system
of the p,-meson as a function of e, W, and the angle 8

between the directions of propagation of the emitted
electron and photon. The main angular dependence is
contained in the factor 4 which can be expressed as
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energies. This means that from (40)—(42) only the lead-
ing terms in 1/W are retained. The results are very
simple, for comparison with (25) shows that

and 5"0——t. . One obtains, after some algebra,

(p(~)d pd E

1 e' dS"
~ (P(y)d E=— 4 dQy6'(p))

2 (2m)' W
(49)

where

e' W~ Wq
d&dWdn, dn, (.„.—)

~

A —8—~, (50)
(2~)' e ( e ~

where dQ~. is the solid angle element into which the
photon is emitted. The significant feature of this rela-
tionship is that it is independent of the values of the
coupling constants. That this is to be expected can be
made plausible by means of an argument based on
classical correspondence. " The relationship (49) can
also be proved quite generally by using the quantum
electrodynamics of spinor particles. ~ The function 4
may be said to represent the "classical" radiation pat-
tern resulting from the sudden acceleration of a point
charge.

Consider now the behavior of inner bremsstrahlung
at the maximum photon energy 8'=8'0. It follows
from (40) and (46) that at this energy the contribution
of the scalar interaction vanishes. This situation is quite
analogous to that of the ordinary p,-decay, as shown by
(25). There the contribution of the scalar interaction
vanishes at the upper end of the electron energy spec-
trum. Neither is the connection accidental: it has its
root in the formula (22), for in both cases the emission
of the two neutrinos in the same direction implies (46),
so that the transition probability vanishes. Since this
situation obtains at all angles 0, perhaps one has here, a
method of obtaining further corroboration, as already
shown by the existing experimental results" on p,—

decay, of the preponderance of the scalar interaction.
Further information of a more quantitative nature

may be obtained by looking at the actual form of the
photon spectrum for given electron energies e and
angles 0. %e shall be content here with giving the re-
sults for the simplest such case, vis. , 0=+. Then C =0

"See reference 3, Sec. III.
~~ The proof is based on comparing the squared matrix element

for an arbitrary graph with one obtained from it by inserting into
an external spinor line an external photon line in the limit of small
photon energy. See, for instance, R. Jost, Phys. Rev. 72, 815
(1947), where this procedure is applied to estimating the cross
section for the double Compton e6ect in the limit of small energy
for one of the outcoming photons. For greater detail, the reader
is referred to the author's thesis.

A =-,'gs'(e„—e)'+-', g('(3e„'+2e' —e e)

+kgb'(6~-'+2") (51)
and

8= 4gcp(Egg 6)—+ agy (E~ + 6 )+3gr (E~+ E) . (52)

dQ, is the solid angle element into which the electron is
emitted. It is clear that a precise knowledge of the
photon spectrum (50) at some or several electron ener-

gies would yield more than sufficient information to
fix the values of all the coupling constants. Of par-
ticular interest in this connection may be the value of
the spectrum at its high energy end as well as at its
maximum.

The practical limitations imposed on such a measure-
ment are, however, considerable, mainly on account of
the smallness of the eHect. The principal reason for
this is that, in order to utilize most of the information
supplied by the theory, one would have to do coin-
cidence measurements between electrons and photons
both of which occupy only a small part of the available
momentum space. An estimate for the magnitude of the
effect is easily obtained from the formula (50), for
instance, where, for the sake of definiteness, one may
assume that only the scalar interaction contributes to
it. Putting W= e /2 at which energy the rate of transi-
tions is a maximum, one gets

e' de dW d Q. d 0, 3 ( e ) ' 1
(I (,)d'pd'I(. = —=~ 1——

~

—. (53)
4~a e 4~ 4~ 2m. & e ~

It is clear that, even for the smallest energies e and
with an optimistic estimate for the energy intervals and
solid angle factors, one needs a meson source of around
10' mesons produced per second in order to obtain a
reasonable coincidence counting rate of the kind desired.

The author wishes to express his indebtedness to
Professor J. M. Jauch who suggested the problem and
supplied encouragement and advice during the course
of its solution.


